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1. Introduction 

Metal catalyzed activation of the carbon–hydrogen (C–H) 

bond for the formation of carbon–carbon (C–C) bond is a fast 

and economic approach for the development of biologically 

significant compounds and natural products
1
. It is a useful 

strategy of synthetic organic chemistry because it can be used for 

efficient functionalization of arenes without the use of hazardous 

precursors 
2
. On the other hand, ‘combo-catalysis’ is an emerging 

area in modern organic synthesis for diverse cyclization reaction 

through C(sp
2
)-H activation

3
; for example, CuBr−ZnI2-catalyzed 

N−N/C−N coupling for oxidative cyclization 

reactions,3dPd(I)−Ru(I)-mediated Suzuki cross-coupling 

reactions
3e

 and [IrCuCl2]2−AgNTf2-promoted amination 
reaction

3h
. The combo-catalytic strategy is also found to be an 

efficient tool for direct N-C and C-C coupling of amine with 

aldehyde and terminal alkyne4. Taking the advantages of the 

combo-catalysis, we targeted to synthesize a wide range of 

pyridocoumarin derivatives through the oxidative C-C and C-N 

coupling employing 3-aminocoumarin, aldehyde and terminal 
alkyne. 

3-aminocoumarin and its derivatives are one of the most active 

classes of compounds possessing a wide range of biological 

activity.
5
Due to their wide spectrum of biological activities, 

various research groups have put their efforts to synthesize 
compounds containing 3-aminocoumarin structural core

6
. 

Among the various 3-aminocoumarin scaffold containing 

molecules, pyridocoumarin derivatives are an important class of 

naturally occurring molecules and they exhibit a wide range of 

pharmacological activities such as CNS depressant,7 anti-

inflammatory,
8
 anti-tumor

9
and antimicrobial activities.

10
 They 

also exhibit interesting photochemical properties and have been 

used as laser dye stuffs,
11

 luminescence intensifiers,
12

 and 

spasmolytics.13 From the literature it is found that only a few 

methods are reported for the synthesis of pyrido[2,3-c] coumarin 

derivatives. Majumdar et al. devised a synthetic protocol for the 

synthesis of pyrido[2,3-c]coumarins
14

 through the palladium 
catalyzed Heck reaction followed by dehydrogenation with  

palladium charcoal. Bodwell and co-workers reported the 

synthesis of pyrido[2,3-c]coumarin derivatives using Yb(OTf)3 

catalyst through the Povarov reaction followed by oxidation with 

Br2.
15

Later on, the same group devised a synthetic protocol 

(Scheme 1, c) for the synthesis of pyrido[2,3-c]coumarins 
involving the intramolecular Povarov reaction of 3-

aminocoumarin and 2-(propargyloxy)benzaldehyde. This 

synthetic protocol afforded the product in 45% yield after 9 days. 
16

Recently, similar Povarov-type 3-component reaction was 

reported by McNulty
17a 

and co-workers. In that work, a Bronsted 

acid catalyst, TFA (trifluoroacetic acid) in dichloromethane was 
used to accomplish the desired transformation. Khan et al

17b 

described a three-component reaction to access pyrido[2,3-

c]coumarins using molecular iodine in acetonitrile solvent under 

refluxing condition. The main disadvantages of the above 

mentioned protocols are low yield, requirement of expensive 
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metal catalysts, prolonged reaction time, use of higher thermal 

energy, hazardous solvent and low substrate scope. Thus, a mild 

and competent strategy to access pyrido[2,3-c]coumarins is still 

challenging and highly desirable. 

 

 

 

 

Figure. 1 Bioactive and naturally occurring molecules 

containing pyridocoumarin moiety 

 
In recent years, solvent-free, ball-milling process has been 

emerged as a powerful tool for greener reactions.
18

High Speed 

Ball-Milling (HSBM) is a sustainable mechanochemical 
technique, which is used in synthetic organic chemistry to 

promote reactions under solvent-free conditions.
18a,19

This 

technique has been applied to a variety of organic reactions such 

as Knoevenagel condensation reactions,
20

Heck-type cross-

couplings,
21

Baylis Hillman reactions,
22

Michael additions,
20

 

functionalization of fullerenes
23

and Sonogashira coupling
24

. 

