Accepted Manuscript

Organocatalytic peroxidation of malonates, β -ketoesters, and cyanoacetic esters using *n*-Bu₄NI / *t*-BuOOH-mediated intermolecular oxidative C(sp³)–O coupling

Alexander O. Terent'ev, Alexander T. Zdvizhkov, Dmitri O. Levitsky, Fabrice Fleury, Roman A. Pototskiy, Alena N. Kulakova, Gennady I. Nikishin

PII: S0040-4020(15)30075-2

DOI: 10.1016/j.tet.2015.09.047

Reference: TET 27144

To appear in: Tetrahedron

- Received Date: 14 July 2015
- Revised Date: 8 September 2015

Accepted Date: 21 September 2015

Please cite this article as: Terent'ev AO, Zdvizhkov AT, Levitsky DO, Fleury F, Pototskiy RA, Kulakova AN, Nikishin GI, Organocatalytic peroxidation of malonates, β -ketoesters, and cyanoacetic esters using *n*-Bu₄NI / *t*-BuOOH-mediated intermolecular oxidative C(sp³)–O coupling, *Tetrahedron* (2015), doi: 10.1016/j.tet.2015.09.047.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

Tetrahedron journal homepage: www.elsevier.com

Organocatalytic peroxidation of malonates, β -ketoesters, and cyanoacetic esters using *n*-Bu₄NI / *t*-BuOOH-mediated intermolecular oxidative C(sp³)–O coupling

Alexander O. Terent'ev,*^a Alexander T. Zdvizhkov,^a Dmitri O. Levitsky,^b Fabrice Fleury,^b Roman A. Pototskiy,^a Alena N. Kulakova,^a Gennady I. Nikishin ^a

^a N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russian Federation ^bUFIP CNRS UMR 6286, Mechanism and regulation of DNA repair team Université de Nantes, 2 rue de la Houssinière, 44322, France

ARTICLE INFO

Article history: Received Received in revised form Accepted Available online

Keywords: Peroxides Oxidative coupling Organocatalysis Malonates Tetra-*n*-butylammonium iodide

ABSTRACT

A new organocatalytic approach for the synthesis of peroxides based on CH activation of a sp³hybridized carbon atom is reported. Peroxides were prepared in 31 - 89 % yield by the reaction of malonates, β -ketoesters, and cyanoacetic esters with a Bu₄NI / *tert*-butyl hydroperoxide system. The formation of the expected hydroxylation products was not observed. In the discovered reaction, *tert*-butyl hydroperoxide plays a dual role by acting as the oxidant and the O-reagent for the C-O coupling. The synthesis can be scaled up to generate gram quantities of the target products.

2009 Elsevier Ltd. All rights reserved.

1. Introduction

Organic peroxides are widely used as radical polymerization initiators in the industrial synthesis of polymers such as polystyrene, polyvinyl chloride, polyacrylates, and polyethylene. A wide variety of commercial monomers and their composites requires for polymerization a wide assortment of peroxides, the most well-known of which are peroxy esters. peroxydicarbonates, peroxycarbonates, peracetals, cyclic triperoxides, organic hydroperoxides, dialkyl peroxides, diacyl peroxides, and geminal bishydroperoxides.^[1,2] In the past decades, organic peroxides have received attention from researchers in the field of medicinal chemistry because these compounds were found to possess pronounced antimalarial,^[3] anthelmintic,^[4] and antitumor activities.^[5] Peroxides obtained from lower aldehydes and ketones are attracting interest also as explosive compounds.^[6]

The preparation of radical polymerization initiators and biologically active compounds is the major impetus for the development of new methods for the synthesis of peroxides. The present study is a part of our continuing research on the peroxidation of dicarbonyl compounds.^[7] Earlier, it has been found that transition metals catalyze the peroxidation of β -

dicarbonyl compounds at the α -position by *tert*-butyl hydroperoxide.^[7a,b] In this study, we performed the organocatalytic peroxidation of malonates, β -ketoesters, and cyanoacetic esters at the α -position using the Bu₄NI / *tert*-butyl hydroperoxide system. This is a new approach for the synthesis of peroxides based on CH activation of a sp³-hybridized carbon atom, which is generally accomplished by autooxidation, or under the action of hydroperoxides combined with variable-valence metal ions. Until recently, only the following two examples of peroxidation by the Bu₄NI / *tert*-butyl hydroperoxide system were described: the synthesis of peroxy esters from aldehydes (CH activation of a sp²-hybridized carbon atom) ^[8a] and the peroxidation of C–H bonds adjacent to the amide nitrogen (CH activation of a sp³-hybridized carbon atom).^[8b]

The Bu₄NI / *tert*-butyl hydroperoxide system has been extensively studied in recent years.^[9] It is assumed that a number of various reactive species are generated in this system, such as O-centered radicals and oxidized iodine species. Owing to this fact, this system is used in the oxidative synthesis resulting in the formation of C-C,^[10]C-N,^[11]C-S^[12] and C-O^[9f, 13] bonds.

* Corresponding author. Tel.: +7-916-385-4080; fax: +7-499-135-5328; e-mail: terentev@ioc.ac.ru

1

ACCEPTED M

2. Results and discussion

Malonates 1a-h, β -ketoesters 3a-d, and cyanoacetic esters 5ad substituted at the α -position were used as the starting reagents for the synthesis of target peroxides 2a-h, 4a-d, 6a-d (Scheme 1).

Scheme 1. Synthesis of peroxides from malonates 1a-h, β -ketoesters 3a-d, and cyanoacetic esters 5a-d.

A search for the conditions of peroxidation of diethyl benzylmalonate 1d to form diethyl 2-benzyl-2-(*tert*-butylperoxy)malonate 2d was performed using the catalysts Bu_4NI , Me_4NI , I_2 , and KI in CH_3CN , EtOH, DMF, 1,2-dichloroethane, and benzene (Table 1).

Table 1. Peroxidation of diethyl benzylmalonate 1d by *tert*-butyl hydroperoxide.

EtO	D O OEt - Bn	Bu ^t OOH / cat Solvent EtO	O O OEt Bn OOBu ^t
	1d		2d
Entry	Catalyst,	Solvent	Yield of 2d, %
	% mol		
1	Bu ₄ NI, 50	CH ₃ CN	80
2	Bu ₄ NI, 20	CH ₃ CN	85
3	Bu ₄ NI, 10	CH ₃ CN	60
4	Bu ₄ NI, 20	PhH	44
5	Bu ₄ NI, 20	EtOH	19
6	Bu ₄ NI, 20	1,2-Dichloroethane	16
7	Bu ₄ NI, 20	DMF	traces
8	Me ₄ NI, 50	CH ₃ CN	83
9	I ₂ , 50	CH ₃ CN	traces
10	KI, 50	CH ₃ CN	traces

General reaction conditions: 78-80 °C, 6 h, 3 mol of 70% aq. Bu'OOH per mole of **1d**

In entries 1-3, performed in CH₃CN, the effect of the amount of the catalyst was studied; a 20% loading of the catalyst with respect to 1d was found to be the optimal amount (entry 2). In entries 4-7, the possibility of using other solvents was examined; a moderate result was obtained using benzene (entry 4), while in ethanol, 1,2-dichloroethane, and dimethylformamide, the yield of 2d was much lower (entries 5-7). In entries 8-10, other iodinecontaining catalysts were examined, the related Me₄NI (entry 8) proved to be a good catalyst, whereas peroxidation in the presence of I₂ (entry 9) and KI (entry 10) was negligible. Using the optimised reaction conditions of entry 2 (Table 1), peroxides 2a-h, 4a-d, 6a-d were synthesized (Table 2).

^a The experiment was scaled up by increasing the amounts of the reagents by a factor of five.

