Synthesis of arylpiperazines with a terminal naphthothiazole group and their evaluation on 5-HT, DA and α receptors

R Perrone^{1*}, F Berardi¹, NA Colabufo¹, V Tortorella¹, MG Fornaretto², C Caccia², RA McArthur²

¹Dipartimento Farmaco-chimico, Università di Bari, via Orabona 4, 70126 Bari; ²Pharmacia & Upjohn SpA, via Giovanni XXIII 23, 20014 Nerviano (MI), Italy

(Received 7 November 1996; accepted 17 February 1997)

Summary — The synthesis, affinities for 5-HT_{1A}, 5-HT₂, D₁, D₂, α_1 and α_2 receptors and structure-activity relationships are described for a series of arylpiperazines substituted on the N-4 atom with an ω -(2-naphthothiazole)alkyl chain. The best affinity for 5-HT_{1A} receptors was obtained for 1-(2-methoxyphenyl)piperazine derivatives with IC₅₀ values in the range 3.2–12 nM; however, for all the reported compounds mixed 5-HT_{1A}/D₂/ α affinities were observed.

arylpiperazine / naphthothiazole / 5-HT $_{1\text{A}}/D_2/\alpha$ ligand / EPS / antipsychotic

Introduction

Classical antipsychotics such as tricyclic and butyrophenone derivatives cause extrapyramidal side effects (EPS) and tardive dyskinesias that have been linked to the blockage of dopamine (DA) receptors in the striatum corpus of the central nervous system (CNS). The development of antipsychotic agents [1] such as clozapine has led to improved antipsychotic treatment with reduced EPS. The clinical use of clozapine, however, has been limited by agranulocytosis and tachycardic phenomena [2, 3].

Improved treatment avoiding EPS and agranulocytosis is the goal of current antipsychotic drug research. Several lines of research have been developed, and recent efforts have been focused on the development of compounds that act on both dopamine and serotonin (5-HT) receptors [4–7]: serotonin interacts with receptors such as the 5-HT_{1A} receptor subtype in the limbic system, where it is thought to play a role in emotional responses such anxiety and depression [8– 10]. Furthermore, compounds with 5-HT_{1A} receptor agonist activity reverse the catalepsy produced by antipsychotic agents in rats [11, 12]. The cataleptic response is predictive of EPS in humans, and its reversal suggests that a combination of dopaminergic and 5-HT_{1A} binding affinity may produce an antipsychotic agent with minimal EPS liability; and in particular the 5-HT_{1A} agonist activity could be beneficial in helping to relieve the anxiety that can often trigger psychotic episodes [13–15].

One such class of compound with affinity for both D-2 and 5-HT_{1A} receptors is represented by the arylpiperazine derivatives [16]. The presence of a specific side chain on the basic nitrogen of these compounds results in significantly enhanced affinity for 5-HT_{1A} binding sites.

Different moieties have been linked on the N-4 atom of the piperazine ring (fig 1). Different terminal systems play an important role in the interaction with the respective hydrophobic region of the 5-HT_{1A} receptor [17, 18].

We have recently found a series of arylpiperazines to be atypical potential antipsychotics, having a tetralin group as a new terminal moiety (fig 2), with mixed $D_2/5$ -HT_{1A} receptor affinity [19]. They showed a favourable $D_2/5$ -HT_{1A} ratio with nanomolar affinity for 5-HT_{1A} and moderate affinity for D_2 (being reported as an IC₅₀ ratio). Unfortunately, most of them showed remarkable affinity to α -adrenergic receptors and very few compounds showed a high selectivity toward 5-HT_{1A} receptors (IC₅₀ $\alpha_1/5$ HT_{1A} > 50).

^{*}Correspondence and reprints

Fig 1. Structures of 5-HT_{1A} ligands.

Fig 2. Arylpiperazines with mixed $D_2/5$ -HT_{1A} receptor affinity.

Considering the important role played by the terminal group, in an attempt to: (1) increase the $D_2/5$ -HT_{1A} ratio; and (2) to decrease α receptor affinity [20–22], the tetralin nucleus in the arylpiperazine derivatives studied previously [4, 19, 23, 24] was replaced by a 2-naphthothiazole group because a thiazole substituent appeared to exhibit bioisosteric properties with the carbonyl function present in amide derivatives studied [23].

Herein we describe the synthesis, 5-HT_{1A} , 5-HT_2 , D_1 , D_2 , α_1 and α_2 receptor affinities and structure-activity relationships for a series of arylpiperazines **9–21** N-4-substituted with an ω -(2-napthothiazole)alkyl chain (table I).

The arylpiperazine moieties used are those previously reported displaying the highest affinity for the 5-HT_{1A} receptor, typified by 1-(2-methoxyphenyl)-, 1-phenyl-, 1-(2-pyridyl)piperazine; the polymethylene chain is of variable length and the terminal 2-naphthothiazole nucleus is unsubstituted, or substituted with a methoxy group in different positions.

Chemistry

Final compounds were synthesized as described in scheme 1. Alkylation of the 1-arylpiperazines with the appropriate ω -bromoalkylnitrile yielded nitriles **2c**-f [25, 26], that were submitted, under mild conditions, to a controlled acidic hydrolysis. These afforded amides **3c**-f. Amides **3a**,**b** were obtained from alkylation of 1-phenylpiperazine with 2-chloroacetamide and 3-chloropropionamide respectively. Sulphonation of the amides **3a**-f with Lawesson's reagent afforded the thioamides **4a**-f that underwent condensation with 2-bromo-1-tetralones **5**-**8** to give thiazoles **9**-**21** [27].

Pharmacology

The compounds described in table II were evaluated for in vitro affinity on dopamine D_1 and D_2 , serotonin 5-HT_{1A} and 5-HT₂, adrenergic α_1 and α_2 receptors by radioligand binding assays. All the compounds were used as hydrochloride salts and were water-soluble. The following specific radioligands and tissue sources were used: (a) dopamine D_1 receptors, [³H]SCH-23390, rat striatal membranes; (b) dopamine D_2 receptors, [³H]spiperone, rat striatal membranes; (c) serotonin 5-HT_{1A} receptors, [³H]8-OH-DPAT, rat hippocampus membranes; (d) serotonin 5-HT₂ receptors, [³H]ketanserin, rat brain prefrontal cortex membranes; (e) α_1 adrenergic receptors, [³H]prazosin, rat brain cortex membranes; (f) α_2 adrenergic receptors, [³H]yohimbine, rat brain cortex membranes.

