

Article

Subscriber access provided by EDINBURGH UNIVERSITY LIBRARY | @ http://www.lib.ed.ac.uk

L-Proline Derived Bifunctional Organocatalysts: Enantioselective Michael Addition of Dithiomalonates to trans-beta-Nitroolefins

Hui Jin, Seung Tae Kim, Geum-Sook Hwang, and Do Hyun Ryu

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.6b00218 • Publication Date (Web): 18 Mar 2016 Downloaded from http://pubs.acs.org on March 19, 2016

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

The Journal of Organic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

L-Proline Derived Bifunctional Organocatalysts: Enantioselective Michael Addition of Dithiomalonates to *trans-β*-Nitroolefins

Hui Jin[†], Seung Tae Kim[†], Geum-Sook Hwang^{*,‡}, and Do Hyun Ryu^{*,†}

[†]Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea

[‡]Western Seoul Center, Korea Basic Science Institute, Seoul 120-140, Korea

ABSTRACT: A series of novel L-proline derived tertiary amine bifunctional organocatalysts **9** are reported, which were applied to the asymmetric Michael addition of dithiomalonates **2** to *trans-\beta*-nitroolefins **1**. The reaction proceeded in high yields (up to 99%) with high enantioselectivities (up to 97% ee). The synthetic utility of this methodology was demonstrated in the short synthesis of (*R*)-phenibut in high yield.

INTRODUCTION

The organocatalytic asymmetric Michael addition of various nucleophiles with nitroolefins represents a convenient route to highly functionalized synthetic building blocks in organic synthesis.¹ The nitro group can serve as a masked functionality for transformation into an amine,^{2a} ketone,^{2b} oxime,^{2c} nitrile oxide,^{2d} etc. after the addition has taken place. Among these reactions, the asymmetric organic catalyst-promoted Michael addition of malonates and their equivalents to nitroolefins were shown to be an efficient approach to a wide range of synthetically interesting compounds and valuable bioactive chiral compounds.³

After the first report of an enantioselective Michael addition of malonates to nitroolefins catalyzed by the Takemoto tertiary amino-thiourea catalyst,^{4a} many kinds of tertiary amine bifunctional organocatalysts were exploited to promote this type of reaction, including the most widely used cinchona alkaloid⁵, saccharide,^{4b} and amino acid^{4c} derived bifunctional organocatalysts. However, most reported organocatalytic Michael reactions of malonates to nitroolefins require a long reaction time and high catalyst loadings due to the low reactivity of malonates, except for the very recent report from the Song group in which the reaction was performed "on water" in a short time.^{5c}

Since thioesters are less conjugated than ordinary esters, dithiomalonates⁶ are expected to be more reactive than malonates in Michael additions with nitroolefins. Furthermore, although thioesters possess similar reactivity to esters, they can more easily be transformed into an aldehyde or ketone.⁷ Wennemers and coworkers reported the use of mono thiomalonates as a Michael donor.⁸ To the best of our knowledge, the use of dithiomalonates for the Michael addition with nitroolefins is without precedent. Herein, we disclose the first enantioselective Michael addition of dithiomalonates **2** to *trans-* β -nitroolefins **1** in excellent yields and enantioselectivities catalyzed by a novel L-proline derived urea organocatalyst **9f**.

RESULTS AND DISCUSSION

Initially, the asymmetric Michael addition between *S,S'*-diphenyl dithiomalonate **2a** and *trans*nitrostyrene **1a** was examined in the presence of 10 mol% of the widely used quinine derived tertiary amino thiourea catalyst **3** (Table 1, entry 1). When the reaction was carried out at 25 °C in methyl *t*butyl ether_(MTBE), the desired product **11aa** was obtained in 83% yield and 60% ee in 2.5 h. Due to the moderate enantioselectivity with **3**, we turned our attention to a new class of chiral bifunctional organocatalyst based on L-proline. Catalysts **9a-9f** were synthesized from commercially available *N*-Boc-L-proline methyl ester **4** in 7 steps (Scheme 1).⁹ *N*-Boc-L-proline methyl ester **4** was treated with DIBAL-H, followed by the addition of the corresponding arylmagnesium bromide to afford the **ACS Paragon Plus Environment**

The Journal of Organic Chemistry

prolinols 5 diastereoselectively.¹⁰ Then the prolinols 5 were transformed to azides 6 under Mitsunobu condition with chiral center inverted. Azides 6 were then converted into 7 by *N*-Boc deprotection using TFA followed by a *N*-methylation or *N*-benzylation. Finally, azides 7 were reduced with LiAlH₄ to amines which were reacted in situ with 3,5-bis(trifluoromethyl)phenyl isothiocyanate, 3,5-bis(trifluoromethyl)phenyl isocyanate or 8 to provide 9a-9f. The absolute configuration of 9a-9f was confirmed by comparison of the ¹H, ¹³C NMR and optical rotation data of 7d with the reported product, of which the stereochemistry was confirmed by X-ray diffraction analysis.¹¹

Scheme 1. Synthesis of organocatalysts 9a-9f

In order to reveal the effect of the chiral center that bears the urea/thiourea/squaramide moiety in **9a-9f**, the catalyst **9g** was synthesized (Scheme 2). Amino azide 10^{12} was *N*-methylated, followed by the azide reduction to amine, which was treated with 3,5-bis(trifluoromethyl)phenyl isocyanate to afford the desired organocatalyst **9g**.

Scheme 2. Synthesis of organocatalyst 9g

ACS Paragon Plus Environment

With several newly synthesized catalysts in hand, catalyst screening was carried out and the results are outlined in Table 1. Fortunately, compared with quinine derived thiourea **3**, L-proline derived thiourea **9a** yielded the product with an improved enantioselectivity of 81% ee under identical conditions (Table1, entry 2). When the phenyl group of **9a** on the carbon bearing the thiourea moiety was changed to larger 3,5-dimethylphenyl (**9b**) or 2-naphthyl (**9c**) groups, little change in enantioselectivity was observed (Table 1, entries 3 and 4). The efficiency with **9d** decreased significantly compared to **9a** (Table 1, entry 5), which indicated a small substituent on the pyrrolidine nitrogen is better. Comparing different hydrogen bond donor moieties in the catalyst, we found the urea structure (**9f**) to be more suitable for this reaction than thiourea (**9a**) or squaramide (**9e**), yielding the product in 96% yield and 90% ee (Table 1, entries 2, 6, and 7). Diphenyl substituted catalyst **9g** with the urea moiety linked to an achiral carbon showed much lower efficiency than **9f**, which determined the requirement of the chiral center in **9f** (Table 1, entry 8). In summary, **9f** was identified as the most suitable catalyst for the present reaction.

Table 1. Screening of organocatalysts for the enantioselective Michael addition of 2a to 1a^a

ACS Paragon Plus Environment

The Journal of Organic Chemistry

6	9e	67	10 (-)
7	9f	96	90 (-)
8	9g	53	49 (-)

^{*a*}The reaction of **2a** (0.17 mmol) and **1a** (0.15 mmol) was performed in the presence of cat. (10 mol%) in 1.5 mL of MTBE at 25 °C for 2.5 h. ^{*b*}Isolated yield of **11aa**. ^{*c*}The *ee* of **11aa** was determined by chiral HPLC analysis. ^{*d*}Optical rotation.

