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Decarboxylation is a fundamental step in biochemical pro-
cesses and synthetic organic chemistry. Fermentation, respi-
ration, and the biosynthesis of many secondary metabolites 
involve the loss of CO2 from organic acids (1, 2). Decarbox-
ylase enzymes accelerate these reactions by stabilizing devel-
oping intermediates (typically carbanions) and promoting 
CO2 diffusion from the active site, thereby enabling otherwise 
unfeasible decarboxylations to occur under physiological 
conditions (Fig. 1A) (3, 4). Acid substrates lacking strong an-
ion-stabilizing groups adjacent to the reactive carbon center 
have been construed to be inert toward spontaneous decar-
boxylation without resorting to thermolysis conditions (Fig. 
1B) (5). As a result, synthetic reactions driven by decarboxy-
lation are often carried out using high reaction temperatures 
(6), added oxidizing agents (7, 8), or prior stoichiometric 
chemical modification of the carboxylate unit (9–12). 

Carboxylation reactions, the microscopic reverse of decar-
boxylations, are equally valuable processes in biology and 
synthetic chemistry. Despite the possibility of a shared reac-
tion pathway, the biochemical machinery that promotes car-
boxylation in CO2 fixation pathways operates with a distinct 
set of substrates and enzymes from those that promote de-
carboxylation in all but a few cases (13–17). Similarly, syn-
thetic techniques that generate carboxylic acid derivatives 
from CO2 have tended to apply strongly nucleophilic organo-
metallics and/or in-situ stoichiometric (electro)chemical sub-
strate reduction (18, 19). 

The potential for the reversibility of decarboxylation/car-
boxylation mechanisms is largely ignored in reports of syn-
thetic methodologies that rely on these elementary steps. 
Reports of direct non-enzymatic reversible CO2-exchange of 

carboxylic acids are restricted to specialized substrate/medi-
ator pairs (20, 21). Exchange of carboxylate groups in simple 
aliphatic acids with CO2 has been documented, but requires 
heating of neat substrates at 280–400°C (22, 23). Nonethe-
less, in the course of our studies on catalytic decarboxylative 
cross-coupling reactions (24, 25), we questioned whether the 
apparent stability of organic carboxylates could arise from re-
versible decarboxylation/carboxylation events in solution. 
Supporting this hypothesis, we observed that certain simple 
organic acids that are stable toward protodecarboxylation in 
solution undergo spontaneous incorporation of 13CO2 when 
this heavier isotope is supplied at atmospheric pressure (Fig. 
1C). 

The potassium salt of arylacetic acid 1 exemplifies the re-
versible decarboxylation/carboxylation behavior of otherwise 
chemically stable carboxylic acids. A 0.1 M solution of 1 in 
dimethylformamide (DMF) at 20°C underwent CO2 exchange 
when placed under an atmosphere of 13CO2. In a reaction 
where approximately six equivalents of 13CO2 were supplied 
(13 mL of CO2 at ~1 atm, dissolved [CO2] = 0.20 M), equilib-
rium between 12C and 13C was achieved in 15 hours (Fig. 1C, 
red trace). Quantitative recovery of carboxylate 1 with 83% 
13C-enrichment was possible by acid/base extractive workup. 
Under similar conditions at 20°C with five equivalents of a 
weak Brønsted acid (MeOH) no protodecarboxylation of 1 
was observed (Fig. 1C, black trace). These results demonstrate 
that capture of the putative nucleophilic intermediate gener-
ated from 1 with dissolved CO2 is significantly more favorable 
than protonation. The process tolerates up to 0.01 M H2O and 
does not require rigorous exclusion of air (see fig. S2). During 
the review of this work, isotopic exchange of carboxylate 
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groups in cesium arylacetic acid salts with 14C-, 13C-, and 11C-
labeled CO2 in DMSO at 80–190°C was reported (26). 

The counter-cation of the carboxylate salt impacts carbox-
ylate exchange reactivity (Fig. 1D). The carboxylic acid of 1 
manifested no evident 13CO2 exchange or protodecarboxyla-
tion in DMF at 70°C. Li+ and Na+ salts of 1 reacted more 
slowly, while the Cs+ salt reacted more quickly. Divalent 
metal salts of 1 (Zn2+ or Cu2+) were inert and the addition of 
M2+Cl2 salts completely inhibited the reaction (MgCl2, CaCl2, 
MnCl2, see fig. S3). The use of polar aprotic solvents (DMF, 
DMA, DMSO; dielectric constant ε > 30) is essential for the 
transformation: reactions conducted in THF, DCE, or water 
resulted in recovery of unlabeled 1 at 20°C. The addition of 
18-crown-6 (18-C-6) led to an approximate two-fold rate en-
hancement of carboxylate exchange (see fig. S4) (27). The free 
acid underwent carboxylate exchange when 1.5 equivalents of 
K2CO3 and 18-C-6 were added (>90% yield and 13C incorpora-
tion in 19 hours). Collectively, these observations suggest that 
the generation of a solvent-separated ion pair leads to en-
hanced decarboxylative reactivity. 