Concentrations required to inhibit 50% radioligand specific binding (IC₅₀) were determined using eight or nine different concentrations of the drug studied. The specific binding was defined as described in the *Experimental protocols* under *Pharmacological methods*. In all binding assays, it represents more than 80% of the total binding, except for α_2 (> 60%). The results were analyzed by using the program Ligand to determine the IC₅₀ values [28].

Biological results and discussion

The results of binding assays and selectivities are illustrated in table II. As far as 5-HT_{1A} receptor affinity is concerned, compounds with a chain have been considered in this study. The results indicate that the IC₅₀ values are usually higher when the polymethylene chain is shorter than four carbon atoms. For examples see 9 vs 10 (IC₅₀ nM = 400 and 42); 11 vs 13 (IC₅₀ nM = 170 and 69); 12 vs 14 (IC₅₀ nM = 67 and 34). An exception to this rule is 10 vs 11 (IC₅₀ nM = 42 and 170). Consequently, structures with a four methylene chain were designed, and the following

Table I. Physical properties of investigated compounds.

$Ar = N \xrightarrow{N \to (CH_2)_{1}} N \xrightarrow{S}_{6} R$												
Comp	ound Ar	n	R	Formula ^a	$Mp\left(^{\circ}C ight)$	Recryst solv						
9 10 11 12 13 14 15 16 17 18 19	Ph Ph Ph Ph Ph Ph Ph 2-OCH ₃ Ph 2-OCH ₃ Ph 2-OCH ₃ Ph	l 2 3 4 4 4 4 4 4 4 4 4	H H 7-OCH ₃ H 7-OCH ₃ 6-OCH ₃ 5-OCH ₃ 7-OCH ₃ 6-OCH ₃ 5-OCH ₃	$\begin{array}{c} C_{22}H_{23}N_3S\cdot 2 \ HCl\\ C_{23}H_{25}N_3S\cdot 3HCl\cdot 2 \ H_2O\\ C_{24}H_{27}N_3S\cdot 3 \ HCl\\ C_{25}H_{29}N_3OS\cdot 3 \ HCl\\ C_{25}H_{29}N_3OS\cdot 3 \ HCl\\ C_{26}H_{31}N_3OS\cdot 3 \ HCl\cdot H_2O\\ C_{26}H_{31}N_3OS\cdot 3 \ HCl\cdot H_2O\\ C_{26}H_{31}N_3OS\cdot 3 \ HCl \ H_2O\\ C_{27}H_{33}N_3O_2S\cdot 3 \ HCl\cdot H_2O\\ \end{array}$	208-210 177-178 205-206 199-201 208-211 200-202 221-222 195-197 201-203 223-225 207-269	MeOH/Et ₂ O MeOH/Et ₂ O MeOH/Et ₂ O MeOH/Et ₂ O CHCl ₃ /petroleum ether MeOH/Et ₂ O CHCl ₃ /petroleum ether MeOH/Et ₂ O MeOH/Et ₂ O MeOH/Et ₂ O						
20 21	2-Py 2-Py	4 4	7-OCH ₃ 5-OCH ₃	$\begin{array}{c} C_{25}H_{30}N_4OS{\textbf{\cdot}}3 \ HCl{\textbf{\cdot}}H_2O\\ C_{25}H_{30}N_4OS{\textbf{\cdot}}3 \ HCl{\textbf{\cdot}}H_2O \end{array}$	245–247 219–221	MeOH/Et ₂ O CHCl ₃ /petroleum ether						

~

^aAnalyses for C, H, N; results were within $\pm 0.4\%$ of the theoretical values for the formulae given.

Scheme 1. Reagents. A: Br(CH₂)_{3,4}CN; B: Cl(CH₂)_{1,2}CONH₂; C: conc H₂SO₄; D: Lawesson's reagent.

Compounds	IC_{50} , nM (± SEM)						Selectivity vs $5-HT_{1A}$ receptor, IC_{50} ratio			
	5-HT _{IA} [³ H]8-OH-DPAT	5-HT ₂ [³ H]Ketanserin	D ₂ [³ H]Spiperone	α _i [³H]Prazosin	α_2 [³ H]Yohimbine	5-HT ₂	D_2	α_i	α_2	
9	400 ± 52	3180 ± 289	680 ± 74	1140 ± 102	3770 ± 401	8	2	3	9	
10	42 ± 4	300 ± 34	120 ± 9	140 ± 12	300 ± 45	7	3	3	7	
11	170 ± 15	63 ± 6	210 ± 24	110 ± 10	160 ± 20	0.4	3	0.6	1	
12	67 ± 7	66 ± 6	220 ± 18	170 ± 15	260 ± 32	1	3	2.5	4	
13	69 ± 7	280 ± 34	76 ± 8	120 ± 14	110 ± 10	4	1	2	2	
14	34 ± 4	170 ± 18	110 ± 12	90 ± 9	160 ± 19	5	3	3	5	
15	4.1 ± 0.5	55 ± 6	11 ± 2	58 ± 6	20 ± 2	13	3	14	5	
16	10 ± 1	66 ± 7	24 ± 3	52 ± 5	18 ± 2	7	2	5	2	
17	12 ± 1	870 ± 90	25 ± 3	49 ± 5	500 ± 54	73	2	4	42	
18	3.2 ± 0.4	250 ± 29	22 ± 2	52 ± 5	92 ± 9	78	7	16	29	
19	3.8 ± 0.4	240 ± 22	8.3 ± 1	35 ± 4	46 ± 5	65	2	10	12	
20	7 ± 1	720 ± 68	150 ± 13	200 ± 19	380 ± 46	103	21	28	54	
21	8.2 ± 0.8	82 ± 8	61 ± 6	190 ± 21	390 ± 42	10	7	23	48	
Buspirone	30 ± 3	>10000	280 ± 31	>10000	>10000					
8-OH-DPAT	2.1 ± 0.2	>10000	5.22 ± 0.60	>10000	810 ± 75					
Ketanserin		3.4 ± 0.3								
Haloperidol			4.8 ± 0.5							
Prazosin				1.4 ± 0.6						
Yohimbine					30 ± 3					

Table II. Binding affinities and selectivities of investigated compounds.

structure–activity relationships will concern these derivatives only. The highest affinity for 5-HT_{1A} receptors were obtained with the *o*-methoxyphenyl derivatives **17–19**, having IC₅₀ values in the range 3.7–12 nM. In contrast to tetralin derivatives studied previously [4, 19, 23, 24], the presence and position of the methoxy group in the naphthothiazole system has negligible influence.