Further optimization of the reaction conditions was carried out, after which other dithiomalonates were investigated (Table 2). Screening the solvents MTBE, CH_2Cl_2 , and toluene, determined toluene to be the best solvent (Table 2, entries 1 and 2). Lowering the catalyst loading to 5 mol% did not affect either the yield or the enantioselectivity. When the reaction was carried out with 5 mol% of **9f** at 25 °C, **11aa** was obtained in 94% yield and 90% ee, which were identified as the optimized conditions (Table 2, entry 3). We then applied these catalytic conditions to other dithiomalonates (Table 2, entries 4-6).¹³ Both aromatic and aliphatic dithiomalonates provided Michael adducts **11** in high yield and good enantioselectivity, with aromatic dithiomalonates displaying higher reactivity than aliphatic dithiomalonates.

Table 2. Reaction condition optimization for the enantioselective Michael addition of 2 to 1a using 9f as a catalyst^a

Entry	2	R	11	9f (mol%)	t (h)	yield $(\%)^b$	$ee (\%)^{c}$
1	2a	Ph	11aa	10	1.5	98	90
2^d	2a	Ph	11aa	10	1.5	80	87
3	2a	Ph	11aa	5	1.5	94	90
4	2b	4-MeOPh	11ab	5	1.5	92	92
5	2c	<i>n</i> -propyl	11ac	5	12	95	73
6	2d	ethyl	11ad	5	12	93	89

^a Unless otherwise noted, all reactions were carried out between 2 (0.15 mmol) with 1a (0.30 mmol) in 1.5 mL of toluene at 25 °C.

^bIsolated yield of 11. ^cThe *ee* of 11 was determined by chiral HPLC analysis. ^dCH₂Cl₂ was used instead of toluene. ACS Paragon Plus Environment

With optimized reaction conditions in hand, a variety of aromatic and heteroaromatic *trans-\beta*-nitroolefins were investigated (Table 3). Regardless of the electronic properties of substituents on the aromatic *trans-\beta*-nitroolefin, the products **11** were obtained with high enantioselectivities and in excellent yields, and *ortho*-substituted aromatic nitroolefins furnished the desired products with better enantioselectivities (Table 3, entries 3, 5, and 9).

Table 3. Enantioselective Michael addition of 2a to aromatic *trans-β*-nitroolefins catalyzed by 9f^a

Entry	1	Ar	11	t (h)	yield $(\%)^b$	ee (%) ^c	$ee (\%)^d$
1	1a	phenyl	11aa	1.5	94	90	98
2	1b	4-F-C ₆ H ₄	11ba	1.0	92	87	>99
3	1c	2-F-C ₆ H ₄	11 c a	0.5	99	91	_e
4	1d	4-Br-C ₆ H ₄	11da	1.0	98	90	>99
5	1e	$2\text{-Br-}C_6H_4$	11ea	0.5	98	97	_e
6	1 f	$4-CF_3-C_6H_4$	11fa	1.5	88	92	>99
7	1g	4-Me-C ₆ H ₄	11ga	1.0	94	90	93
8	1h	4-MeO-C ₆ H ₄	11ha	2.0	98	87	94
9	1i	2-MeO-C ₆ H ₄	11ia	1.0	98	94	_ ^e
10	1j	2-thienyl	11ja	0.5	99	90	_e
11	1k	2-furyl	11ka	0.5	98	93	_e
12	11	2-naphthyl	11la	0.5	92	86	>99

^{*a*}All of the reactions were carried out between **2a** (0.15 mmol) and **1** (0.30 mmol) in the presence of **9f** (5 mol%) in 1.5 mL of toluene at 25 ^oC. ^{*b*}Isolated yield of **11**. ^{*c*}The *ee* was determined by chiral HPLC analysis. ^{*d*}The *ee* was determined after recrystallization from ethanol. ^{*e*} Not determined.

Encouraged by the results exhibited in Table 3, we applied these catalytic conditions to reactions between dithiomalonates 2 and a range of aliphatic *trans-\beta*-nitroolefins 1. However, when the optimized conditions were applied to the reaction between (*E*)-1-nitropent-1-ene 1m and 2a, the desired product ACS Paragon Plus Environment

11ma was obtained in 78% ee (Table 4, entry 1). Lowering the temperature to -40 °C significantly improved the enantioselectivity to 90% ee (Table 4, entry 2). When R substituents of 1 were primary alkyl groups such as *n*-propyl, isobutyl, 2-phenylethyl, and the long-chain *n*-hexyl group, the reactions proceeded well in high yields and enantioselectivities (Table 4, entries 2-6), By contrast, this protocol with secondary substituents, such as a cyclohexyl group, provided the corresponding products **11qa** and **11qb** in lower yields and enantioselectivities at 25 °C (Table 4, entries 7 and 8).

Table 4. Enantioselective Michael addition of 2 to aliphatic *trans-* β -nitroolefins catalyzed by 9f^a

entry	1	R	2	11	t (h)	yield $(\%)^b$	ee (%) ^c
1^d	1m	<i>n</i> -propyl	2a	11ma	1	96	78
2	1m	<i>n</i> -propyl	2a	11ma	16	93	90
3	1n	isobutyl	2a	11na	16	96	86
4	10	2-phenylethyl	2a	110a	14	95	90
5	1p	<i>n</i> -hexyl	2a	11pa	12	97	86
6	1p	<i>n</i> -hexyl	2b	11pb	48	95	85
$7^{d,e}$	1q	cyclohexyl	2a	11qa	72	65	81
8 ^{<i>d,e</i>}	1q	cyclohexyl	2b	11qb	120	82	82

^{*a*}Unless otherwise noted, all of the reactions were carried out between **2** (0.15 mmol) and **1** (0.30 mmol) in the presence of **9f** (5 mol%) in 1.5 mL of toluene at -40 °C. ^{*b*}Isolated yield. ^{*c*}The *ee* was determined by chiral HPLC analysis. ^{*d*}The reaction was conducted at 25 °C. ^{*e*}10 mol% **9f** was used.

To demonstrate the synthetic utility of our methodology, further chemical transformations of adduct **11aa** were carried out as illustrated in Scheme 3. (*R*)-Phenibut is a therapeutically useful agonist of γ -aminobutyric acid (GABA) type-B receptors and is used as a neuropsychotropic drug.¹⁴ Reduction of the nitro group of **11aa** to the amine using zinc/acetic acid and TiCl₃, followed by intramolecular cyclization to form the lactam **12**,^{8c} and acidic hydrolysis generated the antidepressant (*R*)-phenibut **13**. **ACS Paragon Plus Environment**

Additionally, adduct **11aa** was desymmetrized through a tandem hydrolysis-decarboxylation reaction to form **14** under mildly basic conditions in 94% yield. Monothioester **14** was converted to **15** by Fukuyama reduction in the presence of activated 4 Å molecular sieves,^{7c} and **14** was also transformed to the known lactam **16**¹⁵ in 82% yield through the reduction-cyclization reaction sequence described above. Comparison of the optical rotation data and chiral HPLC spectrum of **16** with reported data¹⁶ confirmed the absolute stereochemistry of **11aa** as the *R* enantiomer.