Based on the results presented in Table 2, it can be concluded that the Bu₄NI-catalyzed peroxidation provides a versatile approach to the synthesis of structurally different α -tertbutylperoxy malonates **2a-h**, β -ketoesters **4a-d**, and cyanoacetic esters **6a-d**. The yield of the resulting α -peroxidated malonates **2a-h** varies from 67 to 89%, or a range of substrates, including those containing reactive groups, such as CH₂ in the benzyl moiety and the allyl, carbonyl and nitrile groups. The yields of peroxides **4a-d** and **6a-d**, prepared from β -ketoesters **3a-d** and cyanoacetic esters **5a-d** were approximately two times lower, in comparison with **2a-h**. Attempts to peroxidise β -diketones (3benzylpentane-2,4-dione and 3-butylpentane-2,4-dione) were unsuccessful; only complex mixtures of products were obtained.

Plausible peroxidation mechanisms.

A The published data suggest that the reaction may proceed by two different pathways. One of them (pathway A) is based on the formation of t-BuOO• and t-BuO• radicals in the Bu₄NI / t-BuOOH system followed by the generation of a C-centered radical from malonic ester and the recombination of the latter radical with the t-BuOO• radical to form the target peroxide.^[8] Another pathway (pathway B) involves the oxidation of Bu₄NI to give [Bu₄N]⁺[IO]⁻ and then [Bu₄N]⁺[IO₂]⁻, which reacts with malonic ester at the α -position to form [Bu₄N]⁺[(COOEt)₂CH-I(OH)O]⁻. The final step is the replacement of hypervalent iodine bound to the organic moiety by *tert*-butyl hydroperoxide ^[14] (Scheme 2).

Scheme 2. Plausible peroxidation mechanisms in the example of malonates. Free radical pathway A and ionic pathway B.

Based on literature data, pathways **A** ^[8] and **B** ^[14] are indirectly confirmed by the formation of dehydrogenated dimer **8** from malonic ester **7** (Scheme 3).

Scheme 3. Transformation of malonic ester 7 to tetraethyl ethene-1,1,2,2-tetracarboxylate 8.

C-centered radicals formed *via* pathway \mathbf{A} can dimerize with following oxidative dehydration with formation of product $\mathbf{8}$. Product $\mathbf{8}$ can also be formed through nucleophilic substitution of iodine-containing moiety by malonate anion in iodinated intermediate prepared by pathway \mathbf{B} with following oxidative dehydration.

Evidence to support pathway A concludes in the formation of 9-(*tert*-butylperoxy)-9-methyl-9*H*-fluorene **10** from 9-methyl-9*H*-fluorene **9** (Scheme 4).

Scheme 4. Transformation of 9-methyl-9*H*-fluorene 9 in to 9-(*tert*-butylperoxy)-9-methyl-9*H*-fluorene 10.

Peroxide 10 is apparently formed via the abstraction of a hydrogen atom from CH fragment with formation of C-centered radical followed by the recombination of the latter radical with the t-BuOO• radical. The benzylic position is traditionally considered as a point for free radical reactions when free radical initiators are applied. Another evidence to support pathway A results from an additional experiment on catalyst isolation after peroxidation of diethyl benzylmalonate 1d. Bu₄NI was isolated in 75% yield. In such a way pathway **B** seems to be less plausible, however based on the literature data it cannot be excluded.^[14] Apparently, the mechanism of Bu₄NI-mediated peroxidation of β-dicarbonyl compounds differs essentially from that of transition metal-mediated peroxidation.^[7b] In the metal-catalyzed reaction following reactivity order was observed: β-diketones>βketoesters>malonic esters.^[7b] On the contrary, Bu₄NI-mediated reaction proceeds optimally with malonic esters, moderately with β-ketoesters. and peroxidations of β-diketones were unsuccessful.

3. Conclusions

A new approach is reported for the synthesis of peroxides from malonates, β -ketoesters, and cyanoacetic esters using the organocatalytic Bu₄NI / *tert*-butyl hydroperoxide system and activation of a C(sp³)-H bond. α -*tert*-Butyl peroxides were prepared in 31 – 89 % yields. The synthesis can be scaled up to yield gram quantities of the target products.

4. Experimental section

Caution: Although we have encountered no difficulties in working with peroxides, precautions, such as the use of

shields, fume hoods, and the avoidance of heating and shaking, should be taken whenever possible.

¹H NMR spectra were recorded on a Bruker AM300 instrument (300.13 MHz for ¹H and 75.48 MHz for ¹³C) in a CDCl₃ solution. Commercial diethyl ethylmalonate **1b**, diethyl phenylmalonate 1f, diethyl malonate 7, ethyl methylacetoacetate 3a, 9-methylfluorene 9, a 70 % aqueous solution of t-BuOOH, Bu₄NI, Me₄NI, I₂, and KI (Acros) were used as-is. Acetonitrile, 1,2-dichloroethane, and ethyl acetate (EA) were distilled over P_2O_5 before use. Benzene and petroleum ether (PE) (40/70) were distilled over Na before use. Ethanol 96% was used without additional purification. The filtration and column chromatography were performed on silica gel (0.060-0.200 mm, 60 A, Acros); MeCN (HPLC grade) for ESI-HRMS experiments was purchased from Merck and was used as-is. High-resolution mass spectra were recorded on a Bruker maXis instrument equipped with an electrospray ionization (ESI) ion source.^[15] All measurements were carried out in positive (+MS) ion mode (interface capillary voltage e 4500 V) with the m/z scan range of 50 - 3000. External calibration of the mass spectrometer was performed with Electrospray Calibrant Solution (Fluka). The direct syringe injection was used for all the analyzed solutions in MeCN (flow rate 3 µL/min). Nitrogen was used as both the nebulizer gas (0.4 bar) and the dry gas (4.0 L/min); the interface temperature was set at 180 °C. Malonic esters 1a, 1c, 1d, 1e, 1g, and **1h** were prepared according to known procedures.^[7] ketoesters 3b-d and cyanoacetic esters 5a-d were prepared as described [7a,b]

Synthesis of diethyl benzyl(*tert*-butylperoxy)malonate 2d (Table 1): To a solution of diethyl benzylmalonate 1d (0.50 g, 2.00 mmol) in acetonitrile (10 mL) 70% t-BuOOH (0.77 g, 6.00 mmol) was added. The mixture was heated to reflux, and then Bu₄NI (0.07-0.37 g, 0.20-1.00 mmol), Me₄NI (0.20 g, 1.00 mmol), I₂ (0.25 g, 1.00 mmol), or KI (0.17 g, 1.00 mmol) was added. The solution was refluxed for 6 h. The solvent was removed under water aspirator pressure. The suspension that formed was filtered using silica gel. The solvent was removed under water aspirator pressure. Product 2d was isolated by chromatography on silica gel, eluting with PE-EtOAc (10/1).

General conditions for synthesis of peroxides 2a-h, 4a-d, and 6a-d (Table 2): To a solution of malonate 1a-h, 3a-d, 5a-d (2.00 mmol) in acetonitrile (10 mL), 70% t-BuOOH (0.77 g, 6.00 mmol) was added. The mixture was heated to reflux, and then Bu_4NI (0.15 g, 0.40 mmol) was added. The solution was refluxed for 6 h. Products 2a-h, 4a-d, and 6a-d were isolated as described above.

Large-scale synthesis of diethyl benzyl(tertbutylperoxy)malonate 2d (Table 2): To a solution of diethyl benzylmalonate **1d** (2.50 g, 10.1 mmol) in acetonitrile (50 mL), 70% t-BuOOH (3.86 g, 30.0 mmol) was added. The mixture was heated to reflux, and then Bu_4NI (0.74 g, 2.00 mmol) was added. The solution was refluxed for 6 h. The solvent was removed under water aspirator pressure. The suspension that formed was diluted with diethyl ether (100 mL), and the precipitate was filtered using silica gel. The solvent was removed under water aspirator pressure. Product 2d was isolated by chromatography on silica gel, eluting with PE-EtOAc (10/1). Yield of 2d is (2.77) g, 8.20 mmol, 81 %).