The results of this study indicate that the affinity for the 5-HT₂ receptors is usually slightly lower than the affinity for 5-HT_{1A} receptors, with IC₅₀ values in the range 55–870 nM. Therefore, all the compounds reported here exhibited an affinity for both seroton-ergic receptors with a favourable 5-HT₂/5-HT_{1A} ratio.

As far as the dopaminergic components are concerned, the D_1 receptor affinity consistently showed IC₅₀ values above 10⁻⁶ M. The affinity for D_2 receptors was in some cases remarkable, with IC₅₀ values in the range 8.3–110 nM and with a $D_2/5$ -HT_{1A} ratio between 1.1 and 6.3. This ratio was higher for 2-pyridylpiperazine derivatives **20** and **21** (7.1 and 21.1 respectively). Therefore, the $D_2/5$ -HT_{1A} ratios were lower than those previously reported for tetralin derivatives.

Affinity toward α_1 and α_2 adrenergic receptors was remarkable, with α_1 or $\alpha_2/5$ -HT_{1A} ratio ≤ 50 , (the closest values being those of 2-pyridylpiperazine derivatives **20** and **21**). This is in contrast to the arylpiperazines studied previously, which were linked to a tetralin moiety. These results showed that the replacement of the tetralin nucleus with a 2-napthothiazole group did not significantly affect the mixed $5-HT_{1A}/D_2$ affinities. Moreover, the undesirable α affinity was retained and the $\alpha/5-HT_{1A}$ ratio was worse.

Experimental protocols

Chemistry

Column chromatography was run with 1:30 ICN silica gel 60A (63–200 mm) as stationary phase. Melting points were determined in open capillaries on a Gallenkamp electrothermal apparatus. Elemental analyses were performed by the microanalytical section of our department on solid samples only. The analytical results (C, H, N) were within $\pm 0.4\%$ of theoretical values. ¹H-NMR spectra were recorded either on a Varian EM-390 (TMS as internal standard) or on a Bruker AM 300 WB instrument. Chemical shifts are reported in parts per million (ppm, δ). Recording of mass spectra was made on an HP 5995C gas chromatograph/mass spectra that were fully consistent with their structure.

General procedure for preparation of 4-phenyl-1-piperazinealkanenitrile 2c-f

A stirred suspension of 1-arylpiperazine (10 mmol), ω -bromoalkylnitrile (15 mmol) and K₂CO₃ (15 mmol) in toluene (50 mL) was refluxed for 1 h. After cooling, the mixture was poured into water and extracted with CH₂Cl₂. The organic phase was dried over Na₂SO₄ and evaporated to dryness. The crude residue was chromatographed (ethyl acetate/CH₂Cl₂, 1:1 as eluent) to yield pure **2c-f** (60–70% yield) as a yellow oil. 4-Phenyl-1-piperazinebutanenitrile 2c. ¹H-NMR (90 MHz, CDCl₃): 1.54–2.10 (m, 2H, CH₂CH₂CN), 2.30–2.75 [m, 8H, (CH₂)₂NCH₂ and CH₂CN], 3.05–3.32 [m, 4H, ArN(CH₂)₂], 6.72–7.42 (m, 5H, aromatic); GC/MS *m*/*z*: 229 (M⁺, 68), 189 (65), 175 (40), 105 (91), 42 (100).

4-Phenyl-1-piperazinepentanenitrile 2d. ¹H-NMR (90 MHz, CDCl₃): 1.52–1.95 (m, 4H, CH₂CH₂CH₂CH₂CN), 2.20–2.75 [m, 8H, (CH₂)₂NCH₂CH₂CH₂CH₂CN], 3.05–3.35 [m, 4H, ArN(CH₂)₂], 6.72–7.50 (m, 5H, aromatic); GC/MS *m*/z: 243 (M⁺, 46), 175 (89), 132 (40), 104 (57), 42 (100).

4-(2-Methoxyphenyl)-1-piperazinepentanenitrile 2e. ¹H-NMR (90 MHz, CDCl₃): 1.52–1.95 (m, 4H), 2.20–2.90 (m, 8H), 2.98–3.25 (m, 4H), 3.88 (s, 3H), 6.75–7.22 (m, 4H); GC/MS *m/z*: 273 (M⁺, 100), 205 (67), 177 (21), 136 (59), 120 (23).

4-(2-Pyridyl)-1-piperazinepentanenitrile **2f**. ¹H-NMR (90 MHz, CDCl₃): 1.60–2.10 (m, 4H), 2.25–2.80 (m, 8H), 3.45–3.80 (m, 4H), 6.52–8.32 (m, 4H); GC/MS *m*/z: 244 (M⁺, 6), 150 (8), 119 (13), 107 (100), 79 (17).

4-Phenyl-1-piperazineacetamide 3a. A mixture of 1-phenylpiperazine (5.00 g, 31 mmol), 2-chloroacetamide (5.76 g, 62 mmol) in toluene (30 mL) in the presence of K_2CO_3 (8.52 g, 62 mmol) was refluxed overnight. After cooling, the solvent was removed under reduced pressure. The residue was taken up in H₂O and extracted with CH₂Cl₂. The organic phase was dried (Na₂SO₄) and the solvent was removed affording 3a as white solid (5.80 g, 75% yield), mp = 176–178 °C (white powder from CH₂Cl₂/petroleum ether). ¹H-NMR (90 MHz, CDCl₃): 2.61–2.90 [m, 4H, (CH₂)₂NCH₂], 3.01–3.40 [m, 6H, ArN(CH₂)₂ and CH₂CO], 6.43 (br s, 2H, NH₂, D₂O exchanged), 6.40–7.42 (m, 5H, aromatic); GC/MS *m*/*z*: 219 (M⁺, 35), 176 (13), 175 (100), 132 (39), 105 (24).