Scheme 3. Transformations of adduct 11aa

The observed stereochemistry for the asymmetric Michael addition of dithiomalonates 2 to trans- β nitroolefins 1 using 9f as catalyst can be rationalized by the transition-state model shown in Figure 1. There are two generally accepted mechanisms for adduct formation in relevant catalytic Michael addition reactions.¹⁷ Deprotonation of the acidic proton from dithiomalonate 2a by the tertiary amino group of *N*-methylpyrrolidine leads to formation of an ammonium ion. In route A, nitroolefin 1a is activated through interaction with the protonated amino group of 9f, while simultaneously the enolate of 2a interacts with the urea moiety of 9f through hydrogen bonding to form the ternary complex 17.^{17a, b} By contrast, in route B, 1a is activated by the urea moiety of 9f while the enolate of 2a coordinates to the protonated amino group of 9f to form the ternary complex 18.^{17c} With either complex 17 or 18, nucleophilic addition of the enolate of 2a from the *re* face of 1a leads to the same adduct, *R*-11aa, as the major enantiomer.

ACS Paragon Plus Environment

Figure 1. Transition-state model for the asymmetric Michael addition between 2a and 1a catalyzed by 9f.

In conclusion, we have prepared seven novel L-proline derived bifunctional organocatalysts, among which **9f** was successfully applied to the asymmetric Michael reaction of dithiomalonates **2** to *trans-\beta*-nitroolefins **1** in high yields and enantioselectivities. To the best of our knowledge, this is the first example of the Michael addition to nitroolefins using dithiomalonates as Michael donors. This methodology was successfully applied to an efficient synthesis of the neuropsychotropic drug, (*R*)-phenibut. The absolute configuration of **11** was the same as that predicted by the transition-state model in Figure 1. Further investigations of the application of these novel catalysts are in progress.

EXPERIMENTAL SECTION

General Information. Unless stated otherwise, reagents were used directly as obtained commercially. Reactions were monitored by thin layer chromatography. Flash column chromatography was performed using silica gel (40-60 μ m particle size). ¹H NMR (500 MHz) and ¹³C NMR (125 MHz) spectra were measured and chemical shifts are reported in ppm using TMS or the residual solvent peak as a reference. Infrared spectra were recorded on FT-IR. HRMS were recorded on an EI/FAB-Magnetic Sector mass spectrometer and MS were obtained using an ESI-QTOF mass spectrometer. Analytical high performance liquid chromatography (HPLC) was performed using the indicated chiral column (4.6 mm × 25 cm). Optical rotations were determined on a polarimeter at 589 nm. Melting points were determined using a melting point apparatus and are uncorrected.

ACS Paragon Plus Environment

General procedure for the synthesis of dithiomalonates 2.¹⁸ To a stirred solution of malonyl chloride (0.19 mL, 2 mmol, 1 equiv) in dry Et₂O (5 ml), thiol (4.4 mmol, 2.2 equiv) was added and the resulting mixture was stirred for 16 h at room temperature. The mixture was quenched with H₂O (10 mL) and extracted with Et₂O (10 mL×3). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated *in vacuo*. The crude product was purified by flash column chromatography on silica gel.

S,S'-diphenyl dithiomalonate (2a). Following the general procedure with thiophenol (0.45 ml, 4.4 mmol, 2.2 equiv), 2a was obtained as a white solid (536 mg, 93% yield). Analytical data are consistent with reported values.¹⁸ *Rf* : 0.43 (ethyl acetate : hexane = 1:5); ¹H NMR (500 MHz, CDCl₃) δ 7.47-7.41 (m, 10H), 3.96 (s, 2H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 188.8, 134.5, 129.9, 129.4, 126.7, 56.5 ppm; IR (neat) 2955, 2916, 1715, 1691, 1477, 1440, 1396, 1307, 1030, 975, 707, 689 cm⁻¹; MS (ESI-QTOF) m/z: [M + Na]⁺ Calcd for C₁₅H₁₂NaO₂S₂ 311.018, found 311.011; mp: 95-96 °C.

S,S'-bis(4-methoxyphenyl) dithiomalonate (2b). Following the general procedure with 4methoxythiophenol (0.54 ml, 4.4 mmol, 2.2 equiv), 2b was obtained as a white solid (488 mg, 70% yield). *Rf* : 0.23 (ethyl acetate : hexane = 1:5); ¹H NMR (500 MHz, CDCl₃) δ 7.36-7.33 (m, 4H), 6.96-6.93 (m, 4H), 3.91 (s, 2H), 3.83 (s, 6H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 190.0, 161.0, 136.2, 117.4, 115.1, 56.1, 55.4 ppm; IR (neat) 2941, 2840, 1713, 1689, 1593, 1495, 1291, 1250, 1174, 1028, 976, 827 cm⁻¹; HRMS (EI-Magnetic Sector) m/z: [M]⁺ Calcd for C₁₇H₁₆O₄S₂ 348.0490, found 348.0489; mp: 67-70 °C.

S,S'-dipropyl dithiomalonate (2c). Following the general procedure with 1-propanethiol (0.40 ml, 4.4 mmol, 2.2 equiv), 2c was obtained as a colorless oil (278 mg, 63% yield). *Rf* : 0.63 (ethyl acetate: hexane = 1:5); ¹H NMR (500 MHz, CDCl₃) δ 3.77 (s, 2H), 2.91 (t, *J* = 7.2 Hz, 4H), 1.67-1.59 (m, 4H), 0.97 (t, *J* = 7.4 Hz, 6H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 190.7, 57.8, 31.5, 22.6, 13.3 ppm; IR (neat) 2965, 2932, 2875, 1701, 1676, 1458, 1408, 1379, 1290, 1242, 1195, 1060, 1041, 990, 910, 785 cm⁻¹; HRMS (EI-Magnetic Sector) m/z: [M]⁺ Calcd for C₉H₁₆O₂S₂ 220.0592, found 220.0593.

The Journal of Organic Chemistry

S,S'-diethyl dithiomalonate (2d). Following the general procedure with ethanethiol (0.32 ml, 4.4 mmol, 2.2 equiv), 2d was obtained as a light yellow oil (250 mg, 65% yield). Analytical data are consistent with reported values.¹⁹ *Rf* : 0.60 (ethyl acetate: hexane = 1:5); ¹H NMR (500 MHz, CDCl₃) δ 3.77 (s, 2H), 2.94 (q, *J* = 7.4 Hz, 4H), 1.28 (t, *J* = 7.4 Hz, 6H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 190.7, 57.7, 24.1, 14.4 ppm; IR (neat) 2977, 2865, 1700, 1675, 1454, 1265, 1054, 1033, 1014 cm⁻¹; MS (ESI-QTOF) m/z: [M + Na]⁺ Calcd for C₇H₁₂NaO₂S₂ 215.018, found 215.013.

General procedure for synthesis of 5a, 5b, 5c.¹⁰ DIBAL-H (1.0 M in hexane, 2.61 mL, 2.61 mmol, 1.2 equiv) was added to a solution of *N*-boc proline ethyl ester 4 (500 mg, 2.17 mmol, 1.0 equiv) in CH₂Cl₂ (10 mL) at -78 °C. The resulting solution was stirred at -78 °C for 30 min, followed by the addition of ArMgBr (1.0 M in THF, 6.52 mL, 6.52 mmol, 3.0 equiv) dropwise at -78 °C. The solution was then allowed to slowly warm to r.t. overnight. Sat. aq NH₄Cl (10 mL) was added to quench the reaction. Sat. sodium tartrate solution (10 mL) was added to the resulting gel. The mixture was stirred at r.t. for 30 min, and then the organic layer was extracted with CH₂Cl₂ (3 × 15 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The crude material was purified by flash column chromatography on silica gel to provide the product **5**.