Diethyl (tert-butylperoxy)(methyl)malonate 2a: Colorless oil. ¹H NMR 300.15 MHz, CDCl₃): $\delta = 1.22$ (s, 9H, C(CH₃)₃), 1.25 (t, $J_{H_{-}H_{-}} = 7.1$ Hz, 6H, OCH₂CH₃), 1.66 (s, 3H,CCH₃), 4.21

 $(\mathbf{q}, \mathbf{V}_{H_{-H}} = 7.1 \text{PHz}, 4\text{H}, \text{OCH}_2\text{CH}_3)$. ¹³C NMR (75.48 MHz, CDCl₃): $\delta = 14.0 (\text{OCH}_2\text{CH}_3), 19.6 (\text{CCH}_3), 26.4 (C(\underline{CH}_3)_3), 61.7 (O\underline{CH}_2\text{CH}_3), 80.8 (\underline{C}(\text{CH}_3)_3), 84.9 (CH_3\underline{C}), 168.0 (CO). Calculated for <math>C_{12}\text{H}_{22}\text{O}_6$: % C 54.95; % H 8.45; found: % C 54.93; % H 8.43. HRMS-ESI: calculated 285.1309 $[C_{12}\text{H}_{22}\text{O}_6\text{+Na}]$ found 285.1315 ($\Delta = 2.1$ ppm). IR (film): 1749 (vs, v_{CO}) cm⁻¹.

Diethyl (*tert*-butylperoxy)(ethyl)malonate 2b: Colorless oil. ¹H NMR (300.15 MHz, CDCl₃): $\delta = 0.83$ (t, $J_{H-H} = 7.4$ Hz, 3H, CH₃CH₂), 1.19 (s, 9H, C(CH₃)₃), 1.21 (t, $J_{H-H} = 7.1$ Hz, 6H, OCH₂CH₃), 2.13 (q, $J_{H-H} = 7.4$ Hz, 2H, CH₂CH₃), 4.18 (q, $J_{H-H} =$ 7.1 Hz, 4H, OCH₂CH₃). ¹³C NMR (75.48 MHz, CDCl₃): $\delta = 7.2$ (CH₂CH₃), 14.1 (OCH₂CH₃), 25.2 (CH₂CH₃), 26.4 (C(CH₃)₃), 61.4 (OCH₂CH₃), 80.5 (C(CH₃)₃), 87.8 (CH₂C), 167.4 (CO). Calculated for C₁₃H₂₄O₆: % C 56.51; % H 8.75; found: % C 56.72; %H 8.78. HRMS-ESI: calculated 299.1465 [C₁₃H₂₄O₆+Na] found 299.1475 ($\Delta = 3.3$ ppm). IR (film): 1748 (vs, v_{CO}) cm⁻¹.

Diethyl butyl(*tert*-butylperoxy)malonate 2c: Colorless oil. ¹H NMR (300.15 MHz, CDCl₃): $\delta = 0.85$ (t, $J_{H,H} = 6.7$ Hz, 3H, <u>CH₃(CH₂)₃), 1.20-1.26 (m, 21H, C(CH₃)₃, (CH₂)₃, OCH₂C<u>H₃), 4.19 (q, $J_{H,H} = 7.1$ Hz, 4H, OC<u>H₂CH₃).</u> ¹³C NMR (75.48 MHz, CDCl₃): $\delta = 13.9$ ((CH₂)₃)<u>C</u>H₃), 14.1 (OCH₂<u>C</u>H₃), 22.6, 25.0, 31.8 (CH₂), 26.4 (C(<u>C</u>H₃)₃), 61.6 (O<u>C</u>H₂CH₃), 80.5 (<u>C</u>(CH₃)₃), 87.5 (CH₂<u>C</u>), 167.6 (CO). Calculated for C₁₅H₂₈O₆: % C 59.19; % H 9.27; found: % C 58.86; % H 9.23. HRMS-ESI: calculated 305.1959 [C₁₅H₂₈O₆+H] found 305.1958 (<u>Δ</u> = 0.3 ppm). IR (film): 1749 (vs, v_{CO}) cm⁻¹.</u></u>

Diethyl benzyl(*tert*-butylperoxy)malonate 2d^[7b]: Colorless oil. ¹H NMR (300.15 MHz, CDCl₃): $\delta = 1.21$ (t, $J_{H-H} = 7.1$ Hz, 6H, OCH₂C<u>H₃</u>), 1.30 (s, 9H, C(CH₃)₃), 3.51 (s, 2H, CH₂Ph), 4.17 (q, $J_{H-H} = 7.1$ Hz, 4H, OC<u>H₂CH₃</u>), 7.23-7.27 (m, 5H, Ph). ¹³C NMR (75.48 MHz, CDCl₃): $\delta = 14.0$ (OCH₂CH₃), 26.6 (C(<u>CH₃</u>)₃), 37.8 (<u>CH₂Ph</u>), 61.7 (O<u>C</u>H₂CH₃), 81.1 (<u>C</u>(CH₃)₃), 88.0 (CH₂<u>C</u>), 127.0, 128.0, 130.4, 135.0 (Ph), 167.0 (CO).

Diethyl allyl(*tert*-butylperoxy)malonate 2e^[7b]: Colorless oil. ¹H NMR (300.15 MHz, CDCl₃): $\delta = 1.22$ (s, 9H, C(CH₃)₃), 1.24 (t, $J_{H-H} = 7.2$ Hz, 6H, OCH₂C<u>H₃</u>), 2.91 (d, $J_{H-H} = 7.1$ Hz, 2H, CHC<u>H</u>₂C), 4.20 (q, $J_{H-H} = 7.2$ Hz, 4H, OC<u>H</u>₂CH₃), 5.03-5.14 (m, 2H, C<u>H</u>₂=CHCH₂C), 5.52-5.87 (m, 1H, CH₂=C<u>H</u>). ¹³C NMR (75.48 MHz, CDCl₃): $\delta = 14.1$ (OCH₂C<u>H</u>₃), 26.4 (C(CH₃)₃), 36.6 (CH₂C), 61.6 (OCH₂CH₃), 80.8 (C(CH₃)₃), 87.2 (CH₂C), 119.0 (CH₂=CH), 131.4 (CH₂=CH), 167.0 (CO).

Diethyl (*tert*-butylperoxy)(phenyl)malonate 2f: Colorless oil. ¹H NMR (300.15 MHz, CDCl₃): $\delta = 1.26$ (t, $J_{H,H} = 7.2$ Hz, 6H, OCH₂CH₃), 1.31 (s, 9H, CH₃), 4.25 (q, $J_{H-H} = 7.2$ Hz, 4H, OCH₂CH₃), 7.32-7.36 (m, 3H, Ph), 7.57-7.62 (m, 2H, Ph). ¹³C NMR (75.48 MHz, CDCl₃): $\delta = 14.0$ (OCH₂CH₃), 26.5 (C(CH₃)₃), 61.9 (OCH₂CH₃), 81.5 (C(CH₃)₃), 88.2 (PhC), 127.2, 128.0, 128.7, 134.6 (Ph), 166.8 (CO). Calculated for C₁₇H₂₄O₆: % C 62.95; % H 7.46; found: % C 62.50; % H 7.59. HRMS-ESI: calculated 347.1465 [C₁₇H₂₄O₆+Na] found 347.1462 (Δ=0.9 ppm). IR (film): 1750 (vs, v_{CO}) cm⁻¹.