4-Phenyl-1-piperazinepropanamide 3b. This compound was prepared in a similar manner as above, starting from 1-phenyl-piperazine (5.00 g, 31 mmol) and 3-chloropropionamide (3.30 g, 31 mmol). The crude amide **3b** was chromatographed (ethyl acetate/CH₂Cl₂, 1:1 as eluent) to yield pure **3b** as a white solid (3.30 g, 46% yield), mp = 174–175 °C (white powder from CHCl₃/petroleum ether). ¹H-NMR (90 MHz, DMSO–d₆): 2.15–2.85 [m, 8H, (CH₂)₂NCH₂CH₂CO], 2.90–3.25 [m, 4H, N(CH₂)₂], 6.60–7.55 (m, 7H, aromatic and NH₂, D₂O exchanged); GC/MS *m*/*z*: 233 (M⁺, 100), 218 (51), 175 (70), 147 (15), 132 (54).

General procedure for preparation of 4-aryl-1-piperazinealkanamide 3c-f

N-substituted piperazinoalkanenitrile **2c–f** (10 mmol) was slowly added under vigorous stirring to conc H₂SO₄ (10 mL) at room temperature. After 30 min in a water-bath at 50 °C, the mixture was kept for 1 h at room temperature, then poured on ice and subsequently basified with Na₂CO₃. The aqueous phase was extracted in a continuous manner with CHCl₃, and the solvent was evaporated to yield the amide **3c–f** (70–80% yield) as a white powder (from CH₂Cl₂/petroleum ether).

4-Phenyl-1-piperazinebutanamide 3c. Mp = $135-136 \degree C.$ ¹H-NMR (90 MHz, CDCl₃): 1.65–2.05 (m, 2H, CH₂CH₂CO], 2.10–2.80 [m, 8H, (CH₂)₂NCH₂ and CH₂CO], 3.00–3.33 [m, 4H, ArN(CH₂)₂], 6.10 (br s, 2H, NH₂, D₂O exchanged), 6.70–7.45 (m, 5H, aromatic); GC/MS *m*/*z*: 247 (M⁺, 44), 189 (12), 176 (14), 175 (100), 132 (48), 105 (47).

4-Phenyl-1-piperazinepentanamide 3d. Mp = 138-139 °C. ¹H-NMR (90 MHz, CDCl₃) 1.40–1.88 (m, 4H, CH₂CH₂CH₂-CH₂), 2.08–2.85 [m, 8H, (CH₂)₂NCH₂CH₂CH₂CH₂CO], 3.05–3.40 [m, 4H, Ar(CH₂)₂], 5.60–6.35 (br s, 2H, NH₂, D₂O exchanged), 6.75–7.52 (m, 5H, aromatic); GC/MS *m/z*: 261 (M⁺, 37), 176 (13), 175 (100), 132 (25), 104 (24), 70 (61).

4-(2-Methoxyphenyl)-1-piperazinepentanamide 3e. Mp = 112-115 °C. ¹H-NMR (90 MHz, CDCl₃): 1.35–1.85 (m, 4H), 2.06–2.80 (m, 8H), 2.88–3.30 (m, 4H), 3.88 (s, 3H), 5.57–6.05 (br s, 2H, D₂O exchanged), 6.70–7.22 (m, 4H); GC/MS *m*/*z*: 291 (M⁺, 45), 205 (100), 177 (16), 138 (14), 134 (12).

4-(2-Pyridyl)-1-piperazinepentanamide **3f**. Mp = 126– 128 °C. ¹H-NMR (90 MHz, CDCl₃): 1.32-1.87 (m, 4H), 2.05-2.72 (m, 8H), 3.32-3.70 (m, 4H), 5.52-6.05 (br s, 2H, D₂O exchanged), 6.42-8.32 (m, 4H); GC/MS *m/z*: 262 (M⁺, 9), 168 (26), 147 (14), 143 (20), 121 (22), 107 (100), 79 (23).

General procedure for preparation of 4-aryl-1-piperazinealkanethioamide **4a-f**

Lawesson's reagent (10 mmol) was added portionwise to a stirred solution of the amide 3a-f (10 mmol) in anhydrous toluene (30 mL). The suspension was refluxed for 2 h under nitrogen until it became a yellow solution. After cooling at room temperature, the precipitate was filtered and the solution was evaporated to dryness. The residual oil was treated with 3 N HCl and aqueous solution, repeatedly washed with CH₂Cl₂, alkalized with Na₂CO₃ and extracted with CHCl₃. The organic phase was dried (Na₂SO₄) and the solvent removed to give an oil which was chromatographed with CHCl₃/MeOH, 19:1 as eluent (60–70% yield, leaflets from CH₂Cl₂/petroleum ether).

4-Phenyl-1-piperazinethioacetamide 4a. Mp = 186-187 °C. ¹H-NMR (90 MHz, CDCl₃): 2.60–2.95 [m, 4H, (CH₂)₂NCH₂], 3.10–3.45 [m, 4H, ArN(CH₂)₂], 3.53 (s, 2H, CH₂CS), 6.83– 7.60 (m, 5H, aromatic), 6.70 and 9.18 (2 br s, 2H, NH₂, D₂O exchanged); GC/MS *m*/*z*: 235 (M⁺, 47), 176 (10), 175 (100), 160 (63), 105 (54), 104 (49).

4-Phenyl-1-piperazinepropanethioamide **4b**. Mp 139–140 °C. ¹H-NMR (90 MHz, DMSO–d₆): 2.42–2.94 [m, 8H, (CH₂)₂-NCH₂CH₂CS], 3.04–3.32 [m, 4H, Ar(CH₂)₂], 6.65–7.53 (m, 5H, aromatic), 9.10 and 9.82 (2 br s, 2H, NH₂, D₂O exchanged); GC/MS *m*/*z*: 249 (M⁺, 89), 215 (31), 175 (91), 120 (97), 105 (57), 70 (100).