(*S*)-tert-butyl 2-((*S*)-hydroxy(phenyl)methyl)pyrrolidine-1-carboxylate (5a). Following the general procedure with phenyl magnesium bromide (1.0 M in THF, 6.52 mL, 6.52 mmol), **5a** was obtained as a colorless oil (445 mg, 74% yield). Analytical data are consistent with reported values.²⁰ *Rf* : 0.23 (ethyl acetate: hexane = 1:5); ¹H NMR (500MHz, CDCl₃) δ 7.36-7.25 (m, 5H), 5.89 (br s, 1H), 4.52 (br d, *J* = 7.2 Hz, 1H), 4.09 (td, *J* = 8.4, 3.8Hz, 1H), 3.48-3.43 (m, 1H), 3.38-3.34 (m, 1H), 1.80-1.69 (m, 2H), 1.64-1.39 (m, 2H), 1.52 (s, 9H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 158.4, 142.7, 128.4, 127.8, 127.3, 80.8, 79.3, 64.3, 47.8, 28.7, 28.6, 23.9 ppm; IR (neat) 3406 (br signal), 2989, 1692, 1669, 1405, 1254, 1164, 1117, 1054, 1033, 703 cm⁻¹; MS (ESI-QTOF) m/z: $[M + Na]^+$ Calcd for C₁₆H₂₃NNaO₃ 300.158, found 300.151; $[\alpha]^{20}_{D} = -2.4$ (c = 1.0, CHCl₃).

(*S*)-tert-butyl 2-((*S*)-(3,5-dimethylphenyl)(hydroxy)methyl)pyrrolidine-1-carboxylate (5b). Following the general procedure with 3,5-dimethylphenyl magnesium bromide (1.0 M in THF, 6.52 mL, 6.52 mmol), **5b** was obtained as a colorless oil (464 mg, 70% yield). *Rf* : 0.29 (ethyl acetate: hexane = 1:5); ¹H NMR (500MHz, CDCl₃) δ 6.96-6.88 (m, 3H), 5.76 (br s, 1H), 4.42 (br d, *J* = 6.9 Hz, 1H), 4.08 (td, *J* = 8.6, 3.5 Hz, 1H), 3.48-3.42 (m, 1H), 3.39-3.34 (m, 1H), 2.30 (s, 6H), 1.85-1.69 (m, 2H), 1.64-1.38 (m, 2H), 1.51 (s, 9H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 158.3, 142.6, 137.8, 129.4, 125.1, 80.7, 79.3, 64.1, 47.6, 28.6, 28.5, 23.8, 21.3 ppm; IR (neat) 3401 (br signal), 2974, 1664, 1402, 1366, 1265, 1166, 1120, 849 cm⁻¹; HRMS (FAB-Magnetic Sector) m/z: $[M + H]^+$ Calcd for C₁₈H₂₈NO₃ 306.2069, found 306.2071; $[\alpha]^{20}_{D} = +6.0$ (c = 1.0, CHCl₃).

(*S*)-tert-butyl 2-((*S*)-hydroxy(naphthalen-2-yl)methyl)pyrrolidine-1-carboxylate (5c). Following the general procedure with naphthyl magnesium bromide (1.0 M in THF, 6.52 mL, 6.52 mmol), 5c was obtained as a light yellow oil (547 mg, 77% yield). *Rf* : 0.25 (ethyl acetate: hexane = 1:5); ¹H NMR (500MHz, CDCl₃) δ) 7.83-7.77 (m, 4H), 7.54-7.43 (m, 3H), 6.00 (br s, 1H), 4.69 (br d, *J* = 7.5 Hz, 1H), 4.19 (td, *J* = 8.4, 4.3 Hz, 1H), 3.49-3.44 (m, 1H), 3.39-3.31 (m, 1H), 1.76-1.66 (m, 2H), 1.62-1.40 (m, 2H), 1.53 (s, 9H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 158.4, 140.1, 133.22, 133.19, 128.2, 128.0, 127.7, 126.4, 126.0, 125.8, 125.1, 80.9, 79.5, 64.2, 47.8, 28.8, 28.5, 23.9 ppm; IR (neat) 3400 (br signal), 3057, 2975, 2881, 1690, 1665, 1402, 1367, 1256, 1169, 1124, 1062, 901, 858, 821, 775, 750 cm⁻¹; HRMS (EI-Magnetic Sector) m/z: [M]⁺ Calcd for C₂₀H₂₅NO₃ 327.1834, found 327.1837; [α]²⁰_D = -6.8 (c = 1.0, CHCl₃).

General procedure for synthesis of 6a, 6b, 6c. A 25 mL flame-dried flask was charged with compound **5** (1.5 mmol, 1 equiv) and PPh₃ (0.787 g, 3.0 mmol, 2 equiv). The reaction vessel was evacuated and backfilled with argon and this process repeated three times. Anhydrous THF (7 mL) was added and the mixture was cooled to 0 °C whereupon diethyl azodicarboxylate (0.47 mL, 3.0 mmol, 2 equiv) was added dropwise. Then diphenyl phosphoryl azide (0.39 mL, 1.8 mmol, 1.2 equiv) was added by a similar way. The reaction vessel was slowly warmed to 25 °C and stirred overnight. The reaction mixture was concentrated *in vacuo*, after which water (10 mL) was added. The mixture was extracted ACS Paragon Plus Environment

The Journal of Organic Chemistry

with EtOAc three times (10 mL×3). The combined organic layers were dried over anhydrous Na_2SO_4 , and concentrated *in vacuo*. The crude residue was purified by column chromatography on silica gel to afford the product **6**.

(*S*)-*tert-butyl* 2-((*R*)-*azido(phenyl)methyl)pyrrolidine-1-carboxylate* (6a). Following the general procedure with compound **5a** (416 mg, 1.5 mmol), the desired product was obtained as a colorless oil (354 mg, 78% yield). *Rf*: 0.55 (ethyl acetate: hexane = 1:5); ¹H NMR (500MHz, CDCl₃) (60:40 mixture of rotamers) δ 7.35-7.26 (m, 5H), 5.54 (br s, 0.57H), 5.20 (br s, 0.39H), 4.06 (br s, 0.61H), 3.98 (br s, 0.40H), 3.63-3.59 (m, 0.42H), 3.53-3.48 (m, 0.61H), 3.45-3.40 (m, 1H), 2.04-1.96 (m, 1H), 1.91-1.80 (m, 1H), 1.73-1.68 (m, 1H), 1.62-1.57 (m, 1H), 1.54 (s, 3.62H), 1.51 (s, 5.43H) ppm; ¹³C NMR (125 MHz, CDCl₃) (mixture of rotamers) δ 154.8, 154.2, 137.8, 128.7, 128.5, 127.8, 127.5, 126.5, 126.4, 80.1, 79.8, 67.4, 65.6, 62.9, 62.8, 47.7, 47.2, 28.6, 26.0, 25.1, 24.3, 23.6 ppm; IR (neat) 2979, 2103, 1691, 1393, 1259, 1172, 1120, 700 cm⁻¹; HRMS (FAB-Magnetic Sector) m/z: [M + H]⁺ Calcd for C₁₆H₂₃N₄O₂ 303.1821, found 303.1818; [α]²⁰_D = -93.5 (c = 1.0, CHCl₃).