Diethyl (*tert*-butylperoxy)(3-oxobutyl)malonate $2g^{[7b]}$: Colorless oil. ¹H NMR (300.15 MHz, CDCl₃): $\delta = 1.19$ (s, 9H, C(CH₃)₃), 1.22 (t, $J_{H_{1H}} = 7.2$ Hz, 6H, OCH₂C<u>H₃</u>), 2.10 (s, 3H, COCH₃), 2.41-2.50 (m, 4H, (CH₂)₂), 4.18 (q, $J_{H_{1H}} = 7.2$ Hz, 4H, OC<u>H₂CH₃</u>). ¹³C NMR (75.48 MHz, CDCl₃): $\delta = 14.0$ (OCH₂CH₃), 25.9 (COCH₂CH₂), 26.4 (C(<u>C</u>H₃)₃), 29.9 (<u>C</u>H₃CO), 37.2 (CO<u>C</u>H₂CH₂), 61.8 (O<u>C</u>H₂CH₃), 80.8 (<u>C</u>(CH₃)₃), 86.3 (CH₂<u>C</u>), 167.1, 207.3 (CO). Colorless oil. ¹H NMR (300.15 MHz, CDCl₃): $\delta = 1.24$ (s, 9H, C(CH₃)₃), 1.27 (t, $J_{H_{-H}} = 7.0$ Hz, 6H, OCH₂CH₃), 2.37-2.62 (m, 4H, CH₂CH₂CN), 4.25 (q, $J_{H_{-H}} = 7.0$ Hz, 4H, OCH₂CH₃). ¹³C NMR (75.48 MHz, CDCl₃): $\delta = 11.4$ (CH₂CH₂CN), 14.0 (OCH₂CH₃), 26.4 (C(CH₃)₃), 27.9 (CH₂CH₂CN), 62.4 (OCH₂CH₃), 81.5 (C(CH₃)₃), 85.6 (CH₂C), 119.1 (CN), 166.2 (CO).

Ethyl 2-(*tert***-butylperoxy)-2-methyl-3-oxobutanoate 4a:** Colorless oil. ¹H NMR (300.15 MHz, CDCl₃): $\delta = 1.22$ (s, 9H, (CH₃)₃C), 1.23 (t, $J_{H_{-H}} = 6.7$ Hz, 3H, OCH₂CH₃), 1.54 (s, 3H, CH₃COOBu-t), 2.25 (s, 3H, CH₃CO), 4.17 (q, $J_{H_{-H}} = 6.7$ Hz, 2H, OCH₂CH₃). ¹³C NMR (75.48 MHz, CDCl₃): $\delta = 14.0$ (OCH₂CH₃), 18.3 (CH₃C), 25.7 (CH₃CO), 26.4 (C(CH₃)₃), 61.7 (OCH₂CH₃), 80.8 (C(CH₃)₃), 89.7 (CH₃C), 168.1, 203.8 (CO). Calculated for C₁₁H₂₀O₅: % C 56.88; % H 8.68; found: % C 57.00; % H 8.69. HRMS-ESI: calculated 255.1203 [C₁₁H₂₀O₅+Na] found 255.1212 (Δ = 1.5 ppm). IR (film): 1752 (vs, v_{CO}), 1735 (vs, v_{CO}) cm⁻¹.

Ethyl 2-acetyl-2-(*tert*-butylperoxy)hexanoate 4b^[7b]: Colorless oil. ¹H NMR (300.15 MHz, CDCl₃): $\delta = 0.86$ (t, $J_{H_{-H}} = 6.9$ Hz, 3H, CH₃), 1.15-1.45 (m, 7H, CH₂CH₂, OCH₂C<u>H₃</u>), 1.25 (s, 9H, (CH₃)₃C), 2.00-2.25 (m, 2H, CH₂C), 2.23 (s, 3H, CH₃CO), 4.18 (q, $J_{H_{-H}} = 7.2$ Hz, 2H, OC<u>H</u>₂CH₃). ¹³C NMR (75.48 MHz, CDCl₃): $\delta = 13.9$ (CH₃), 14.1 (OCH₂<u>C</u>H₃), 22.8, 25.0 (CH₂), 26.2 (<u>C</u>H₃CO), 26.5 (C(<u>C</u>H₃)₃), 30.9 (CH₂), 61.5 (O<u>C</u>H₂CH₃), 80.6 (<u>C</u>(CH₃)₃), 92.2 (CH₂<u>C</u>), 167.7, 203.7 (CO).

Ethyl 2-benzyl-2-(*tert*-butylperoxy)-3-oxobutanoate 4c^{7b}: Colorless oil. ¹H NMR (300.15 MHz, CDCl₃): δ = 1.23 (t, $J_{H,H}$ = 7.2 Hz, 3H, OCH₂C<u>H₃</u>), 1.32 (s, 9H, (CH₃)₃C), 1.90 (s, 3H, CH₃CO), 3.31 (d, J_{H-H} = 14.4 Hz, 1H, CH₂Ph), 3.62 (d, J_{H-H} = 14.4 Hz, 1H, CH₂Ph), 4.17 (q, $J_{H,H}$ = 7.2 Hz, 2H, OC<u>H₂CH₃</u>), 7.15-7.32 (m, 5H, Ph). ¹³C NMR (75.48 MHz, CDCl₃): δ = 14.0 (OCH₂C<u>H₃</u>), 26.7 (C(<u>CH₃</u>)₃), 27.2 (<u>CH₃</u>CO), 37.2 (<u>CH₂Ph</u>), 61.7 (O<u>C</u>H₂CH₃), 81.2 (<u>C</u>(CH₃)₃), 92.7 (CH₂C), 126.8, 128.0, 130.7, 135.0 (Ph), 167.7, 203.7 (CO).

Ethyl 2-acetyl-2-(*tert*-butylperoxy)-5-oxohexanoate 4d^[7b]: Colorless oil. ¹H NMR (300.15 MHz, CDCl₃): $\delta = 1.21$ (s, 9H, (CH₃)₃C), 1.22 (t, $J_{H-H} = 7.2$ Hz, 3H, OCH₂C<u>H</u>₃), 2.08 (s, 3H, CH₃CO), 2.19 (s, 3H, CH₃CO), 2.30-2.49 (m, 4H, CH₂CH₂), 4.15 (q, $J_{H-H} = 7.2$ Hz, 2H, OC<u>H</u>₂CH₃). ¹³C NMR (75.48 MHz, CDCl₃): $\delta = 14.0$ (OCH₂CH₃), 25.0 (CH₃CO), 26.4 (C(CH₃)₃), 29.8, 32.9, 37.3 (CH₃CO, CH₂CH₂), 61.8 (OCH₂CH₃), 80.9 (C(CH₃)₃), 91.0 (CH₂C), 167.1, 202.5, 207.4 (CO).

Ethyl 2-cyanohexanoate 6a: Colorless oil. ¹H NMR (300.15 MHz, CDCl₃): $\delta = 0.90$ (t, $J_{H.H} = 6.9$ Hz, 3H, $C\underline{H}_3(CH_2)_3$), 1.24-1.40 (m, 7H, CH₂CH₂, OCH₂C<u>H₃</u>), 1.89-2.00 (m, 2H, CH₂C), 4.31 (q, $J_{H.H} = 7.2$ Hz, 2H, OC<u>H</u>₂CH₃). ¹³C NMR (75.48 MHz, CDCl₃): $\delta = 13.7$ (CH₃), 14.1 (OCH₂CH₃), 22.3, 25.8, 35.1 (CH₂), 26.4 (C(<u>CH₃</u>)₃), 63.1 (O<u>C</u>H₂CH₃), 82.3 (<u>C</u>(CH₃)₃), 82.6 (CH₂C), 116.6 (CN), 165.9 (CO). Calculated for C₁₃H₂₃NO₄: % C 60.68; % H 9.01; % N 5.44 found: % C 60.59; % H 8.98; % N 5.54. HRMS-ESI: calculated 280.1519 [C₁₃H₂₃O₄+Na] found 280.1525 (<u>Δ = 2.1</u> ppm). IR (film): 2245 (w, v_{CN}), 1753 (vs, v_{CO}) cm⁻¹.