4-Phenyl-1-piperazinebutanethioamide 4c. Mp = 99–100 °C. ¹H-NMR (90 MHz, CDCl₃): 1.75–2.10 (m, 2H, CH₂CH₂CH₂), 2.40–2.95 [m, 8H, (CH₂)₂NCH₂CH₂CH₂CS], 3.05–3.28 [m, 4H, Ar(CH₂)₂], 6.70–7.42 (m, 5H, aromatic), 7.85 and 9.00 (2 br s, 2H, NH₂, D₂O exchanged); GC/MS *m/z*: 263 (M⁺, 42), 262 (29), 188 (54), 175 (31), 132 (100), 105 (55).

4-Phenyl-1-piperazinepentanethioamide 4d. Mp = 134–135 °C. ¹H-NMR (90 MHz, DMSO-d₆): 1.20–1.92 (m, 4H, CH₂CH₂CH₂CH₂), 2.15–2.85 [m, 8H, (CH₂)₂NCH₂CH₂CH₂CH₂-CH₂CS], 3.05–3.38 [m, 4H, Ar(CH₂)₂], 6.58–7.35 (m, 5H, aromatic), 9.20–9.35 (2 br s, 2H, NH₂, D₂O exchanged); GC/MS *m*/*z*: 277 (M⁺, 44), 276 (18), 243 (48), 175 (100), 132 (40), 104 (34).

4-(2-Methoxyphenyl)-1-piperazinepentanethioamide 4e. Mp = 140–142 °C. ¹H-NMR (90 MHz, CDCl₃): 1.38–2.02 (m, 4H), 2.32–2.90 (m, 8H), 3.02–3.35 (m, 4H), 3.88 (s, 3H), 6.76– 7.35 (m, 4H), 7.72 and 8.38 (2 br s, 2H, D_2O exchanged); GC/MS m/z: 275 (2), 273 (100), 205 (87), 136 (93), 120 (46), 57 (37).

4-(2-Pyridyl)-1-piperazinepentanethioamide 4f. Mp = 146– 148 °C. ¹H-NMR (90 MHz, DMSO–*d*₆): 1.27–1.92 (m, 4H), 2.12–2.80 (m, 8H), 3.20–3.75 (m, 4H), 6.52–8.27 (m, 4H), 9.05 and 9.68 (2 br s, 2H, D₂O exchanged); GC/MS *m*/*z*: 244 (5), 119 (10), 107 (100), 79 (14).

General procedure for thiazole ring closure 9-21

A solution of thioamide 4a-f (10 mmol) and the appropriate α -bromoketone 5-8 (15 mmol) in anhydrous EtOH under nitrogen was refluxed overnight. Evaporation of the solvent afforded an oil, which was treated with 3 N HCl (20 mL) and washed repeatedly with CHCl₃. The aqueous layer was then alkalized with Na₂CO₃ and extracted with CHCl₃ (3 × 20 mL). The collected extracts, dried (Na₂SO₄) and concentrated under reduced pressure, yielded an oil which was chromatographed (CHCl₃/MeOH, 49:1 as eluent) and obtained as oils 4a-f (60–65% yield).

8,9-Dihydro-2-(4-phenyl-1-piperazinyl)methyl-naphtho[1,2-d]thiazole 9. ¹H-NMR (300 MHz, CDCl₃): 2.78 [t, 4H, J =7.4 Hz, CH₂N(CH₂)₂], 2.95–3.12 (m, 4H, naphthalenic), 3.25 [t, 4H, J = 4.9 Hz, (CH₂)₂NAr], 3.94 (s, 2H, CH₂), 6.80–7.94 (m, 9H, aromatic); GC/MS *m*/*z*: 361 (M⁺, 41), 292 (11), 242 (12), 201 (95), 200 (100), 145 (45).

8,9-Dihydro-2-(4-phenyl-1-piperazinyl)ethyl-naphtho[1,2-d]thiazole 10. ¹H-NMR (300 MHz, CDCl₃): 2.76–2.88 [m, 4H, CH₂N(CH₂)₂], 2.93 (t, 2H, J = 7.3 Hz, CH₂CH₂N), 3.20– 3.50 [m, 6H, CH₂CH₂N and (CH₂)₂NAr], 6.88–7.95 (m, 9H, aromatic); GC/MS *m*/*z*: 375 (M⁺, 17), 243 (34), 176 (13), 175 (100), 173 (11), 132 (26).

8,9-Dihydro-2-(4-phenyl-1-piperazinyl)propyl-naphtho[1,2-d]thiazole 11. ¹H-NMR (300 MHz, CDCl₃): 1.86–2.15 (m, 2H, CH₂CH₂CH₂N), 2.48–2.67 [m, 6H, CH₂N(CH₂)₂], 2.92–3.15 (m, 6H, benzylic), 3.22 [t, 4H, J = 4.9 Hz, (CH₂)₂NAr], 6.80–7.92 (m, 9H, aromatic); GC/MS *m*/z: 389 (M⁺, 16), 257 (34), 228 (14), 202 (18), 201 (100), 189 (13), 161 (14).

8,9-Dihydro-7-methoxy-2-(4-pheny-1-piperazinyl)propyl-naphtho[1,2-d]thiazole **12**. ¹H-NMR (300 MHz, CDCl₃): 2.01– 2.11 (m, 2H, CH₂CH₂CH₂N), 2.54 [t, 2H, J = 7.4 Hz, CH₂N-(CH₂)₂], 2.55–2.66 [m, 4H, CH₂N(CH₂)₂], 2.91–2.97 (m, 2H, CH₂CH₂CH₂N), 3.01–3.08 (m, 4H, naphthalenic), 3.21 [t, 4H, J = 4.9 Hz, (CH₂)₂NAr], 3.84 (s, 3H, CH₃), 6.78–7.55 (m, 8H, aromatic); GC/MS *m*/*z*: 419 (M⁺, 15), 287 (34), 258 (12), 244 (22), 232 (14), 231 (100).

8,9-Dihydro-2-(4-phenyl-1-piperazinyl)butyl-naphtho[1,2-d]thiazole **13**. ¹H-NMR (300 MHz, CDCl₃): 1.64–1.72 (m, 2H, CH₂CH₂N), 1.81–1.91 (m, 2H, N=CCH₂CH₂), 2.46 [t, 2H, *J* = 7.6 Hz, CH₂N(CH₂)₂], 2.61 [t, 4H, *J* = 5.0 Hz, CH₂N(CH₂)₂], 2.93–3.11 (m, 6H, benzylic), 3.20 [t, 4H, *J* = 5.0 Hz, (CH₂)₂N], 6.81–7.89 (m, 8H, aromatic); GC/MS *m*/*z*: 403 (M⁺, 16), 402 (9), 401 (21), 388 (22), 297 (18), 272 (19), 214 (15), 175 (20), 173 (13).