(*S*)-*tert-butyl 2-((R)-azido(3,5-dimethylphenyl)methyl)pyrrolidine-1-carboxylate* (6b). Following the general procedure with compound **5b** (458 mg, 1.5 mmol), the desired product was obtained as a colorless oil (322 mg, 65% yield). *Rf* : 0.60 (ethyl acetate: hexane = 1:5); ¹H NMR (500MHz, CDCl₃) (60:40 mixture of rotamers) δ 6.97-6.90 (m, 3H), 5.47 (br s, 0.59H), 5.12 (br s, 0.36H), 4.04 (br s, 0.60H), 3.96 (br s, 0.40H), 3.65-3.57 (m, 0.40H), 3.52-3.47 (m, 0.60H), 3.45-3.41 (m, 1H), 2.30 (s, 6H), 2.05-1.97 (m, 1H), 1.94-1.83 (m, 1H), 1.73-1.69 (m, 1H), 1.68-1.58 (m, 1H), 1.54 (s, 3.61H), 1.51 (s, 5.43H) ppm; ¹³C NMR (125 MHz) (mixture of rotamers) δ 154.9, 154.2, 138.2, 138.1, 137.7, 129.4, 129.2, 124.23, 124.16, 80.1, 79.7, 67.5, 65.8, 62.9, 62.7, 47.7, 47.2, 28.6, 26.1, 25.0, 24.3, 23.6, 21.3 ppm; IR (neat) 2978, 2882, 2101, 1689, 1603, 1391, 1366, 1273, 1257, 1165, 1118, 852, 775, 700 cm⁻¹; HRMS (FAB-Magnetic Sector) m/z: [M + H]⁺ Calcd for C₁₈H₂₇N₄O₂ 331.2134, found 331.2137; [α]²⁰_D = -97.0 (c = 1.0, CHCl₃).

(*S*)-*tert-butyl* 2-((*R*)-*azido*(*naphthalen-2-yl*)*methyl*)*pyrrolidine-1-carboxylate* (6c). Following the general procedure with compound 5c (491 mg, 1.5 mmol), the desired product 6c was obtained as a colorless oil (264 mg, 50% yield). *Rf* : 0.40 (ethyl acetate: hexane = 1:5); ¹H NMR (500MHz, CDCl₃) (60:40 mixture of rotamers) δ 7.83-7.78 (m, 4H), 7.49-7.37 (m, 3H), 5.71 (br s, 0.61H), 5.36 (br s, 0.37H), 4.18 (br s, 0.60H), 4.09 (br s, 0.40H), 3.65-3.61 (m, 0.40H), 3.55-3.50 (m, 0.62H), 3.49-3.44 (m, 1H), 2.07-2.00 (m, 1H), 1.99-1.90 (m, 1H), 1.74-1.69 (m, 1H), 1.67-1.58 (m, 1H), 1.55 (s, 3.64H), 1.52 (s, 5.47H) ppm; ¹³C NMR (125 MHz, CDCl₃) (mixture of rotamers) δ 154.9, 154.2, 135.3, 133.2, 132.8, 128.5, 128.2, 128.0, 127.7, 126.5, 126.3, 126.0, 125.3, 124.5, 124.3, 80.2, 79.8, 67.6, 65.8, 62.8, 62.6, 47.7, 47.3, 28.6, 26.1, 25.1, 24.3, 23.6 ppm; IR (neat) 3060, 2974, 2102, 1688, 1392, 1367, 1258, 1168, 1120, 928, 900, 861, 815, 775, 744 cm⁻¹; HRMS (FAB-Magnetic Sector) m/z: [M + H]⁺ Calcd for C₂₀H₂₅N₄O₂ 353.1978, found 353.1976; [α]²⁰_D = -122 (c = 1.0, CHCl₃).

General procedure for synthesis of 7a, 7b, 7c. TFA (3 mL) was added to a stirred solution of 6 (1 mmol, 1 equiv.) in CH₂Cl₂ (3 mL) at 0 °C under an argon atmosphere. The resulting solution was warmed to 25 °C and stirred overnight. The reaction mixture was concentrated *in vacuo*, the residue was dissolved in 5mL of CH₂Cl₂ and then treated with saturated aqueous NaHCO₃ solution for 1 h at 25 °C. The resulting mixture was extracted with CHCl₃ three times (5 mL×3). The combined organic layers were dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. Then H₂O (1 mL), HCOOH (98%, 0.5 mL) and HCHO (37% aqueous solution, 0.75 mL) were added to the residue. The resulting mixture was refluxed for 5 h. The reaction mixture was then cooled to room temperature, basified with saturated aqueous NaOH solution, and extracted with CH₂Cl₂(3 mL×3). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel to afford the product **7**.

(S)-2-((R)-azido(phenyl)methyl)-1-methylpyrrolidine (7a). Following the general procedure with compound **6a** (302 mg, 1 mmol), the desired product was obtained as a yellow oil (188 mg, 87% yield). Rf : 0.33 (ethyl acetate: hexane = 1:5); ¹H NMR (500MHz, CDCl₃) δ 7.38-7.35 (m, 2H), 7.32-7.28 (m, 3H), 4.70 (d, J = 3.9 Hz, 1H), 3.14-3.11 (m, 1H), 2.51-2.47 (m, 1H), 2.34 (s, 3H), 2.26-2.20 (m, 1H), ACS Paragon Plus Environment

1.94-1.88 (m, 1H), 1.83-1.74 (m, 1H), 1.68-1.63 (m, 1H), 1.62-1.54 (m, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 138.4, 128.6, 127.8, 127.0, 71.0, 66.6, 57.5, 41.0, 25.9, 22.8 ppm; IR (neat) 2791, 2101, 1451, 1353, 1288, 1253, 700 cm ⁻¹; HRMS (FAB-Magnetic Sector) m/z: [M + H]⁺ Calcd for C₁₂H₁₇N₄ 217.1453, found 217.1455; [α]²⁰_D = -161.5 (c = 1.0, CHCl₃).

(*S*)-2-((*R*)-azido(3,5-dimethylphenyl)methyl)-1-methylpyrrolidine (7b). Following the general procedure with compound **6b** (330 mg, 1 mmol), the desired product was obtained as a yellow solid (215 mg, 88% yield). *Rf*: 0.33 (ethyl acetate: hexane = 1:5); ¹H NMR (500MHz, CDCl₃) δ 6.92-6.90 (m, 3H), 4.63 (d, *J* = 3.8 Hz, 1H), 3.14-3.11 (m, 1H), 2.48-2.44 (m, 1H), 2.35 (s, 3H), 2.32 (s, 6H), 2.24-2.17 (m, 1H), 1.94-1.88 (m, 1H), 1.84-1.74 (m, 1H), 1.67-1.62 (m, 1H), 1.61-1.55 (m, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 138.3, 138.1, 129.5, 124.7, 71.0, 66.6, 57.5, 40.9, 25.8, 22.8, 21.4 ppm; IR (neat) 2959, 2786, 2100, 1604, 1457, 1352, 1275, 848, 701 cm ⁻¹; HRMS (FAB-Magnetic Sector) m/z: [M + H]⁺ Calcd for C₁₄H₂₁N₄ 245.1766, found 245.1768; [α]²⁰_D = -187.3 (c = 1.0, CHCl₃); mp: 50-55 °C.