Ethyl 2-(*tert*-butylperoxy)-**2**-cyano-**3**-phenylpropanoate **6** $b^{[7a]}$: Colorless oil. ¹H NMR (300.15 MHz, CDCl₃): $\delta = 1.21$ (t, $J_{H.H} = 7.2$ Hz, 3H, OCH₂C<u>H₃</u>), 1.25 (s, 9H, (CH₃)₃C), 3.22 (d, $J_{H.}$ H = 13.6 Hz, 1H, CH₂Ph), 3.29 (d, $J_{H.H} = 13.6$ Hz, 1H, CH₂Ph), 4.24 (q, $J_{H.H} = 7.2$ Hz, 2H, OC<u>H₂CH₃</u>), 7.20-7.40 (m, 5H, Ph). ¹³C NMR (75.48 MHz, CDCl₃): $\delta = 14.0$ (OCH₂CH₃), 26.4 (C(CH₃)₃), 41.3 (CH₂Ph), 63.2 (OCH₂CH₃), 82.6 (C(CH₃)₃), 82.9 (CH₂C), 116.2 (CN), 128.3, 128.7, 130.5, 131.3, 133.5 (Ph), 165.3 (CO). A Ethyl 2-(*tert*-butylperoxy)-2-cyanopent-4-enoate 6c^{17a}]: Colorless oil. ¹H NMR (300.15 MHz, CDCl₃): δ = 1.25 (s, 9H, (CH₃)₃C), 1.29 (t, J_{H-H} = 7.2 Hz, 3H, OCH₂CH₃), 2.69 (d, J_{H-H} = 7.4 Hz, 2H, CH₂), 4.25 (q, J_{H-H} = 7.2 Hz, 2H, OCH₂CH₃), 5.16-5.28 (m, 2H, CH₂=CH), 5.65-5.88 (m, 1H, CH₂=C<u>H</u>). ¹³C NMR (75.48 MHz, CDCl₃): δ = 14.1 (OCH₂CH₃), 26.3 (C(CH₃)₃), 39.6 (CH₂), 63.1 (OCH₂CH₃), 81.6 (C(CH₃)₃), 82.8 (CH₂C), 116.1 (CN), 122.1 (CH=CH₂), 130.6 (CH=CH₂), 165.1 (CO).

Diethyl 2-(*tert*-butylperoxy)-2-cyanopentanedioate 6d^[7a]: Colorless oil. ¹H NMR (300.15 MHz, CDCl₃): δ = 1.19-1.35 (m, 6H, OCH₂C<u>H₃</u>), 1.24 (s, 9H, C(CH₃)₃), 2.28-2.59 (m, 4H, C<u>H₂CH₂CO</u>), 4.12, (q, J_{H-H} = 6.9 Hz, 2H, OC<u>H₂CH₃</u>), 4.29 (q, J_{H-H} = 6.9 Hz, 2H, OC<u>H₂CH₃</u>), 4.29 (q, J_{H-H} = 6.9 Hz, 2H, OC<u>H₂CH₃</u>), 26.3 (C(<u>CH₃)₃</u>), 28.6, 30.5 (<u>CH₂CH₂</u>), 61.0, 63.3 (O<u>C</u>H₂CH₃), 81.0 (C(<u>CH₃)₃</u>), 82.9 (CH₂<u>C</u>), 115.9 (CN), 165.1, 171.1 (CO).

Reaction of malonic ester with the Bu_4NI / Bu^tOOH system: t-BuOOH 70 % (0.77 g, 6.00 mmol) was added to the solution of diethylmalonate 7 (0.32 g, 2.00 mmol) in acetonitrile (10 mL). The mixture was heated to boiling and Bu_4NI (0.15 g, 0.40 mmol) was added. The solution was refluxed for 6 hours. Product **8** was isolated as described for **2d**. Yield of **8** is (0.20 g, 0.60 mmol, 62 %).

Tetraethyl ethene-1,1,2,2-tetracarboxylate 8.^[17] White crystals. m.p. 54–55 °C. Rf: 0.16 (1/10 EA / PE). ¹H NMR (300.15 MHz, CDCl₃): $\delta = 1.31$ (t, $J_{H-H} = 7.2$ Hz, 12H, CH₃), 4.31 (q, $J_{H-H} = 7.2$ Hz, 8H, CH₂). ¹³C NMR (75.48 MHz, CDCl₃): $\delta = 13.9$ (CH₃), 62.6 (CH₂), 135.5 (C=C), 162.4 (CO). HRMS-ESI: calculated 339.1050 [C₁₄H₂₀O₈+Na] found 339.1046 ($\Delta = 1.1$ ppm).

Reaction of 9-methyl-9*H*-fluorene with the Bu_4NI / Bu'OOH system: t-BuOOH 70 % (0.77 g, 6.00 mmol) was added to the solution of 9-methyl-9*H*-fluorene 9 (0.36 g, 2.00 mmol) in acetonitrile (10 mL). The mixture was heated to boiling and Bu_4NI (0.15 g, 0.40 mmol) was added. The solution was refluxed for 6 hours. A product 10 was isolated as described for 2d. Yield of 10 is (0.49 g, 1.84 mmol, 92 %).

9-(*tert*-**Butylperoxy**)-**9**-methyl-**9***H*-fluorene **10**:^[16] Colorless oil. ¹H NMR (300.15 MHz, CDCl₃): $\delta = 1.16$ (s, 9H, (CH₃)₃C), 1.83 (s, 3H, CH₃), 7.31-7.68 (m, 8H, Ar). ¹³C NMR (75.48 MHz, CDCl₃): $\delta = 22.5$ (CH₃), 26.6 (C(<u>C</u>H₃)₃), 79.5 (<u>C</u>(CH₃)₃), 87.9 (CH₃<u>C</u>), 119.9, 124.9, 127.5, 129.0, 140.0, 146.8 (Ar). Calculated for C₁₈H₂₀O₂: % C 80.56; % H 7.51; found: % C 80.44; % H 7.62. HRMS-ESI: calculated 307.1095 [C₁₈H₂₀O₂+K] found 307.1094 ($\Delta = 0.3$ ppm). IR (film): 2976 (s), 1450 (s), 1363 (s), 1330 (m), 1246 (m), 1212 (m), 1196 (s), 1122 (m), 1096 (m), 877 (m), 761 (vs, v_{CH Ar}), 735 (vs, v_{CH Ar}) cm⁻¹.

Additional experiment on Bu₄NI isolation after peroxidation. To a solution of diethyl benzylmalonate 1d (0.50 g, 2.00 mmol) in acetonitrile (10 mL) 70% t-BuOOH (0.77 g, 6.00 mmol) was added. The mixture was heated to reflux, and then Bu₄NI (0.15 g, 0.40 mmol) was added. The solution was refluxed for 6 h. The solvent was removed under water aspirator pressure. The suspension that formed was diluted with Et₂O (20 mL), the precipitate was filtered of, washed with Et₂O (20 mL), and collected. Yield of Bu₄NI is (0.11 g, 0.30 mmol, 75 %), ¹H NMR (300.15 MHz, CDCl₃): δ = 0.91 (t, 12H, CH₃, J_{H-H} = 7.2 Hz), 1.28-1.68 (m, 16H, CH₃C<u>H₂CH₂CH₂</u>), 3.21-3.35 (m, 8H, CH₂N). ¹³C NMR (75.48 MHz, CDCl₃): δ = 13.8 (CH₃), 19.8, 24.3 (CH₂), 59.2 (CH₂N). Calculated for C₁₆H₃₆IN: % C 52.03; % H 9.82; % N 3.79; % I 34.36; found: % C 52.44; % H 9.88; % N 3.71; % I 33.58. ACCEPTED MAN

Acknowledgment

This study was financially supported by the Russian Science Foundation (Grant 14-23-00150).

