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Introduction. Glutamic acid is the major excitatory
neurotransmitter in the central nervous system, exert-
ing its actions at multiple subtypes of excitatory amino
acid (EAA) receptors.1 2-Amino-3-(5-methyl-3-hydroxy-
isoxazol-4-yl)propanoic acid (AMPA) receptors are a
subtype of the ligand gated ion channel (ionotropic)
family of EAA receptors, which may be composed of
assemblies of four different receptor protein subunits,
GluR1-4.2 In addition, two splice variant forms of each
of the four AMPA receptor proteins have been charac-
terized, named flip and flop.3 Signals are transduced
at AMPA receptors through conductance of sodium and
calcium ions into cells upon activation by glutamic acid.

Recent studies have identified pharmacological
agents that enhance ion influx through AMPA recep-
tors by positive allosteric modulation. Pyrrolidinones
1a (aniracetam) and 1b (piracetam) (Chart 1) are
examples of compounds that potentiate AMPA receptor-
mediated responses.4 Furthermore, these compounds
exhibit nootropic properties in animals and humans.4,5

Subsequent studies have identified other compounds,
such as the benzothiadiazides 2 (cyclothiazide)6 and 3
(IDRA-21)7 and the benzamide 4 (CX-516),8 that are also
AMPA receptor potentiators (Chart 1).

There is interest in the development of AMPA poten-
tiators for the treatement of cognitive disorders. Com-
pounds that potentiate AMPA receptor function facili-
tate performance in a wide variety of learning and
memory tasks in rats8-11 and primates.12 Data has been
reported on the use of AMPA potentiator 4 in human
studies; however, its relatively weak potency and short
half-life necessitated high doses.13,14 Thus, there is
significant need to develop AMPA potentiators with
greater potency as therapeutic agents.

We have previously reported the cloning of AMPA
receptor proteins and their homomeric expression in
stable cell lines.15 Using human GluR4 receptors ex-
pressed in HEK-293 cells, we developed an assay that
measured responses mediated through AMPA receptors
by determining changes in intracellular calcium con-
centrations. We identified compound 5a as a novel
AMPA receptor potentiator lead using this technology
for high-throughput screening of the Lilly archival
database. Key features of compound 5a include a
methanesulfonamide group connected to an aromatic
ring by a two-methylene spacer, a methyl group on the
carbon adjacent to the aromatic ring, and an o-fluoro-
phenyl group attached to the aromatic ring para to the
two-methylene spacer. These functional groups repre-
sent aspects of the structure-activity relationship (SAR)
that we modified with the goal of increasing the AMPA
potentiator potency of 5a. In this Communication, we
describe some of our initial SAR studies that allowed
us to identify highly potent AMPA potentiators.

Chemistry. Analogues of 5a were prepared as shown
in Scheme 1. We converted 4-bromophenylacetonitrile
6 to 4-bromophenylpropionitrile 7 with potassium car-
bonate and dimethyl carbonate, then reduced the nitrile
to amine 8 using borane-dimethyl sulfide complex.
After protection of the amine as the tert-butoxycarbonyl
(BOC) derivative 9, Suzuki coupling with 2-fluoroben-
zeneboronic acid and removal of the BOC group gave
the amine 10. Reaction of 10 with a variety of sulfonyl
chlorides using 2% cross-linked polyvinylpyridine then
yielded the desired sulfonamides 5a-i. If we performed
the same sequence of reactions but omitted the methyl-
ation step and used isopropylsulfonyl chloride, we
obtained sulfonamide 11 (see Table 1 for structure).
Alternatively, reaction of 9 with 3-thienylboronic acid
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followed by removal of the BOC group afforded amine
12, which upon reaction with either methyl- or isopropyl-
sulfonyl chloride afforded sulfonamides 13a,b, respec-
tively (Scheme 1).

To examine the effects of changing the benzylic
substituent, we used a slightly different platform, the
synthesis being shown in Scheme 2. Alkylation of the
lithium enolate from methyl (4-tert-butylphenyl)acetate
14 with a variety of alkyl bromides (except for methyl,
where we used the iodide) afforded the derivatives 15a-
e. Hydrolysis to the acids 16a-e followed by formation
of the corresponding acid chlorides and then reaction
with aqueous ammonia gave the amides 17a-e. Reduc-
tion with borane yielded the amines 18a-e, and reac-
tion with isopropylsulfonyl chloride afforded the desired
sulfonamides 19a-e. If we performed this sequence of
reactions but omitted the alkylation step, we obtained
the unsubstituted derivative 19f (R ) H).