(*S*)-2-((*R*)-*azido*(*naphthalen-2-yl*)*methyl*)-1-*methylpyrrolidine* (7c). Following the general procedure with compound 6c (352 mg, 1 mmol), the desired product was obtained as a yellow oil (242 mg, 91% yield). *Rf* : 0.23 (ethyl acetate: hexane = 1:5); ¹H NMR (500MHz, CDCl₃) δ 7.85-7.79 (m, 4H), 7.51-7.41 (m, 3H), 4.86 (d, *J* = 4.0 Hz, 1H), 3.15-3.12 (m, 1H), 2.61-2.57 (m, 1H), 2.35 (s, 3H), 2.26-2.21 (m, 1H), 2.00-1.93 (m, 1H), 1.85-1.76 (m, 1H), 1.67-1.62 (m, 1H), 1.61-1.54 (m, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 135.9, 133.2, 132.9, 128.4, 128.0, 127.7, 126.4, 126.2, 126.1, 124.8, 70.9, 66.8, 57.6, 41.1, 26.1, 22.9 ppm; IR (neat) 3058, 2966, 2844, 2783, 2100, 1602, 1509, 1454, 1364, 1271, 1046, 897, 857, 818, 746 cm⁻¹; HRMS (FAB-Magnetic Sector) m/z: $[M + H]^+$ Calcd for C₁₆H₁₉N₄ 267.1610, found 267.1611; $[α]^{20}_{D}$ = -215.7 (c = 1.0, CHCl₃).

(S)-2-((R)-azido(phenyl)methyl)-1-benzylpyrrolidine (7d). TFA (3 mL) was added to a stirred solution of **6a** (302 mg, 1 mmol, 1 equiv.) in CH_2Cl_2 (3 mL) at 0 °C under an argon atmosphere. The resulting solution was warmed to 25 °C and stirred overnight. The reaction mixture was concentrated *in vacuo*,

the residue was dissolved in 5mL of CH₂Cl₂ and then treated with a saturated aqueous NaHCO₃ solution for 1 h at 25 °C. The aqueous layer was extracted with CHCl₃ three times (5 mL×3). The combined organic layers were dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. Without purification, the residue was dissolved in dry DMF (2.4 mL), whereupon K₂CO₃ (166 mg, 1.2 mmol, 1.2 equiv) was added and stirred for 10 minutes. Then benzyl bromide (0.14 mL, 1.2 mmol, 1.2 equiv) was added and the resulting mixture was stirred for additional 10 h at room temperature. The reaction mixture was diluted with water (8 mL) and extracted with CH₂Cl₂ (5 mL×3). The extract was washed three times with water (10 mL×3), dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel to afford the product 7d as a light yellow oil (278 mg, 95%). Analytical data are consistent with reported values¹¹. Rf: 0.70 (ethyl acetate: hexane = 1:5); ¹H NMR (500MHz, CDCl₃) δ 7.35-7.29 (m, 6H), 7.26-7.20 (m, 4H), 4.57 (d, J = 3.7 Hz, 1H), 3.92 (d, J =12.9 Hz, 1H), 3.47 (d, J = 12.9 Hz, 1H), 3.04-3.00 (m, 1H), 2.94-2.90 (m, 1H), 2.27-2.22 (m, 1H), 1.94-1.88 (m, 1H), 1.82-1.74 (m, 1H), 1.68-1.58 (m, 2H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 139.5, 138.6, 128.9, 128.5, 128.4, 127.7, 127.1, 127.0, 69.8, 67.4, 59.8, 55.0, 26.1, 23.7 ppm; IR (neat) 3068, 2970, 2794, 2100, 1495, 1452, 1351, 1293, 698 cm⁻¹; MS (ESI-QTOF) m/z: $[M + H]^+$ Calcd for $C_{18}H_{21}N_4$ 293.177, found 293.171; $[\alpha]^{20}_{D} = -100.4$ (c = 1.0, CHCl₃), [lit.¹¹ $[\alpha]^{20}_{D} = -97$ (c = 1.0, CHCl₃)].

General procedure for synthesis of 9a, 9b, 9c, 9d. To a stirred suspension of LiAlH₄ (30 mg, 0.8 mmol, 1 equiv) in 0.8 mL of dry THF, a solution of compound 7 (0.8 mmol, 1 equiv) in 1.6 mL of dry THF was added dropwise at 0 °C under an argon atmosphere. The reaction mixture was stirred at room temperature for 1.5 h and then quenched by a 5% aqueous sodium potassium tartarate solution. The resulting mixture was filtered through a pad of Celite, dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The residue was dissolved in dry CH₂Cl₂ (2.4 mL), then 3,5-bis(trifluoromethyl)phenyl isothiocyanate (0.18 mL, 0.96 mmol, 1.2 equiv) was added and stirred overnight at room temperature. The reaction mixture was concentrated *in vacuo* and purified by column chromatography on silica gel to afford the desired product.

The Journal of Organic Chemistry

1-(3,5-bis(trifluoromethyl)phenyl)-3-((R)-((S)-1-methylpyrrolidin-2-yl)(phenyl)methyl)thiourea (9a). Following the general procedure with compound 7a (173 mg, 0.8 mmol), the desired product was obtained as a white solid (288 mg, 78% yield). *Rf* : 0.69 (methylene chloride: methanol = 10:1); ¹H NMR (500MHz, CD₃OD) δ 8.23 (s, 2H), 7.59 (s, 1H), 7.33-7.27 (m, 4H), 7.24-7.19 (m, 1H), 5.78 (br s, 1H), 3.07 (t, *J* = 7.2 Hz, 1H), 2.66 (br s, 1H), 2.37 (s, 3H), 2.26 (br s, 1H), 1.72-1.46 (m, 4H) ppm; ¹³C NMR (125 MHz, CD₃OD) δ 183.0, 143.4, 141.7, 132.6 (q, *J* = 33.2 Hz), 129.5, 128.2, 127.8, 124.7 (q, *J* = 271.3 Hz), 123.2, 117.6, 71.6, 58.6, 58.1, 41.1, 26.9, 22.8 ppm; IR (neat) 1612, 1473, 1384, 1276, 1176, 1131, 883, 699, 682cm⁻¹; HRMS (FAB-Magnetic Sector) m/z: $[M + H]^+$ Calcd for C₂₁H₂₂F₆N₃S 462.1439, found 462.1437; $[\alpha]^{20}_{D} = -52.4$ (c = 1.0, CHCl₃); mp: 49-51 °C.

1-(3,5-bis(trifluoromethyl)phenyl)-3-((R)-(3,5-dimethylphenyl)((S)-1-methylpyrrolidin-2-

yl)methyl)thiourea (9b). Following the general procedure with compound 7b (195 mg, 0.8 mmol), the desired product was obtained as a light yellow foam (313 mg, 80% yield). *Rf* : 0.48 (methylene chloride: methanol = 10:1); ¹H NMR (500MHz, CDCl₃) δ 13.80 (br s, 1H), 8.09 (s, 2H), 7.59 (s, 1H), 6.98 (s, 1H), 6.90 (s, 2H), 6.45 (s, 1H), 4.92 (s, 1H), 3.19 (br s, 1H), 2.84 (br s, 1H), 2.61 (s, 3H), 2.52-2.43 (m, 1H), 2.32 (s, 6H), 2.29-2.25 (m, 1H), 2.09-2.04 (m, 1H), 1.93-1.85 (m, 2H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 182.7, 142.3, 139.2, 138.8, 131.8 (q, *J* = 33.4 Hz), 130.3, 124.6, 123.3 (q, *J* = 272.7 Hz), 122.5, 117.6, 71.5, 62.1, 56.1, 40.8, 25.6, 24.4, 21.4 ppm; IR (neat) 1610, 1474, 1385, 1276, 1178, 1132, 883, 699, 685 cm⁻¹; HRMS (EI-Magnetic Sector) m/z: [M]⁺ Calcd for C₂₃H₂₅F₆N₃S 489.1673, found 489.1675; [α]²⁰_D = -61.9 (c = 1.0, CHCl₃); mp: 55-59 °C.