Notes and references

- [1] a) Ed. Ando, W. Organic peroxides, N.Y. Wiley, 1992; b) Ed. Patai, S. The chemistry of peroxides, N.Y. Wiley, 1983; c) Adam, W. Ed. V. Peroxide chemistry, N.Y. Wiley-VCH, 2000; d) Denisov, E.T.; Denisova, T. G.; Pokidova, T. S. Handbook of Free Radical Initiators, John Wiley & Sons, Inc. 2005; ISBN: 9780471207535). [2] a) Bunge, A.; Hamann, H.-J.; Liebscher, J. Tetrahedron Lett., 2009, 50, 524-526; b) Das, B.; Veeranjaneyulu, B.; Krishnaiah, M.; Balasubramanyam, P. J. Mol. Catal. A, 2008, 284, 116-119; c) Ghorai, P.; Dussault, P. H. Org. Lett., 2008, 10, 4577-4579; d) Terent'ev, A. O.; Platonov, M. M.; Ogibin, Yu. N.; Nikishin, G. I. Synth. Commun., 2007, 37, 1281-1287; e) Terent'ev, A. O.; Platonov, M. M.; Kutkin, A. V. Central Europ. J. Chem., 2006, 4, 207-215; f) Azarifar, D.; Khosravi, K.; Soleimanei, F. Synthesis, 2009, 15, 2553-2556; g) Griesbeck, A. G.; Blunk, D.; El-Idreesy, T.; Raabe, A. Angew. Chem. Int. Ed., 2007, 46, 8883-8886; h) Terent'ev, A. O.; Platonov, M. M.; Krylov, I. B.; Chernyshev, V. V.; Nikishin, G. I. Org. Biomol. Chem., 2008, 6, 4435-4441; i) Terent'ev, A. O.; Kutkin, A. V.; Troizky, N. A.; Ogibin, Yu. N.; Nikishin, G. I. Synthesis, 2005, 13, 2215-2219; j) Ravi, M.; Anand, D.; Maurya, R.; Chauhan, P.; Naikade, N. K.; Shukla, S. K.; Yadav, P. P. Synlett, 2013, 24, 173-176; k) Bartoschek, A.; El-Idreesy, T.; Griesbeck, A. G.; Hoeinck, L.-O.; Lex, J.; Miara, C.; Neudoerfl, J. M. Synthesis, 2005, 14, 2433-2444; 1) Solaja, B. A.; Terzic, N.; Pocsfalvi, G.; Gerena, L.; Tinant, B.; Opsenica, D.; Milhous, W. K. J. Med. Chem., 2002, 45, 3331-3336.
- [3] a) Jefford, C. W. Curr. Top. Med. Chem., 2012, 12, 373-399; b) Slack, R. D.; Jacobine, A. M.; Posner, G. H. MedChemComm., 2012, 3, 281-297; c) Opsenica, D. M.; Šolaja, B. A. J. Serb. Chem. Soc., 2009, 74, 1155-1193; d) Ghorai, P.; Dussault, P. H.; Hu, C. Org. Lett., 2008, 10, 2401-2404; e) Dong, Y. Mini-Rev. Med. Chem., 2002, 2, 113-123; f) Vennerstrom, J. L.; Fu, H.-N.; Ellis, W. Y.; Ager, A. L.; Wood, J. K.; Andersen, S. L.; Gerena, L.; Milhous, W. K. J. Med. Chem., 1992, 35, 3023-3027; g) Yadav, N.; Sharma, C.; Awasthi, S. K. RSC Adv., 2014, 4, 5469-5498; h) Terent'ev, A. O.; Borisov, D. A.; Yaremenko, I. A. Chem. Heterocycl. Compd., 2012, 48, 55-58; i) Hao, H. D.; Wittlin, S; Wu, Y. Chem. Eur. J., 2013, 19, 7605-7619; j) Li, Y.; Hao, H.-D.; Wittlin, S.; Wu, Y. Chem. Asian. J., 2012, 7, 1881-1886.
- [4] a) Boissier, J.; Portela, J.; Pradines, V.; Coslédan, F.; Robert, A.; Meunier, B. C. R. Chim., 2012, 15, 75-78; b) Keiser, J.; Veneziano, V.; Rinaldi, L.; Mezzino, L.; Duthaler, U.; Cringoli, G. Res. Vet. Sci., 2010, 88, 107-110; c) Shuhua, X.; Tanner, M.; N'Goran, E. K.; Utzinger, J.; Chollet, J.; Bergquist, R.; Minggang, C.; Jiang, Z. Acta Trop., 2002, 82, 175-181; d) Ingram, K.; Yaremenko, I. A.; Krylov, I. B.; Hofer, L.; Terent'ev, A. O.; Keiser, J. J. Med. Chem., 2012, 55, 8700-8711.
- [5] a) Kumar, N.; Sharma, M.; Rawat, D. S. Curr. Med. Chem., 2011, 18, 3889-3928; b) Žižak, Ž.; Juranić, Z.; Opsenica, D.; Šolaja, B. A. Invest. New Drugs, 2009, 27, 432-439; c) Terzić, N.; Opsenica, D.; Milić, D.; Tinant, B.; Smith, K. S.; Milhous, W. K.; Šolaja, B. A. J. Med. Chem., 2007, 50, 5118-5127; d) Jung, M.; Kim, H.; Lee, K.; Park, M. Mini-Rev. Med. Chem., 2003, 3, 159-165; e) Kim, J.; Park, E. J. Curr. Med. Chem. Anticancer Agents, 2002, 2, 485-537.
- [6] a) Matyáš, R.; Jiří, P. Primary explosives, Germany: Springer,
 2013; b) Chen, J.; Wu, W.; McNeil, A. J. Chem. Commun., 2012,
 48, 7310-7312; c) Denekamp, C.; Gottlieb, L.; Tamiri, T.; Tsoglin,
 A.; Shilav, R.; Kapon, M. Org. Lett., 2005, 7, 2461-2464; d)
 Matyáš, R.; Jirásko, R.; Lyčka, A.; Pachmáň, J. Propellants,