We also wanted to explore the effects of substitution

on the 4-position of the aromatic ring distal to the
sulfonamide (Scheme 3). Conversion of 8 to the iso-
propylsulfonamide 20 followed by palladium-mediated
coupling with phenylboronic acid 21a afforded the
unsubstituted biphenyl analogue 22a. Alternatively,
coupling of 20 with various 4-substituted phenylboronic
acids 21b-g afforded the biphenyl analogues 22b-g.
To prepare the 4-amino derivative 22h, 4-bromoaniline
was first protected as the N-BOC derivative and then
converted to the stannane 23. Palladium-mediated
coupling of 23 with 20 followed by deprotection gave
22h.

Pharmacology. We evaluated all new compounds for
their ability to potentiate responses mediated by 100
µM L-glutamate in HEK-293 cells expressing iGluR4
flip.16 The activities of test compounds at various
concentrations were expressed as a percentage of re-
sponses evoked by 100 µM cyclothiazide (2), and EC50
values were calculated; this data is shown in Table 1.

Scheme 1a

a (a) Me2CO3, K2CO3, 180 °C, sealed vessel, 16 h; (b) BH3‚SMe2, THF, reflux, overnight, 5 N HCl, MeOH; (c) BOC2O, CHCl3, satd
NaHCO3, rt, 1 h; (d) 2-fluorobenzeneboronic acid, K2CO3, toluene, Pd(PPh3)4, 90 °C, 18 h, 20% TFA/CH2Cl2, rt, 2 h; (e) RSO2Cl (see Table
1 for R), 2% cross-linked polyvinylpyridine, CH2Cl2, rt, overnight; (f) 3-thienylboronic acid, K2CO3, toluene, Pd(PPh3)4, 80 °C, 20% TFA/
CH2Cl2, rt, 2 h; (g) i-PrSO2Cl (for R ) i-Pr) or MeSO2Cl (for R ) Me), Et3N, CH2Cl2, rt, overnight, aminomethylpolystyrene.

Scheme 2a

a (a) LiN(SiMe3)2, THF, -78 °C, then RBr (see Table 1 for R; MeI for R ) Me), 2 h; (b) LiOH, H2O, MeOH, THF, rt, overnight; (c)
(ClCO)2, CH2Cl2, rt, 2 h, 28% NH4OH, MeOH, rt, overnight; (d) BH3‚THF, THF, rt, overnight, MeOH, THF, 5 N NaOH, rt; (e) i-PrSO2Cl,
Et3N, CH2Cl2, rt, overnight.
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Data are also included in Table 1 for compounds 2 and
4. All new compounds are racemic.

We first examined the effect of varying the sulfon-
amide group (present as methylsulfonamide in 5a). For
this part of our studies, we kept the (o-fluorobiphenyl)-
propyl portion of the molecule intact. The trifluoro-
methanesulfonamide analogue 5b was about 2-fold less
potent than the parent 5a. The ethyl- and isopropyl-
sulfonamides 5c,e were significantly more potent (about
4-fold) than 5a, the n-propyl compound 5d was equi-
potent, and the n-butyl compound 5f was considerably
less active. While a phenylsulfonamide was modestly

tolerated (5g), the benzylsulfonamide (5h) was less
active. The sulfamide 5i was also a particularly potent
compound, better than 5a and comparable to 5c and
5e. This is not surprising in light of the isosteric nature
of the N,N-dimethylsulfamide relative to the isopropyl-
sulfonamide. The des-sulfonamido compound 10 was
inactive, speaking to the importance of this functional
group for AMPA potentiation.

We next turned our attention to gauging the effects
of changing substitution on the benzylic position. For
this aspect of our SAR studies, we used a 4-tert-
butylphenyl in lieu of the o-fluorobiphenyl and combined

Scheme 3a

a (a) i-PrSO2Cl, Et3N, CH2Cl2, 0 °C to rt, overnight; (b) 21a-g, K2CO3, Pd(PPh3)4, dioxane/water, 100 °C, overnight; (c) 1.6 M n-BuLi,
THF, -85 °C, (i-PrO)3B, -85 °C to rt, 1.5 h, 5 N HCl, 2.5 h; (d) NaN(SiMe3)2, THF, (BOC)2O, rt, 1 h, Et3N, (n-Bu)6Sn2, Pd(PPh3)4, 100 °C,
5 h.

Table 1. EC50 Values for Novel AMPA Potentiators Using Homomerically Expressed iGluR4 Receptors Expressed in HEK-293 Cells

compda R EC50 ( SEM (µM)b compda R EC50 ( SEM (µM)b compda R EC50 ( SEM (µM)b

2c 3.8 ( 0.4 5i NMe2 4.0 ( 0.3 19f H 12.8 ( 3.0
4c >1000 10c >100 22a H 1.0 ( 0.1
5a Me 19.6 ( 3.0 11 7.2 ( 0.9 22b Me 0.27 ( 0.09
5b CF3 32.9 ( 4.9 13a Me 4.5 ( 0.4 22c CF3 >3
5c Et 5.4 ( 0.5 13b i-Pr 0.66 ( 0.16 22d Cl >3
5d n-Pr 23.8 ( 2.2 19a Me 1.2 ( 0.4 22e CHO 0.25 ( 0.012
5e i-Pr 4.4 ( 0.6 19b Et 2.0 ( 0.5 22f CO2H 1.4 ( 0.5
5f n-Bu >100 19c n-Pr 27.9 ( 0.9 22g CN 0.29 ( 0.1
5g Ph 62.5 ( 16.8 19d CH2Ph >100 22h NH2 0.13 ( 0.017
5h CH2Ph >100 19e CH2CH2Ph >100