Reversible decarboxylation occurred for an array of car-
boxylate containing molecules that contain adjacent aryl, car-
bonyl, cyano, or sulfonyl groups, including valuable synthetic 
precursors, drug molecules, and amino acid derivatives (Fig. 
2). The incorporation of 13CO2 and product recovery remained 
high (>80%) across several substrate classes. The degree of 
incorporation is largely a function of the amount of 13CO2 sup-
plied: >95% enrichment can be obtained when ~50 equiva-
lents is provided (see fig. S5). For successful cases, this 
carboxylate exchange process compares favorably in terms of 
operational simplicity to current state-of-the-art methods to 
prepare C(sp3)–13/14CO2 labeled carboxylic acid-derivatives 
sought after in (pre)clinical absorption, distribution, metab-
olism, and excretion (ADME) studies (28). Reported ap-
proaches require either chemical activation-decarboxylation-
metalation-carboxylation sequences mediated by transition 
metals (29–31), indirect nucleophilic substitution reactions 
with labeled cyanide followed by hydrolysis (32), or introduc-
tion of labeled carbon monoxide in place of CO2 (33, 34). The 
direct exchange of C(sp2)-carboxylate groups catalyzed by 
transition metals has been demonstrated; however, reactivity 
is restricted to nitro- or sulfonyl-containing arenes or 2-het-
eroatom substituted electron-rich heterocycles at high tem-
perature (≥150°C) (35). 

(Hetero)arylacetic acid salts with anion-stabilizing groups 
underwent exchange at moderate temperatures (Fig. 2, 1–4, 
9, 10, 11–15 at 20 to 80°C), whereas arylacetates with 
strongly electron-donating OMe or NMe2 groups required 
higher temperatures (17–20 at 100 to 130°C) and benefitted 
from the addition of 18-C-6. The simplicity of the process en-
abled broad functional group compatibility, including toler-
ance to boronic esters (6), aryl halides (I, Br, Cl, F; 4, 7, 8, 

10), ketones (11), aldehydes (12), esters (14), amides (13), sul-
fonyls (15), and potentially reactive heterocycles (chrome-
none 25, NH-indole 26, pyridines 27, 29, pyrimidine 28, 
isoxazole 30, thiophene 31). Alkyl and aryl substitution adja-
cent to the carboxylate was tolerated, including examples of 
trisubstituted, non-enolizable arylacetic acid salts (23, 24). 
Other classes of potassium carboxylates that underwent re-
versible decarboxylation include malonate half-esters (32-
35), keto acids (36), β-carboxysulfonyls (37, 38), cyanoace-
tates (39), and carboxylactams (40). Alkene and terminal al-
kyne functional groups did not interfere with the process (34, 
35). Potassium malonates underwent CO2 exchange at higher 
temperature (135°C) to give a mixture of mono- and doubly-
labeled product along with 13C-enriched monoacid (41, 42). 

Carboxylate exchange could also be used to directly pre-
pare isotopically labeled drug molecules, including arylacetic 
acid salts and propionate NSAIDs of varying complexity (43-
52, Fig. 2). Pharmaceuticals featuring amide or ester groups 
were obtained via derivatization of the acid group (Zolpidem 
53, Aprofene 55) or could be prepared according to estab-
lished literature protocols (Propiverine 54, Netupitant 56, 
Repaglinide 57). Consistent with the generation of a carban-
ion, racemization of enantiopure Naproxen (46) was ob-
served (fig. S6). Reversible decarboxylation may explain 
reports of aryl propionate racemization required for kinetic 
resolution manufacturing processes (36, 37). Simple alkyl car-
boxylates did not undergo CO2 exchange; however isotopi-
cally labeled products of this class can be readily obtained by 
carboxylate exchange/desulfonylation reactions of β-sulfonyl 
acids or exchange/decarboxylation sequences of malonic ac-
ids in three steps (58–60). The facile generation of 13C-diphe-
nylmethylidene glycine at room temperature (61 93% 
incorporation, 76% yield) serves as a starting point for the 
synthesis of other labeled amino acids (38). 

The reversible CO2 exchange process likely involves the 
formation of a carbon nucleophile either from direct decar-
boxylation, or potentially in the case of enolizable substrates, 
through an enolate intermediate. The reaction rates and re-
quired temperatures for 12CO2/13CO2 interconversion correlate 
with the substrate’s capacity to stabilize negative charge and 
not with oxidation potential (compare 1, 14, 16, and 17). The 
addition of radical inhibitors (TEMPO, BHT) had no impact 
on the decarboxylative reactivity of 1 nor was cyclization of 
the pendant olefin in 34 detected. 