Analyzing the literature reports, we have opted this ball milling 

technique and planned to materialize the oxidative C-C and C-N 

bond formation through C(sp
2
)-H activation. In continuation of 

our recent effort to synthesize biologically relevant 

heterocycles,
25

 we wish to report a solvent-free, greener ball 

milling synthetic protocol for the synthesis of a wide range of 
pyridocoumarin derivatives starting from 3-aminocoumarin, 

aldehyde and phenyl acetylene, catalyzed by CuI-Zn(OAc)2 

involving a propargylic amine intermediate and Cu
I
 -Cu

III
 

switching mechanism. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 1:  Various synthetic strategies involving amine/3-
aminocoumarin, aldehyde and terminal alkyne 

2. Results and Discussion 

To study the possibility of our hypothesis for the synthesis of 

pyridocoumarin derivatives, 3-aminocoumarin(1),4-
methylbenzaldehyde (2) and phenyl acetylene (3) were chosen as 

the model substrate. Initially, 3-aminocoumarin (1),4-

methylbenzaldehyde (2) and phenyl acetylene (3) were taken in 

CH3CN solvent and treated with 10 mol % of CuI at 70 
o
C but 

reaction did not proceed even after prolonged heating (Table 1, 

entry 1). After several unsuccessful attempts using Zn(OAc)2, 

ZnI2, Cu(OAc)2 catalysts (Table 1, entries 2-4), we have designed 

a combo-catalyst CuBr/ZnI2(10 mol % each) for this three-

component recation in CH3CN solvent at 70 
o
C. Interestingly, we 

got 52% yield of the product after heating for 4h (Table 1, entry 

5).Then we employed another combo-catalyst, CuI/Zn(OAc)2(10 
mol % each) for the desired transformation.To our delight, yield 

of the reaction (70%) as well as the reaction rate (3h) were 

significantly improved under the identical reaction condition 

(Table 1, entry 6). It was found that the said reaction was unable 

to proceed at room temperature in CH3CN medium under similar 

catalyst loading (CuI/Zn(OAc)2, 10 mol % each). Different 
solvents such as PhMe, THF (tetrahydrofuran) were also 

screened for this reaction, but in each case compound 4b was 

obtained in comparatively low yield and after a much longer 

period of time (Table 1, entries 8-9).Few other reactions (4a, 4d) 

were also performed in these solvent systems (THF,PhMe) which 

provided relatively lower yields of the corresponding products 
(Table 1, entries 10-13). 

Table 1.Optimization of reaction condition to synthesize 

pyridocoumarinderivatives
a 

 
Entry Catalyst 

(mol %) 

Reaction 

condition 

Temperature 

(
o
 C) 

time 

(min) 

yield
b
 

(%) 

1 CuI (10 mol%) CH3CN 70 
o
C 8 h - 

2 Zn(OAc)2(10 
mol%) 

CH3CN 70 
o
C 8 h - 

3 ZnI2(10 mol%) CH3CN 70 
o
C 8 h - 

4 Cu(OAc)2(10mol%) CH3CN 70 
o
C 8 h - 

5 CuBr-ZnI2 (10 
mol% each) 

CH3CN 70 
o
C 4 h 52 

6 CuI-Zn(OAc)2 
(10 mol% each) 

CH3CN 70 
o
C 3 h 70 

7 CuI-Zn(OAc)2 (10 
mol% each) 

CH3CN r.t. 3 h - 

8 CuI-Zn(OAc)2 (10 
mol% each) 

PhMe 70 
o
C 4 h 69 

9 CuI-Zn(OAc)2 (10 
mol% each) 

THF 70 
o
C 4 h 65 

10
c
 CuI-Zn(OAc)2 (10 

mol% each) 
THF 70 

o
C 4 h 49 

11
 d
 CuI-Zn(OAc)2 (10 

mol% each) 
THF 70 

o
C 4 h 59 

12
 c
 CuI-Zn(OAc)2 (10 

mol% each) 
PhMe 70 

o
C 4 h 60 

13
 d
 CuI-Zn(OAc)2 (10 

mol% each) 
PhMe 70 

o
C 4 h 61 

14
e
 CuBr-

Zn(OAc)2(10mol% 
each) 

Solvent-
free Ball-

milling 

r.t 1 82 

15
e
 CuI (7mol 

%)/Zn(OAc)2(9mol 
%) 

Solvent-
free Ball-
milling 

r.t 35 
min 

89 

16
e
 CuI-

Zn(OAc)2(5mol% 
each) 