- Explosives, Pyrotechnics. 2011, 36, 219-224; e) Östmark, H.;
 Wallin, S.; Ang, H. G. Propellants, Explosives, Pyrotechnics.
 2012, 37, 12-23.
 Torme'su, A. O.: Borison, D. A.: Somenon, V. V.: Charmache, S. C. S. Somenon, V. V.: Charmache, S. S. Somenon, S. S. Somenon, S. S. Somenon, S. S. Somenon, S. Somenon, S. Somenon, S. S. Somenon, S. Somenon, S. Somenon, S. Somenon, S. Somenon, S. S. Somenon, S. S. Somenon, S. Somenon, S. Somenon, S. S. Somenon, S. Somenon, S. S. Somenon, S. Somenon, S. Somenon, S. S. Somenon, S. S. Somenon, S. Somenohenon, S. Somenon, S. Somenon, S. Somenon, S. Somenoh, S. Somen
- [7] a) Terent'ev, A. O.; Borisov, D. A.; Semenov, V. V.; Chernyshev, V. V.; Dembitsky, V. M.; Nikishin, G. I. *Synthesis*, **2011**, 2091-2100; b) Terent'ev, A. O.; Borisov, D. A.; Yaremenko, I. A.; Chernyshev, V. V.; Nikishin, G. I. *J. Org. Chem.*, **2010**, *75*, 5065-5071; c) Yaremenko, I. A.; Terent'ev, A. O.; Vil', V. A.; Novikov, R. A.; Chernyshev, V. V.; Tafeenko, V. A.; Levitsky, D. O.; Fleury, F.; Nikishin, G. I. *Chem. Eur. J.*, **2014**, *20*, 10160-10169; d) Terent'ev, A. O.; Yaremenko, I. A.; Vil', V. A.; Moiseev, I. K.; Kon'kov, S. A.; Dembitsky, V. M.; Levitsky, D. O.; Nikishin, G. I. *Org. Biomol. Chem.*, **2013**, *11*, 2613-2623; e) Terent'ev, A. O.; Yaremenko, I. A.; Xil', V. A.; Nikishin, G. I. *Synthesis*, **2013**, *45*, 246-250.
- [8] a) Wie, W.; Zhang, C.; Xu, Y.; Wan, X. Chem. Commun., 2011, 47, 10827-10829; b) Yu, H.; Shen, J. Org. Lett., 2014, 16, 3204-3207.
- [9] Wu, X.-F.; Gong, J.-L.; Qi, X. Org. Biomol. Chem., 2014, 12, 5807-5817. c) Shi, E.; Shao, Y.; Chen, S.; Hu, H.; Liu, Z.; Zhang, J.; Wan, X. Org. Lett., 2012, 14, 3384-3387; d) Zhang, C.; Liu, C.; Shao, Y.; Bao, X.; Wan, X. Chem. Eur., 2013, 19, 17917–17925; e) Zhang, J.; Jiang, J.; Li, Y.; Zhao, Y.; Wan, X. Org. Lett., 2013, 15, 3222-3225; f) Krylov, I. B.; Vil', V. A.; Terent'ev, A. O.; Beilstein J. Org. Chem. 2015, 11, 92-146.
- [10] a) Wong, Y.-C.; Tseng, C.-T.; Kao, T.-T.; Yeh, Y.-C.; Shia, K.-S. Org. Lett., 2012, 14, 6024-6027; b) Li, L.-T.; Huang, J.; Li, H.-Y.; Wen, L.-J.; Wang, P.; Wang, B. Chem. Commun., 2012, 48, 5187-5189; c) Li, L.-T.; Li,;H.-Y.; Xing, L.-J.; Wen, L.-J.; Wang, P.; Wang, B. Org. Biomol. Chem., 2012, 10, 9519-9522; d) Jia, Z.; Nagano, T.; Li, X.; Chan, A. S. C. Eur. J. Org. Chem., 2013, 858-861; e) Yasui, K.; Kato, T.; Kojima, K.; Nagasawa, K. Chem. Commun., 2015, 51, 2290-2293.
- [11] a) Wang, L.; Zhu, K.; Chen, Q.; He, M. J. Org. Chem., 2014, 79, 11780-11786; (b) Dian, L.; Wang, S.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Chem. Commun., 2014, 50, 11738-11741; c) Yuan, Y.; Hou, W.; Zhang-Negrerie, D.; Zhao, K.; Du, Y. Org. Lett., 2014, 16, 5410-5413; d) Sun, K.; Wang, X.; Li, G.; Zhu, Z.; Jiang, Y.; Xiao, B. Chem. Commun., 2014, 50, 12880-12883; e) Liu, Z.; Zhang, J.; Chen, S.; Shi, E.; Xu, Y.; Wan, X. Angew. Chem. Int. Ed., 2012, 51, 3231-3235; f) Mai, W.-P.; Song, G.; Yuan, J.-W.; Yang, L.-R.; Sun, G.-C.; Xiao, Y.-M.; Mao, P.; Qu, L.-B. RSC Adv., 2013, 3, 3869-3872; g) Wang, L.; Zhu, K.-q.; Wu, W.-t.; Chen, Q.; He, M.-y. Catal. Sci. Technol., 2015, 5, 2891-2896; h) Aruri, H.; Singh, U.; Sharma, S.; Gudup, S.; Bhogal, M.; Kumar, S.; Singh, D.; Gupta, V. K.; Kant, R.; Vishwakarma, R. A.; Singh, P. P. J. Org. Chem., 2015, 80, 1929-1936.
- [12] a) Li, X.; Xu, X.; Zhou, C. Chem. Commun., 2012, 48, 12240-12242; b) Li, X.; Xu, X.; Tang, Y. Org. Biomol. Chem., 2013, 11, 1739-1742; c) Li, X.; Xu, X.; Hu, P.; Xiao, X.; Zhou, C. J. Org. Chem., 2013, 78, 7343-7348.
- [13] a) Zhu, F.; Wang, Z.-X. *Tetrahedron*, 2014, 70, 9819-9827; b) Tan,
 B.; Toda, N.; Barbas III, C. F. *Angew.Chem. Int. Ed.*, 2012, 51,
 12538-12541; c) Huang, J.; Li, L.-T.; Li, H.-Y.; Husan, E.; Wang,
 P.; Wang, B. *Chem. Commun.*, 2012, 48, 10204-10206; d) Liu, L.;
 Yun, L.; Wang, Z.; Fu, X.; Yan, C. *Tetrahedron Lett.*, 2013, 54,
 5383-5386; e) Feng, J.; Liang, S.; Chen, S.-Y.; Zhang, J.; Fu, S.S.; Yu, X.-Q. Adv. Synth. Catal., 2012, 354, 1287-1292.
- [14] a) Xie, J.; Jiang, H.; Cheng, Y.; Zhu, C. Chem. Commun., 2012, 48, 979-981; b) Li, X.; Zhou, C.; Xu, X. ARKIVOC, 2012, (ix), 150-158.
- [15] Kachala, V. V.; Khemchyan, L. L.; Kashin, A. S.; Orlov, N. V.; Grachev, A. A.; Zalesskiy, S. S.; Ananikov, V. P. *Russ. Chem. Rev.*, **2013**, *82*, 648-685.
- [16] a) Murahashi, S.-I.; Komiya, N.; Oda, Y.; Kuwabara, T.; Naota, T. J. Org. Chem., **2000**, 65, 9186-9193; b) Murahashi, S.-I.; Oda, Y.; Naota, T.; Kuwabara, T. Tetr. Lett., **1993**, 34, 1299-1302.
- [17] Koduri, N. D.; Wang, Z.; Cannell, G.; Cooley, K.; Lemma, T. M.; Miao, K.; Nguyen, M.; Frohock, B.; Castaneda, M.; Scott, H.; Albinescu, D.; Hussaini, S. R. *J. Org. Chem.*, **2014**, *79*, 7405-7414.

Organocatalytic peroxidation

of malonates, β -ketoesters, and cyanoacetic esters

using *n*-Bu₄NI / *t*-BuOOH-mediated intermolecular oxidative C(sp³)–O coupling

Alexander O. Terent'ev,*^a Alexander T. Zdvizhkov,^a

Dmitri O. Levitsky,^b Fabrice Fleury,^b Roman A. Pototskiy,^a Alena N. Kulakova,^a Gennady I. Nikishin ^a

 ^a N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russian Federation
 ^b UFIP CNRS UMR 6286, Mechanism and regulation of DNA repair team Université de Nantes, 2 rue de la Houssinière, 44322, France

E-mail: <u>alterex@yandex.ru</u>

Table of contents

¹ H NMR of Diethyl (<i>tert</i> -butylperoxy)(methyl)malonate 2a
¹³ C NMR of Diethyl (<i>tert</i> -butylperoxy)(methyl)malonate 2a
HRMS of Diethyl (<i>tert</i> -butylperoxy)(methyl)malonate 2a
IR of Diethyl (<i>tert</i> -butylperoxy)(methyl)malonate 2a
¹ H NMR of Diethyl (<i>tert</i> -butylperoxy)(ethyl)malonate 2b
¹³ C NMR of Diethyl (<i>tert</i> -butylperoxy)(ethyl)malonate 2b
HRMS of Diethyl (<i>tert</i> -butylperoxy)(ethyl)malonate 2b
IR of Diethyl (<i>tert</i> -butylperoxy)(ethyl)malonate 2b
¹ H NMR of Diethyl butyl(<i>tert</i> -butylperoxy)malonate 2c
¹³ C NMR of Diethyl butyl(<i>tert</i> -butylperoxy)malonate 2 c
HRMS of Diethyl butyl(<i>tert</i> -butylperoxy)malonate 2c
IR of Diethyl butyl(<i>tert</i> -butylperoxy)malonate 2c
¹ H NMR of Diethyl benzyl(<i>tert</i> -butylperoxy)malonate 2d
¹³ C NMR of Diethyl benzyl(<i>tert</i> -butylperoxy)malonate 2d
¹ H NMR of Diethyl allyl(<i>tert</i> -butylperoxy)malonate 2e
¹³ C NMR of Diethyl allyl(<i>tert</i> -butylperoxy)malonate 2e
¹ H NMR of Diethyl (<i>tert</i> -butylperoxy)(phenyl)malonate 2f
¹³ C NMR of Diethyl (<i>tert</i> -butylperoxy)(phenyl)malonate 2f
HRMS of Diethyl (<i>tert</i> -butylperoxy)(phenyl)malonate 2f
IR of Diethyl (<i>tert</i> -butylperoxy)(phenyl)malonate 2f
¹ H NMR of Diethyl (<i>tert</i> -butylperoxy)(3-oxobutyl)malonate 2 g
¹³ C NMR of Diethyl (<i>tert</i> -butylperoxy)(3-oxobutyl)malonate 2 g