8,9-Dihydro-7-methoxy-2-(4-phenyl-1-piperazinyl)butyl-naphtho[1,2-d]thiazole **14**. ¹H-NMR (300 MHz, CDCl₃): 1.61– 1.71 (m, 2H), 1.80–1.90 (m, 2H), 2.46 (t, 2H, J = 7.5 Hz), 2.61 (t, 4H, J = 5.0 Hz), 2.91–2.97 (m, 2H, N=CCH₂), 3.01–3.14 (m, 4H, naphthalenic), 3.20 (t, 4H, J = 5.0 Hz), 3.84 (s, 3H, CH₃), 6.78–7.56 (m, 8H, aromatic); GC/MS m/z: 433 (M⁺, 12), 431 (15), 327 (24), 315 (10), 302 (20), 301 (100), 272 (39), 244 (15).

8,9-Dihydro-6-methoxy-2-(4-phenyl-1-piperazinyl)butyl-naphtho[1,2-d]thiazole **15**. ¹H-NMR (300 MHz, CDCl₃): 1.61– 1.71 (m, 2H), 1.73–1.90 (m, 2H), 2.45 (t, 2H, J = 7.5 Hz), 2.61 (t, 4H, J = 4.9), 2.91–3.05 (m, 6H), 3.20 (t, 4H, J = 5.0 Hz), 3.80 (s, 3H), 6.75–7.81 (m, 7H); GC/MS *m/z*: 433 (M⁺, 11), 432 (8), 431 (20), 327 (4), 302 (20), 301 (100), 272 (42), 244 (18).

8,9-Dihydro-5-methoxy-2-(4-phenyl-1-piperazinyl)butyl-naphtho[1,2-d]thiazole **16**. ¹H-NMR (300 MHz, CDCl₃): 1.63– 1.77 (m, 2H), 1.81–1.91 (m, 2H), 2.47 (t, 2H, J = 7.5 Hz), 2.62 (t, 4H, J = 5.0 Hz), 2.95 (s, 4H), 3.03 (t, 2H, J = 7.5 Hz), 3.21 (t, 4H, J = 5.0 Hz), 3.84 (s, 3H), 6.70–7.12 (m, 8H); GC/MS *m*/*z*: 433 (M⁺, 10), 431 (15), 418 (12), 327 (21), 302 (19), 301 (100), 272 (39), 244 (14), 175 (17).

8,9-Dihydro-7-methoxy-2-[4-(2-methoxyphenyl)-1-piperazinyl]butyl-naphtho[1,2-d]thiazole 17. ¹H-NMR (300 MHz, CDCl₃): 1.65–1.73 (m, 2H), 1.83–1.90 (m, 2H), 2.45 (t, 2H, *J* = 7.6 Hz), 2.67 (s br, 4H), 2.91–3.10 (m, 10H), 3.84 (s, 6H, 2 CH₃), 6.78–7.55 (m, 7H); GC/MS *m*/z: 463 (M⁺, 13), 462 (10), 461 (25), 448 (21), 327 (16), 302 (19), 301 (100), 272 (36), 205 (20).

8,9-Dihydro-6-methoxy-2-[4-(2-methoxyphenyl)-1-piperazinyl]butyl-naphtho[1,2-d]thiazole 18. ¹H-NMR (300 MHz, CDCl₃): 1.62–1.72 (m, 2H), 1.82–1.89 (m, 2H), 2.47 (t, 2H, J = 7.6 Hz), 2.66 (br s, 4H), 2.90–3.09 (m, 10H), 3.80 and 3.84 (2 s, 6H), 6.74–7.81 (m, 7H); GC/MS *m*/*z*: 463 (M⁺, 15), 462 (9), 461 (21), 301 (100), 272 (38), 243 (14), 205 (18), 190 (16).

8,9-Dihydro-5-methoxy-2-[4-(2-methoxyphenyl)-1-piperazinyl]butyl-naphtho[1,2-d]thiazole **19**. ¹H-NMR (300 MHz, CDCl₃): 1.62–1.72 (m, 2H), 1.73–1.90 (m, 2H), 2.47 (t, 2H, J =7.6 Hz), 2.66 (br s, 4H), 2.94 (s, 4H), 3.01–3.09 (m, 6H), 3.84 (s, 6H), 6.70–7.46 (m, 7H); GC/MS *m*/*z*: 463 (M⁺, 16), 462 (10), 461 (21), 315 (14), 302 (20), 301 (100), 272 (39), 244 (17), 231 (13), 205 (23).

8,9-Dihydro-7-methoxy-2-[4-(2-pyridyl)-1-piperazinyl]butylnaphtho[1,2-d]thiazole **20**. ¹H-NMR (300 MHz, CDCl₃): 1.61-1.73 (m, 2H), 1.80-1.90 (m, 2H), 2.43 (t, 2H, J = 7.5 Hz), 2.54 (t, 4H, J = 5.1 Hz), 2.90-3.09 (m, 6H), 3.53 (t, 4H, J =5.0 Hz), 3.83 (s, 3H), 6.57-8.17 (m, 8H); GC/MS *m*/*z*: 434 (M⁺, 40), 432 (30), 340 (57), 327 (52), 272 (100), 270 (27), 244 (25).

8,9-Dihydro-5-methoxy-2-[4-(2-pyridyl)-1-piperazinyl]butylnaphtho[1,2-d]thiazole **21**. ¹H-NMR (300 MHz, CDCl₃): 1.61–1.71 (m, 2H), 1.80–1.90 (m, 2H), 2.44 (t, 2H, J = 7.6 Hz), 2.55 (t, 4H, J = 5.0 Hz), 2.94 (s, 4H), 3.03 (t, 2H, J = 7.6 Hz), 3.53 (t, 4H, J = 5.0 Hz), 3.84 (s, 3H), 6.57–8.17 (m, 7H); GC/MS m/z: 434 (M⁺, 44), 433 (22), 432 (53), 328 (15), 315 (27), 272 (100), 271 (45), 107 (67).