a All compounds are racemic. b EC50 values ( standard error of the mean (SEM) for potentiation of responses mediated by 100 µM
L-glutamate in HEK-293 cells expressing iGluR4 flip, relative to that of 100 µM 2 (cyclothiazide). c See Chart 1 for the structures of 2 and
4. See Scheme 1 for the structure of 10.
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this with the more optimal isopropylsulfonamide. Early
in our SAR studies we discovered that the platform in
which the distal phenyl of, e.g. 5e, was replaced with a
tert-butyl group also provided potent AMPA potentia-
tors. We hypothesized that the distal aromatic ring
might have a lipophilic interaction with the receptor
protein, and therefore tert-butyl could be a viable
replacement for this group. Our results with compounds
such as 19a appear to confirm our suspicions. The ready
availability of methyl (4-tert-butylphenyl)acetate as a
substrate for alkylation facilitated this aspect of the
SAR. We prepared compounds 19a-e which possess
respectively a methyl, ethyl, n-propyl, benzyl, and
phenylethyl substituent. Analogues 19a,b, having either
a methyl or ethyl, were comparably active; the n-propyl
compound 19c was less active; and the two aromatic
substituted compounds 19d,e were significantly less
active.

We prepared analogues of compounds 5e and 19b,
which were identical except that they lacked the methyl
substituent adjacent to the aromatic ring (11 and 19f).
We found 11 and 19f were less active than 5e and 19b,
respectively, indicating the relative importance of the
2-arylpropylsulfonamide substructure found in our lead
compound 5a.

We examined replacement of the distal phenyl group
with the well-documented isosteric 3-thienyl group. To
our delight, we found that the activity of 13a or 13b
was significantly greater than their counterparts 5a or
5e, respectively, with 13b being nearly 7-fold more
potent than 5e and almost twice as potent as 22a.

Finally, we directed our attention to substitution on
the distal aromatic ring of the biphenyl group, focusing
on substitution in the 4′-position. We first prepared the
unsubstituted biphenyl analogue 22a; its activity was
about 4-fold better than that of 5e and 20-fold better
than that of the lead 5a. We explored a range of
electron-withdrawing and electron-donating substitu-
ents, including methyl (22b), trifluoromethyl (22c),
chloro (22d), formyl (22e), carboxy (22f), cyano (22g),
and amino (22h). While the compounds with a chloro-
or trifluoromethyl group were less active than the
unsubstituted derivative 22a, the carboxy analogue
was about equal in activity to 22a. Even greater potency
was observed for the methyl-, formyl-, cyano-, and
amino-substituted compounds, with 22b,e,g about 4-
fold more potent than 22a, and 22h about 8-fold more
than 22a. All told, we realized a 150-fold increase in
AMPA potentiator potency versus our lead compound
5a.

A select group of compounds from this SAR (5a,i and
13b) were evaluated using whole-cell voltage clamp
recordings on acutely isolated cerebellar Purkinje cells
to determine their ability to potentiate AMPA responses
on a native rat brain receptor population. Acutely
isolated cerebellar Purkinje neurons were isolated ac-
cording to methods previously described.17,18

Figure 1 shows a comparison of activities of com-
pounds 5a,i and 13b, along with 2 (cyclothiazide) and
4 (CX516) with responses expressed as a percentage of
those evoked by 100 µM 2. These biarylpropylsulfon-
amide AMPA potentiators showed the same rank order
of potency in native AMPA receptors that we observed
in iGluR4 flip receptors in HEK-293 cells, with 13b >

5i > 5a. We also observed that these compounds were
significantly more potent than 2 and 4 in these native
AMPA receptors. The thienyl-substituted compound 13b
was 100-fold more potent than 2 and at least 1000-fold
more potent than 4 (when comparing the concentration
of compound required to produce a similar percentage
of the response elicited by cyclothiazide). Thus, these
are the most potent AMPA potentiators described to
date.

Herein we disclosed a novel series of biarylpropyl-
sulfonamides that are very potent potentiators of
responses mediated through AMPA receptors. SAR
studies demonstrated significant changes in potency
when the methylsulfonamide was changed to an iso-
propylsulfonamide and when the o-fluorophenyl group
of the lead 5a was changed to a tert-butyl, a 3-thienyl,
or a 4-cyanophenyl group. Further studies with this
series of compounds will be reported soon.
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