1-(3,5-bis(trifluoromethyl)phenyl)-3-((R)-((S)-1-methylpyrrolidin-2-yl)(naphthalen-2-

yl)methyl)thiourea (9c). Following the general procedure with compound 7c (213 mg, 0.8 mmol), the desired product was obtained as a light yellow foam (307 mg, 75% yield). *Rf* : 0.53 (methylene chloride: methanol = 10:1); ¹H NMR (500MHz, CDCl₃) δ 13.85 (br s, 1H), 8.09 (s, 2H), 7.87-7.81 (m, 3H), 7.75 (s, 1H), 7.61 (s, 1H), 7.53-7.52 (m, 2H), 7.38 (dd, *J* = 8.5, 1.7 Hz, 1H), 6.58 (br s, 1H), 5.18 (br s, 1H), 3.23-3.20 (m, 1H), 2.95-2.89 (m, 1H), 2.63 (s, 3H), 2.51-2.46 (m, 1H), 2.39-2.30 (m, 1H), 2.15-2.04 (m, 1H), 1.98-1.85 (m, 2H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 182.8, 142.1, 136.1, 133.3, 133.0, 131.9 (q, ACS Paragon Plus Environment

J = 32.5 Hz), 129.5, 128.0, 127.8, 127.0, 126.8, 125.7, 124.4, 123.2 (q, J = 272.8 Hz), 122.5, 117.6, 71.4, 62.0, 56.1, 40.7, 25.6, 24.4 ppm; IR (neat) 1610, 1473, 1385, 1277, 1177, 1132, 1038, 1002, 964, 883, 819, 700, 681 cm⁻¹; HRMS (EI-Magnetic Sector) m/z: [M]⁺ Calcd for C₂₅H₂₃F₆N₃S 511.1517, found 511.1514; $[\alpha]^{20}_{D} = -83.6$ (c = 1.0, CHCl₃); mp: 56-59 °C.

I-((*R*)-((*S*)-*I*-benzylpyrrolidin-2-yl)(phenyl)methyl)-3-(3,5-bis(trifluoromethyl)phenyl)thiourea (9d). Following the general procedure with compound 7d (234 mg, 0.8 mmol), the desired product was obtained as a light yellow foam (357 mg, 83% yield). *Rf*: 0.83 (methylene chloride: methanol = 10:1); ¹H NMR (500MHz, CDCl₃) δ 13.16 (br s, 1H), 7.72 (s, 2H), 7.60 (s, 1H), 7.39-7.34 (m, 3H), 7.25-7.18 (m, 3H), 7.15 (s, 4H), 6.51 (br s, 1H), 4.88 (br s, 1H), 4.01 (d, *J* = 12.4 Hz, 1H), 3.66 (d, *J* = 12.1 Hz, 1H), 3.19-3.14 (m, 2H), 2.59-2.54 (m, 1H), 2.30 (br s, 1H), 2.03-1.84 (m, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 183.1, 141.4, 138.9, 136.2, 131.7 (q, *J* = 32.5 Hz), 129.7, 129.5, 128.8 (x2), 128.3, 126.9, 124.4, 123.1 (q, *J* = 272.8 Hz), 118.4, 69.7, 63.2, 60.7, 54.1, 25.7, 24.5 ppm; IR (neat) 1608, 1473, 1383, 1276, 1175, 1133, 886, 699, 681 cm⁻¹; HRMS (EI-Magnetic Sector) m/z: [M]⁺ Calcd for $C_{27}H_{25}F_6N_3S$ 537.1673, found 537.1670; $[\alpha]^{20}_D = -117.0$ (c = 1.0, CHCl₃); mp: 47-49 °C.

3-(3,5-bis(trifluoromethyl)phenylamino)-4-((R)-((S)-1-methylpyrrolidin-2-

yl)(phenyl)methylamino)cyclobut-3-ene-1,2-dione (9e). To a stirred suspension of LiAlH₄ (30 mg, 0.8 mmol, 1 equiv) in 0.8 mL of dry THF, a solution of compound 7a (173 mg, 0.8 mmol, 1 equiv) in 1.6 mL of dry THF was added dropwise at 0 °C under an argon atmosphere. The reaction mixture was stirred at room temperature for 1.5 h and then quenched by a 5% aqueous sodium potassium tartarate solution. The resulting mixture was filtered through a pad of Celite, dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The residue was dissolved in dry CH₂Cl₂ (2.4 mL), then 8 (273 mg, 0.8 mmol, 1 equiv) was added and stirred overnight at room temperature. The reaction mixture was concentrated *in vacuo* and purified by column chromatography on silica gel to obtain the desired product as a yellow solid (326 mg, 82% yield). *Rf* : 0.57 (methylene chloride: methanol = 10:1); ¹H NMR (500MHz, CD₃OD) δ 8.10 (br s, 2H), 7.55 (s, 1H), 7.39-7.35 (m, 4H), 7.30-7.26 (m, 1H), 5.59 (br s, 1H), 3.12-3.10 (m, 1H), 2.75 (br s, 1H), 2.41 (s, 3H), 2.38-2.31 (m, 1H), 1.81-1.70 (m, 4H) ppm; ¹³C NMR (125 MHz, ACS Paragon Plus Environment

CD₃OD) δ 185.6, 182.4, 171.5, 164.4, 142.5, 141.1, 133.9 (q, *J* = 33.5 Hz), 129.9, 128.8, 127.5, 124.6 (q, *J* = 272.1 Hz), 119.2, 116.5, 71.5, 59.2, 58.3, 41.0, 26.1, 23.1 ppm; IR (neat) 1792, 1680, 1594, 1558, 1448, 1380, 1278, 1182, 1133, 751, 699 cm⁻¹; HRMS (FAB-Magnetic Sector) m/z: [M + H]⁺ Calcd for C₂₄H₂₂F₆N₃O₂ 498.1616, found 498.1619; [α]²⁰_D = -60.4 (c = 0.5, CHCl₃); mp: 150-160 °C decomposed.