Hydrochloride salts: general procedure

The hydrochloride salts were prepared by adding an HCl ethereal solution to a methanolic solution of amine. Recrystallization solvents, formulae and melting points are reported in table I. They were obtained as white to sandy yellow crystals or crystalline powders.

Pharmacological methods

The binding studies were performed in rat brain areas. Male Wistar rats weighing 175–200 g, were killed by decapitation under light anesthesia and the various brain regions dissected quickly on an ice-cold plate. Depending on the receptor to be studied the different areas were used following the methods described below.

D_1 dopaminergic binding assay

The binding assay for D₁ dopaminergic receptors was essentially that described by Billard et al [29]. Corpora striata were homogenized in 30 vol (w/v) ice-cold 50 mM Tris-HCl buffer (pH 7.7 at 25 °C) using a Polytron PT10 (setting 5 for 20 s). Homogenates were centrifuged twice for 10 min at 50 000 g with resuspension of the pellet in fresh buffer. The final pellet was resuspended in 50 mM ice-cold Tris-HCl containing 120 mM NaCl, 5 mM KCl, 2 mM CaCl₂, 1 mM MgCl₂, 0.1% ascorbic acid and 10 μ M pargyline (pH 7.1 at 37 °C). Each assay tube contained 50 µL drug solution, 50 µL [3H]SCH-23390 to achieve a final concentration of 0.4 nM, and 900 µL resuspended membranes (3 mg fresh tissue). The tubes were incubated for 15 min at 37 °C and the incubation was terminated by rapid filtration under vacuum through Whatman GF/B glass fiber filters. The filters were washed three times with 5 mL ice-cold 50 mM Tris-IICl buffer (pH 7.7 at 25 °C). The radioactivity bound to the filters was measured by a liquid scintillation counter. Specific [3H]SCH-23390 binding was defined as the difference between binding in the absence or in the presence of 0.1 µM piflutixol.

D_2 dopaminergic binding assay

The procedure used in the radioligand binding assay has been reported in detail by Creese et al [30]. Corpora striata were homogenized in 30 vol (w/v) ice-cold 50 mM Tris-HCl buffer (pH 7.7 at 25 °C) using a Polytron PT10 (setting 5 for 20 s). Homogenates were centrifuged twice for 10 min at 50 000 g with resuspension of the pellet in fresh buffer. The final pellet was resuspended in 50 mM ice-cold Tris-HCl containing 120 mM NaCl, 5 mM KCl, 2 mM CaCl₂, 1 mM MgCl₂, 0.1% ascorbic acid and 10 µM pargyline (pH 7.1 at 37 °C). Each assay tube contained 50 µL drug solution, 50 µL [3H]spiroperidol to achieve a final concentration of 0.4 nM, and 900 µL resuspended membranes (3 mg fresh tissue). The tubes were incubated for 15 min at 37 °C, and the incubation was terminated by rapid filtration under vacuum through Whatman GF/B glass fiber filters. The filters were washed three times with 5 mL ice-cold 50 mM Tris-HCl buffer (pH 7.7 at 25 °C). The radioactivity bound to the filters was measured by a liquid scintillation counter. Specific [3H]spiroperidol binding was defined as the difference between binding in the absence or in the presence of $1 \mu M$ (+)-butaclamol.

5- HT_{1A} serotonergic binding assay

The procedure used in the radioligand binding assay has been reported in detail by Hall et al [31]. The hippocampus was homogenized in 30 vol (w/v) ice-cold 50 mM Tris-HCl buffer (pH 7.2 at 25 °C) using a Polytron PT10 (setting 5 for 20 s). Homogenates were centrifuged twice for 10 min at 50 000 g with resuspension of the pellet in fresh buffer. After the second centrifugation, the pellet was resuspended in homogenization buffer and the suspension incubated 10 min at 37 °C. After two further centrifugations and washing, the final pellet was resuspended in 50 mM ice-cold Tris-HCl containing 4 mM CaCl₂, 0.1% ascorbic acid and 10 μ M pargyline (pH 7.4 at 25 °C). Each assay tube contained 50 μ L drug solution, 50 μ L [³H]8-OH-DPAT to achieve a final concentration of 0.8 nM, and

900 μ L resuspended membranes (10 mg fresh tissue). The tubes were incubated for 30 min at 25 °C and the incubation was terminated by rapid filtration under vacuum through Whatman GF/B glass fiber filters. The filters were washed three times with 5 mL ice-cold 50 mM Tris-HCl buffer (pH 7.2 at 25 °C). The radioactivity bound to the filters was measured by liquid scintillation counter. Specific [³H]8-OH-DPAT binding was defined as the difference between binding in the absence or in the presence of 10 μ M 5-HT.

5-HT₂ serotonergic binding assay

The procedure used in the radioligand binding assay has been reported in detail by Leysen et al [32]. Prefrontal cortex was homogenized in 30 vol (w/v) ice-cold 50 mM Tris-HCl buffer (pH 7.2 at 25 °C) using a Polytron PT10 (setting 5 for 20 s). Homogenates were centrifuged three times for 10 min at 50 000 g with resuspension of the pellet in fresh buffer. The final pellet was resuspended in 50 mM ice-cold Tris-HCl (pH 7.4 at 37 °C). Each assay tube contained 50 µL drug solution, 50 µL [³H]ketanserin to achieve a final concentration of 0.8 nM, and 900 μ L resuspended membranes (5 mg fresh tissue). The tubes were incubated for 15 min at 37 °C, and the incubation was terminated by rapid filtration under vacuum through Whatman GF/B glass fiber filters. The filters were washed three times with 5 mL ice-cold 50 mM Tris-HCl buffer (pH 7.2 at 25 °C). The radioactivity bound to the filters was measured by liquid scintillation counter. Specific [3H]ketanserin binding was defined as the difference between binding in the absence or in the presence of $1 \,\mu\text{M}$ methysergide.