Solvent-
free Ball-

milling 

r.t 1 h 85 

17
e
 CuBr-ZnI2(10 

mol% each) 
Solvent-
free Ball-

milling 

r.t 1h 77 

18
e
 - Solvent-

free Ball-
milling 

r.t 2h - 

19
e
 TFA (10 mol%) Solvent-

free Ball-
milling 

r.t 1h - 

20 TFA (10 mol%) DCM r.t 2h - 

21 CuI (7mol 
%)/Zn(OAc)2 

(9mol%) 

Solvent-
free Ball-

milling 

r.t 50min 85 

a
In each case 3-aminocoumarin (1.0 mmol), 4-

methylbenzaldehyde (1.2 mmol) and phenyl acetylene (1 mmol) 

and 3 mL of solvent were taken in a 25 mL rb flask. 
b
 Yield of 

the isolated product. 
c
benzaldehyde (1.2 mmol) was used. 

d
4-

cyanobenzaldehyde (1.2 mmol) was used. 
e
Reactions performed 
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in a stainless steel jar under solvent-free ball-milling technique, 

internal temperature based on friction is 65oC 

Next we focused our attention to perform the reaction under 

solvent-free condition. In this regard, 3-aminocoumarin (1), 4-

methylbenzaldehyde (2), phenyl acetylene (3) and 

(CuI/Zn(OAc)2, 10 mol % each) were placed in high vibrational 

ball milling apparatus and grinded at 30 Hz. Surprisingly, we 

obtained 82 % yield of the product within 1h (Table 1, entry 14). 

Lowering of the catalyst loading (CuI/Zn(OAc)2, 5 mol % each) 

under ball-milling process decreases the yield of the product 

(Table 1, entry 16). Finally, it was established that employment 

of CuI/Zn(OAc)2,@ 7 mol % and 9 mol % respectively provided 
the desired product (4b) within 35 min giving 89% yield (Table 

1, entry 15).It was also noticed that on continuation of the 

optimized reaction for a longer time (50 min) under ball-milling 

technique has  resulted in slightly lowering of the yield (4b).At 

the end of the experiment, all the contents were taken out for 

column chromatographic separation directly using ethyl acetate/ 

petroleum ether (1:4). 

 

 

 

 

 

Scheme 2. Combo-catalysis for C(sp2)-H activation and 
cyclization 
Achieving the optimized reaction condition for our protocol to 

synthesize pyridocoumarins, we have investigated the substrate 

scope for this chemical transformation. A wide range of aromatic 

aldehydes, heteroaromatic aldehydes and substituted 3-
aminocoumarins were employed for this reaction.However, 

desired transformation became unsuccessful under imposed 

reaction condition when disubstituted alkyne (Diethyl 

acetylenedicarboxylate) was  employed. 

 

 

 

 
 

 

 

 

 

 

Figure 2. Single Crystal Structure of compound 4c 
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Scheme 3. Combo-catalysis cycle 

Table 2: Substrate scope for the synthesis of 

pyridocoumarins
a 

 

 
 

 
 

a In each case 3-aminocoumarin derivatives (1.0 mmol), 
substituted aldehyde (1.2 mmol) and phenyl acetylene (1 
mmol) were taken in a stainless steel ball milling vial with 
two stainless steel ball (d= 5.0 mm). 

b
 Yield of the isolated 

product 

This synthetic protocol was found to be extremely facile to 

access a library of pyridocoumarin derivatives under solvent-free 

condition (Table 2, entry 4a-4r). It is noteworthy to mention that 

the reaction was very clean producing only pyridocoumarin as 
the sole isolable product and no other side products were detected 

(Scheme 2). All the synthesized pyridocoumarin derivatives have 

been well characterized by spectral analysis (
1
H NMR, 

13
C NMR, 

IR) and finally the structural motif of the pyridocoumarin 

scaffold was established through X-ray crystallographic analysis 

of single crystal of one representative compound 4c (CCDC 

1540607, Figure 2). 

A plausible mechanism for this reaction is depicted in scheme 3. 