¹ H NMR of Diethyl (<i>tert</i> -butylperoxy)(2-cyanoethyl)malonate 2h	27
¹³ C NMR of Diethyl (<i>tert</i> -butylperoxy)(2-cyanoethyl)malonate 2h	28
¹ H NMR of Ethyl 2-(<i>tert</i> -butylperoxy)-2-methyl-3-oxobutanoate 4a	29
¹³ C NMR of Ethyl 2-(<i>tert</i> -butylperoxy)-2-methyl-3-oxobutanoate 4a	30
HRMS of Ethyl 2-(<i>tert</i> -butylperoxy)-2-methyl-3-oxobutanoate 4a	31
IR of Ethyl 2-(<i>tert</i> -butylperoxy)-2-methyl-3-oxobutanoate 4a	32
¹ H NMR of Ethyl 2-acetyl-2-(<i>tert</i> -butylperoxy)hexanoate 4b	33
¹³ C NMR of Ethyl 2-acetyl-2-(<i>tert</i> -butylperoxy)hexanoate 4b	34
¹ H NMR of Ethyl 2-benzyl-2-(<i>tert</i> -butylperoxy)-3-oxobutanoate 4c	35
¹³ C NMR of Ethyl 2-benzyl-2-(<i>tert</i> -butylperoxy)-3-oxobutanoate 4c	36
¹ H NMR of Ethyl 2-acetyl-2-(<i>tert</i> -butylperoxy)-5-oxohexanoate 4d	37
¹³ C NMR of Ethyl 2-acetyl-2-(<i>tert</i> -butylperoxy)-5-oxohexanoate 4d	38
¹ H NMR of Ethyl 2-(<i>tert</i> -butylperoxy)-2-cyanohexanoate 6a	39
¹³ C NMR of Ethyl 2-(<i>tert</i> -butylperoxy)-2-cyanohexanoate 6a	40
HRMS of Ethyl 2-(<i>tert</i> -butylperoxy)-2-cyanohexanoate 6a	41
IR of Ethyl 2-(<i>tert</i> -butylperoxy)-2-cyanohexanoate 6a	42
¹ H NMR of Ethyl 2-(<i>tert</i> -butylperoxy)-2-cyano-3-phenylpropanoate 6b	43
¹³ C NMR of Ethyl 2-(<i>tert</i> -butylperoxy)-2-cyano-3-phenylpropanoate 6b	44
¹ H NMR of Ethyl 2-(<i>tert</i> -butylperoxy)-2-cyanopent-4-enoate 6c	45
¹³ C NMR of Ethyl 2-(<i>tert</i> -butylperoxy)-2-cyanopent-4-enoate 6c	46
¹ H NMR of Diethyl 2-(<i>tert</i> -butylperoxy)-2-cyanopentanedioate 6d	47
¹³ C NMR of Diethyl 2-(<i>tert</i> -butylperoxy)-2-cyanopentanedioate 6d	48
¹ H NMR of <i>tert</i> -Butyl 9-methyl-9 <i>H</i> -fluoren-9-yl peroxide	49
¹³ C NMR of <i>tert</i> -Butyl 9-methyl-9 <i>H</i> -fluoren-9-yl peroxide	50

HRMS of tert-Butyl 9-methyl-9H-fluoren-9-yl peroxide	. 51
¹ H NMR of Tetraethyl ethene-1,1,2,2-tetracarboxylate 3	. 52
¹³ C NMR of Tetraethyl ethene-1,1,2,2-tetracarboxylate 3	. 53
HRMS of Tetraethyl ethene-1,1,2,2-tetracarboxylate 3	. 54
¹ H NMR of tetrabuthylammonium iodide	. 55
¹³ C NMR of tetrabuthylammonium iodide	

	56
	A S
, C	
\mathbf{Y}	

¹H NMR of Diethyl (*tert*-butylperoxy)(methyl)malonate 2a

¹³C NMR of Diethyl (*tert*-butylperoxy)(methyl)malonate 2a

IR of Diethyl (*tert*-butylperoxy)(methyl)malonate 2a

¹H NMR of Diethyl (*tert*-butylperoxy)(ethyl)malonate 2b

¹³C NMR of Diethyl (*tert*-butylperoxy)(ethyl)malonate 2b

HRMS of Diethyl (tert-butylperoxy)(ethyl)malonate 2b

IR of Diethyl (tert-butylperoxy)(ethyl)malonate 2b

¹³C NMR of Diethyl butyl(*tert*-butylperoxy)malonate 2c

HRMS of Diethyl butyl(tert-butylperoxy)malonate 2c

IR of Diethyl butyl(*tert*-butylperoxy)malonate 2c

¹H NMR of Diethyl benzyl(*tert*-butylperoxy)malonate 2d

¹³C NMR of Diethyl benzyl(*tert*-butylperoxy)malonate 2d

¹H NMR of Diethyl allyl(*tert*-butylperoxy)malonate 2e

¹³C NMR of Diethyl allyl(*tert*-butylperoxy)malonate 2e

¹H NMR of Diethyl (*tert*-butylperoxy)(phenyl)malonate 2f

¹³C NMR of Diethyl (*tert*-butylperoxy)(phenyl)malonate 2f

HRMS of Diethyl (tert-butylperoxy)(phenyl)malonate 2f

IR of Diethyl (*tert*-butylperoxy)(phenyl)malonate 2f

¹H NMR of Diethyl (*tert*-butylperoxy)(3-oxobutyl)malonate 2g

¹³C NMR of Diethyl (*tert*-butylperoxy)(3-oxobutyl)malonate 2g

¹H NMR of Diethyl (*tert*-butylperoxy)(2-cyanoethyl)malonate 2h

¹³C NMR of Diethyl (*tert*-butylperoxy)(2-cyanoethyl)malonate 2h

¹H NMR of Ethyl 2-(*tert*-butylperoxy)-2-methyl-3-oxobutanoate 4a

¹³C NMR of Ethyl 2-(*tert*-butylperoxy)-2-methyl-3-oxobutanoate 4a

HRMS of Ethyl 2-(tert-butylperoxy)-2-methyl-3-oxobutanoate 4a

IR of Ethyl 2-(tert-butylperoxy)-2-methyl-3-oxobutanoate 4a 1.6 RP-234(film),17.04.15 1752 1132 1366 M 1261

ACCEPTED MANUSCRIPT

¹H NMR of Ethyl 2-acetyl-2-(*tert*-butylperoxy)hexanoate 4b

¹³C NMR of Ethyl 2-acetyl-2-(*tert*-butylperoxy)hexanoate 4b

¹H NMR of Ethyl 2-benzyl-2-(*tert*-butylperoxy)-3-oxobutanoate 4c

¹H NMR of Ethyl 2-acetyl-2-(*tert*-butylperoxy)-5-oxohexanoate 4d

¹³C NMR of Ethyl 2-acetyl-2-(*tert*-butylperoxy)-5-oxohexanoate 4d

¹³C NMR of Ethyl 2-(*tert*-butylperoxy)-2-cyanohexanoate 6a

HRMS of Ethyl 2-(tert-butylperoxy)-2-cyanohexanoate 6a

IR of Ethyl 2-(tert-butylperoxy)-2-cyanohexanoate 6a

42

ACCEPTED MANUSCRIPT

¹H NMR of Ethyl 2-(*tert*-butylperoxy)-2-cyano-3-phenylpropanoate 6b

¹H NMR of Ethyl 2-(*tert*-butylperoxy)-2-cyanopent-4-enoate 6c

¹³C NMR of Ethyl 2-(*tert*-butylperoxy)-2-cyanopent-4-enoate 6c

¹H NMR of Diethyl 2-(*tert*-butylperoxy)-2-cyanopentanedioate 6d

¹H NMR of *tert*-Butyl 9-methyl-9*H*-fluoren-9-yl peroxide

¹³C NMR of *tert*-Butyl 9-methyl-9*H*-fluoren-9-yl peroxide

HRMS of tert-Butyl 9-methyl-9H-fluoren-9-yl peroxide

¹H NMR of Tetraethyl ethene-1,1,2,2-tetracarboxylate 3

¹³C NMR of Tetraethyl ethene-1,1,2,2-tetracarboxylate 3

HRMS of Tetraethyl ethene-1,1,2,2-tetracarboxylate 3

¹H NMR of tetrabuthylammonium iodide

¹³C NMR of tetrabuthylammonium iodide