Exchange of CO2 via carbanion equivalents without com-
peting quenching by other electrophiles (ketones, aldehydes, 
weak Brønsted acids) likely stems in part from the relatively 
high solubility of CO2 in DMF and the slow kinetics of CO2 
evaporation into the reaction vessel headspace. For example, 
a 0.25 M solution of 13CO2 in DMF retains a concentration of 
0.2 M under a headspace of N2 over one day (measured by 13C 
NMR). For substrate 1 the rate of CO2 exchange at 70°C was 
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~10-fold faster than for reaction with benzaldehyde. Perhaps 
counterintuitively, the rate of protodecarboxylation by weak 
Brønsted acids is inversely related to acidity (Fig. 3A, in order 
of decreasing rate of protonolysis: piperidine, aniline, meth-
anol, phenol; see fig. S7 for details). This observation could 
be attributed to the relative capacity of these species to act as 
nucleophiles to sequester the liberated CO2. Trapping of CO2 
prevents back reaction of the carbanion to the carboxylate 
leading to an increase in the observed rate of protodecarbox-
ylation. 

At 70°C under N2, 1 underwent slow net carboxylate/pro-
ton metathesis to generate a half equivalent of the protode-
carboxylated product 62 and a half equivalent of the CO2-
trapped malonate 63 (Fig. 3B). Product 62 likely arises from 
deprotonation of a second equivalent of aryl acetate to gen-
erate a dienolate nucleophile. The dienolate intermediate can 
react with the CO2 released by the initial decarboxylation 
event. This observation demonstrates the striking efficiency 
of CO2 capture by carbon nucleophiles under suitable condi-
tions. Alkyl arenes generated by protodecarboxylation does 
not convert back to the carboxylate under the conditions 
where carboxylate exchange is observed (Fig. 3C). Carbonic 
anhydride intermediates are likely generated under the reac-
tion conditions on the basis of the observed increase in α-
carboxyl H/D exchange rates with 1-H2 and 1-D2 under CO2 
(Fig. 3D, see fig. S9 for details). The generation of a dienolate 
from the more acidic potassium carbonic anhydride may ex-
plain these reactivity differences. Direct detection of anhy-
dride intermediates was not achieved. The capacity of non-
enolizable carboxylates, such as 23 and 24, to undergo re-
versible decarboxylation indicates that dienolate or enol in-
termediates are not essential for carboxylate exchange. 

Finally, with an understanding of the factors that contrib-
ute to transient substrate decarboxylation, conditions were 
identified that allowed for the direct decarboxylative trap-
ping of alternative classes of electrophiles (Fig. 3E). Carbon–
carbon bond forming reactions by the trapping of aldehydes 
(64–69), a trifluoromethyl ketone (70), and an α,β-unsatu-
rated ester (71) occurred in reasonable yields under condi-
tions similar to those for reversible decarboxylation. The 
rates of product formation in aldehyde trapping experiments 
correlate with substrate electrophilicity. In some cases, it was 
beneficial (but not essential) to add 18-C-6 to improve decar-
boxylative reactivity or aniline to sequester liberated CO2 (see 
SM for complete details). H/D-exchange followed by deuter-
odecarboxylation provides a simple approach to prepare CD3 
labeled toluenes and heterocycles from D2O (72–75). 

Efficient reversible decarboxylation/carboxylation masks 
the inherent reactivity of otherwise stable carboxylates. An 
appreciation of this phenomenon enables simple, direct pro-
tocols for isotopic exchange of carboxylic acids with 13CO2 and 
methods for decarboxylative carbon–carbon bond forming 

reactions. The potential for reversible decarboxylation should 
be considered more generally when designing and executing 
decarboxylative functionalization processes. 
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Fig. 1. Overview of decarboxylative processes and carboxylate exchange. (A) Decarboxylation 
catalyzed by enzymes under physiological conditions (PDB ID: 2INF). (B) Comparison of conditions 
used for thermal decarboxylation of different substrates. (C) Comparison of CO2 exchange (red) and 
protonation with MeOH (black) for 4-cyanophenylacetate (1). (D) Impact of salt and reaction 
conditions. E+, electrophile; DMF, dimethylformamide; THF, tetrahydrofuran; DCE, 1,2-
dichloroethane; DMSO, dimethylsulfoxide; DMA, dimethylacetamide; 18-C-6, 18-crown-6. 
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Fig. 2. Carboxylate exchange scope and application. Unless noted yields are of isolated material. 
*Calibrated 1H NMR spectroscopy yield. †1 Equivalent 18-C-6 added. ‡%13C Incorporation and yield 
determined by analysis of the corresponding methyl or benzyl ester. § DMSO used instead of DMF. 
See the supplementary materials for complete details. NMR, nuclear magnetic resonance. 
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Fig. 3. Mechanistic control experiments and electrophile trapping. (A) Relative rates for arylacetic 
acid salt protodecarboxylation by Brønsted acids and decarboxylative trapping by benzaldehyde.  
(B) Net carboxylate/proton metathesis of 1 in the absence of additional CO2. (C) CO2 transfer 
between arylacetic acid salt and alkylarene does not occur. (D) The presence of CO2 accelerates the 
rate of methylene C–H/D exchange in 1. (E) Scope examples for the decarboxylative trapping of 
alternative classes of electrophiles. See the supplementary materials for complete details and full 
reaction conditions. *Yield determined by 1H NMR spectroscopy. Ar, (4-CN)C6H4. 
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