On the basis of the controlled experiments, UV−Vis data26
, XPS 

data
27

 and literature reports
28

, we proposed a plausible 

mechanism for this chemical transformation (scheme 3). At first, 

CuI activated the terminal C−H of the alkyne to produce 

(II, Scheme 3). The C−C and C−N bond 

formation between 3-aminocoumarin (1), aldehyde (2), and 

intermediate II generated propargylic amine intermediate III.
29

 

Zn(OAc)2 might act as Lewis Acid catalyst to polarize C=O 

during C-C and C-N coupling to form III. The intermediate III 

containing the flexible C-C triple bond allowed CuI to activate 
the aromatic C−H and π-bonds for oxidative C−H insertion with 

C−C coupling
30

 to form a seven-membered intermediate IV. This 

CuIII containing seven-membered intermediate IV was then 

O O

NH2

O

R2 H

R1 Ph H

+

O O
R1

N

R2

CuI / Zn(OAc) 2

Ball milling

H

C(sp2)-H activation

+
O O

R1

N

R2

4 5
1

2

3

+

Not found

C-N coupling

C-C coupling
C-C coupling
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transformed into a transient intermediate V by reductive 

elimination of  IV. Then intermediate V immediately transformed 

into desired product 4 involving the aromatization of V 
31

(scheme 

3). 

To establish the reaction mechanism, we conducted several 

control experiments. In this regard, reaction was performed under 
catalyst-free condition but it was unable to proceed even after 

prolonged grinding (Table 1, entries 18). We also performed two 

separate control experiments with CuI and Zn(OAc)2 (Table 1, 

entries 1-2) and the reaction did not proceed. Formation of 

copper acetylide is supported by the fact that the reaction was 

completely plugged when internal alkyne was employed.The 
cyclization reaction was ineffective upon using the imine 

(generated from 3-aminocoumarin and benzaldehyde) and 

phenylacetylene under imposed reaction condition which justifies 

that the reaction proceeded without the formation of an imine 

intermediate.Moreover, application of catalytic amount (10 

mol%) of Bronsted acid catalyst
17b

 (trifluoroacetic acid) could not 
trigger the reaction under solvent-free ball milling condition 

(Table 1, entry 19) and also in DCM medium (Table 1, entry 

20).The formation of the transient Cu
III

-species (IV) was 

confirmed and established by analyzingUV−Vis
26 

spectra of the 

reaction mixture of  4p at different time interval (15 min, 30 min, 

60 min) of the reaction(Figure 3), XPS
27

 (Figure 4)and 
electrospray ionization mass spectrometry (ESI-MS) (for IV; e/z 

541.9675 [M + H]) of the reaction mixture (4p) after 15 min of 

the reaction. 

 

 

 

 

 

 

 

 

 

Figure 3.UV-Visible study for detection of aryl-Cu
III

 species 

 

 

 

 

 

 

 

 

Figure 4. XPS study for detection of Cu
I
-Cu

III
 species 

 

3. Conclusions 

In conclusion, a combo-catalytic, rapid, solvent-free, ball-

milling process has been developed for the synthesis of 

pyridocoumarins starting from 3-aminocoumarin, aldehyde and 

phenyl acetylene. This method describes a proper example of 

CuI-catalyzed C(sp2)-H activation and functionalization involving 

in-situgenerated aryl-Cu
III

 species. UV-Vis, XPS, ESI-MS, and 

control experiments were successfully carried out to establish the 

reaction mechanism which clearly depictsthat the reaction 

proceeds through a mechanistic pathway of CuI-CuIII switching. 
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ether (1:4).Characterization data of 4c:White solid (0.341g, 90%); Mp: 206-

208 oC; 1H NMR (300 MHz; CDCl3; Me4Si): δ 3.79 (s, 3H), 6.79-6.81 (m, 

1H), 6.91-6.96 (m, 3H), 7.26-7.28 (m, 2H), 7.34-7.38 (m, 2H), 7.47-7.49 (m, 

3H), 7.81 (s, 1H), 8.05 (d, J= 8.7 Hz, 2H); 13C NMR (75 MHz; CDCl3; 

Me4Si): δ 55.28, 114,16, 117.12, 117.60, 123,51, 126.64, 127.39, 128.03, 

128.11, 128.73, 128.91, 129.36, 129.59, 139.07, 139.79, 148.62, 150. 69, 

157.02, 159.06, 161.37; IR (KBr): 2936, 1759, 1607cm-1; ESI-MS Calcd. for 

C25H17NO3: [M+Na]+, 402.1101; Found: m/z 402.1103 (See Supplementary 

Information). 