α_{l} adrenergic binding assay

The procedure used in the radioligand binding assay has been reported in detail by Greengrass and Bremner [33]. Brain cortex was homogenized in 30 vol (w/v) ice-cold 50 mM Tris-HCl buffer (pH 7.2 at 25 °C) using a Polytron PT10 (setting 5 for 20 s). Homogenates were centrifuged twice for 10 min at 50 000 g with resuspension of the pellet in fresh buffer. The final pellet was resuspended in 50 mM ice-cold Tris-HCl (pH 7.4 at 25 °C). Each assay tube contained 50 μ L drug solution, 50 μ L [³H]prazosin to achieve a final concentration of 0.4 nM, and 900 μ L resuspended membranes (10 mg fresh tissue). The tubes were incubated for 30 min at 25 °C and the incubation was terminated by rapid filtration under vacuum through Whatman GF/B glass fiber filters. The filters were washed three times with 5 mL ice-cold 50 mM Tris-HCl buffer (pH 7.2 at 25 °C). The radioactivity bound to the filters was measured by a liquid scintillation counter. Specific [³H]prazosin binding was defined as the difference between binding in the absence or in the presence of 1 μ M phentolamine.

α_2 adrenergic binding assay

The procedure used in the radioligand binding assay has been reported in detail by Perry and U'Prichard [34]. Brain cortex was homogenized in 30 vol (w/v) ice-cold 5 mM Tris-HCl, 5 mM EDTA buffer (pH 7.3 at 25 °C) using a Polytron PTIO (setting 5 for 20 s). Homogenates were centrifuged three times for 10 min at 50 000 g with resuspension of the pellet in fresh buffer. The final pellet was resuspended in 50 mM ice-cold Tris-HCl, 0.5 mM EDTA (pH 7.5 at 25 °C). Each assay tube contained 50 μ L drug solution, 50 μ L [³H]yohimbine to achieve a final concentration of 1 nM, and 900 μ L resuspended membranes (10 mg fresh tissue). The tubes were incubated for 30 min at 25 °C and the incubation was terminated by rapid filtration under vacuum through Whatman GF/B glass fiber filters. The filters were washed three times with 5 mL ice-cold 50 mM Tris-HCl, 0.5 mM EDTA buffer (pH 7.5 at 25 °C). The

radioactivity bound to the filters was measured by a liquid scintillation counter. Specific [³H]yohimbine binding was defined as the difference between binding in the absence or in the presence of 10 μ M phentolamine.

Acknowledgment

The financial support of the CNR is gratefully acknowledged.

References

- 1 Lowe JA, Seeger TF, Vinick FT (1988) Med Res Rev 8, 475-497
- 2 Lieberman JA, John CA, Kane JM et al (1988) *J Clin Psychiatry* 49, 271–277 3 Kane JM (1993) *Drugs* 46, 585–593
- 4 Perrone R, Berardi F, Colabufo NA et al (1994) *J Med Chem* 37, 99–104
- 5 H 2 NH L A KG D A KK A K(1994) JM LCL 27 2200 221
- 5 Hrib NJ, Jurcak JG, Burgher KL et al (1994) *J Med Chem* 37, 2308–2314
- 6 Fontenla JA, Osuna J, Rosa E et al (1994) J Med Chem 37, 2564–2753
- 7 Phillips ST, de Paulis T, Baron BM et al (1994) J Med Chem 37, 2686-2696
- 8 Hoyer D, Clarke DE, Fozard JR et al (1994) *Pharmacol Rev* 46, 157–203
- 9 Cott JM, Kurtz NM, Robinson DS, Lancaster SP, Copp JEA (1988) Psychopharmacol Bull 24, 164–167
- 10 Eison AS, Eison MS, Stanley M, Riblet LA (1985) Pharmacol Biochem Behav 24, 701–707
- 11 Hicks PB (1990) Life Sci 47, 1609–1615
- 12 McMillen BA, Scott SM, Davanzo EA (1988) J Pharm Pharmacol 40, 885– 887

- 13 Norman MH, Navas III F, Thompson JB, Rigdon GC (1996) J Med Chem 39, 4692–4703
- 14 Norman MH, Rigdon GC, Hall WR, Navas III F (1996) J Med Chem 39, 1172-1188
- 15 Hrib NJ, Jurcak JG, Bregna DE et al (1996) J Med Chem 39, 4044-4057
- 16 Glennon RA (1992) Drug Dev Res 26, 251-274
- 17 van Steen BJ, van Wijngaarden I, Tulp MTM, Soudijn W (1993) J Med Chem 36, 2751–2760
- 18 Mokrosz JL, Pietrasiewicz M, Duszynska B, Cegla MT (1992) J Med Chem 35, 2369–2374
- 19 Perrone R, Berardi F, Colabufo NA et al (1995) J Med Chem 38, 942-949
- 20 Reitz AB, Bennett DJ, Blum PS et al (1994) J Med Chem 37, 1060-1062
- 21 Scott MK, Baxter EW, Bennett DJ et al (1995) J Med Chem 38, 4198-4210
- 22 Reitz AB, Baxter EW, Bennett DJ et al (1995) J Med Chem 38, 4211-4222
- 23 Perrone R, Berardi F, Leopoldo M et al (1996) J Med Chem 39, 3195-3202
- 24 Perrone R, Berardi F, Colabufo NA et al (1996) J Med Chem 39, 4928-4934
- 25 Perrone R, Berardi F, Leopoldo M et al (1994) Farmaco 49, 567-572
- 26 Perrone R, Berardi F, Leopoldo M et al (1995) Farmaco 50, 505-510
- 27 Perrone R, Berardi F, Colabufo NA et al (1995) Farmaco 50, 77-82
- 28 Munson PJ, Rodbard D (1980) Ann Biochem 107, 220-239
- 29 Billard W, Ruperto V, Grosby G, Iorio LC, Barnett A (1985) Life Sci 35, 1885–1893
- 30 Creese I, Schneider R, Snyder SH (1977) Eur J Pharmacol 46, 377-381
- 31 Hall MD, El Mestikawy S, Emerit M, Pichat L, Hamon M, Gozlan H (1985) J Neurochem 44, 1685–1695
- 32 Leysen JE, Niemegeers CJE, van Nueten JM, Laduron PM (1981) Mol Pharmacol 21, 301-314
- 33 Greengrass P, Bremner R (1979) Eur J Pharmacol 55, 323-326
- 34 Perry BD, U'Prichard DC (1981) Eur J Pharmacol 76, 461-464