1-(3,5-bis(trifluoromethyl)phenyl)-3-((R)-((S)-1-methylpyrrolidin-2-yl)(phenyl)methyl)urea (9f). To a stirred suspension of LiAlH₄ (30 mg, 0.8 mmol, 1 equiv) in 0.8 mL of dry THF, a solution of compound 7a (173 mg, 0.8 mmol, 1 equiv) in 1.6 mL of dry THF was added dropwise at 0 °C under an argon atmosphere. The reaction mixture was stirred at room temperature for 1.5 h and then guenched by 5% aqueous sodium potassium tartarate solution. The resulting mixture was filtered through a short Celite pad, dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The residue was dissolved in dry CH₂Cl₂ (2.4 mL), then 3,5-bis(trifluoromethyl)phenyl isocyanate (0.14 mL, 0.8 mmol, 1 equiv) was added and stirred overnight at room temperature. The reaction mixture was concentrated in vacuo and purified by column chromatography on silica gel to obtain the desired product as a white solid (285 mg, 80% vield). *Rf*: 0.52 (methylene chloride: methanol = 10:1); ¹H NMR (500MHz, CDCl₃) δ 7.75 (s, 2H), 7.35 (s, 1H), 7.26-7.23 (m, 2H), 7.19-7.18 (m, 3H), 5.70 (br s, 1H), 4.81 (s, 1H), 3.07-3.04 (m, 1H), 2.66-2.64 (m, 1H), 2.43 (s, 3H), 2.32-2.27 (m, 1H), 2.00-1.97 (m, 1H), 1.68 (br s, 3H) ppm; ¹³C NMR (125 MHz, $CDCl_3$) δ 156.7, 141.6, 140.1, 132.1 (g, J=33.1Hz), 129.0, 127.9, 126.4, 123.3 (g, J = 272.7 Hz), 118.1, 115.2, 71.0, 56.6 (x2), 40.3, 25.1, 23.2 ppm; IR (neat) 1660, 1574, 1507, 1476, 1390, 1277, 1193, 1131, 701, 649 cm⁻¹; HRMS (FAB-Magnetic Sector) m/z; $[M + H]^+$ Calcd for C₂₁H₂₂F₆N₃O 446.1667, found 446.1669; $[\alpha]^{20}_{D} = -43.6$ (c = 1.0, CHCl₃); mp: 188-190 °C.

(S)-1-(3,5-bis(trifluoromethyl)phenyl)-3-((1-methylpyrrolidin-2-yl)diphenylmethyl)urea (9g). A 10

mL round bottom flask was charged with amino azide 10^{12} (415 mg, 1.49 mmol, 1 equiv), then H₂O (1.7 mL), HCOOH (98%, 0.85 mL) and HCHO (37% aqueous solution, 1.25 mL) were added. The resulting mixture was refluxed for 5 h. The reaction mixture was then cooled to room temperature, basified with saturated aqueous NaOH solution, and extracted with CH₂Cl₂ (5 mL×3). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The residue was dissolved in 2 mL of dry ACS Paragon Plus Environment

THF and was slowly added to a suspension of LiAlH₄ (57 mg, 1.49 mmol, 1 equiv) in 1 mL of dry THF at 0 °C under an argon atmosphere. The reaction mixture was stirred at room temperature for 1.5 h, and then guenched using a 5% agueous sodium potassium tartarate solution. The resulting mixture was filtered through a pad of Celite, dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The residue was dissolved in dry CH₂Cl₂ (4 mL), then 3,5-bis(trifluoromethyl)phenyl isocyanate (0.26 mL, 1.49 mmol, 1 equiv) was added and stirred overnight at room temperature. The reaction mixture was concentrated *in vacuo* and purified by column chromatography on silica gel to obtain the desired product **9g** as a white solid (427 mg, 55% yield). Rf: 0.32 (methylene chloride: methanol = 10:1): ¹H NMR (500MHz, CDCl₃) δ 12.34 (br s, 1H), 7.70 (s, 2H), 7.44-7.36 (m, 5H), 7.29-7.24 (m, 4H), 7.21-7.16 (m, 2H), 5.59 (br s, 1H), 4.17 (dd, J = 9.6, 3.4 Hz, 1H), 3.06-3.02 (m, 1H), 2.57-2.52 (m, 1H), 2.31-2.22 (m, 1H), 2.26 (s, 3H), 2.08-2.04 (m, 1H), 1.76-1.75 (m, 1H), 1.63 (br s, 1H) ppm; ¹³C NMR $(125 \text{ MHz}, \text{CDCl}_3) \delta 156.6, 146.0, 142.8, 141.6, 132.0 (q, J = 33.1 \text{ Hz}), 128.8, 128.3, 127.7, 127.4,$ 127.1, 126.7, 123.3 (q, J = 272.6 Hz), 118.1, 115.1, 71.8, 69.8, 58.5, 44.3, 30.7, 24.4 ppm; IR (neat) 1658, 1564, 1389, 1278, 1169, 1136, 885, 668 cm⁻¹; HRMS (EI-Magnetic Sector) m/z: [M]⁺ Calcd for $C_{27}H_{25}F_6N_3O$ 521.1902, found 521.1898; $[\alpha]^{20}D = +193.6$ (c = 1.0, CHCl₃); mp: 158-159 °C.

General procedure for asymmetric Michael addition reaction. To a stirred solution of catalyst 9f (3.3 mg, 0.0075 mmol, 5%) and β -nitroolefin 1 (0.3 mmol), dithiomalonate 2 (0.15 mmol) was added under an argon atmosphere. The reaction mixture was stirred at room temperature or -40 °C. After the reaction was completed (monitored by TLC), the reaction mixture was concentrated under reduced pressure and the residue was purified through column chromatography on silica gel.

(*R*)-2-(2-nitro-1-phenylethyl)-malonic acid diphenyl dithioester (11aa). Following the general procedure with nitroolefin 1a (45 mg, 0.30 mmol), *S*,*S*'-diphenyl dithiomalonate 2a (43 mg, 0.15 mmol) and catalyst 9f (3.3 mg, 5 mol%), the desired product was obtained as a white solid (62 mg, 94% yield, 90% ee). *Rf* : 0.33 (ethyl acetate: hexane = 1:5); ¹H NMR (500 MHz, CDCl₃) δ 7.48-7.33 (m, 11H), 7.30-7.27 (m, 2H), 7.17-7.15 (m, 2H), 4.90-4.82 (m, 2H), 4.49 (d, *J* = 9.6 Hz, 1H), 4.40 (ddd, *J* = 9.6, 8.8, 4.8 Hz, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 190.4, 189.6, 135.2, 134.3, 134.2, 130.3, 130.1, ACS Paragon Plus Environment

129.6, 129.4, 129.1, 128.6, 128.4, 126.11, 126.08, 77.1, 69.4, 44.4 ppm; IR (neat) 1703, 1550, 1478, 1442, 1380, 1268, 944, 748 cm⁻¹; HRMS (FAB-Magnetic Sector) m/z: $[M + H]^+$ Calcd for C₂₃H₂₀NO₄S₂ 438.0834, found 438.0837; HPLC Chiracel OD-H column, *i*-PrOH/*n*-hexane = 20/80, 25 °C, 1.0 ml/min, λ = 254 nm, t_R= 16.92 min (minor), t_R= 22.90 min (major); $[\alpha]^{20}_{D}$ = -102.0 (c = 1.0, CHCl₃; 98% ee); mp: 160-162 °C.

(*R*)-2-(2-nitro-1-phenylethyl)-malonic acid bis-4-methoxyphenyl dithioester (11ab). Following the general procedure with nitroolefin 1a (45 mg, 0.30 mmol), *S*,*S*'-bis(4-methoxyphenyl) dithiomalonate 2b (52 mg, 0.15 mmol) and catalyst 9f (3.3 mg, 5 mol%), the reaction was completed in 1.5 h at r.t.. After column chromatography, the desired product was obtained as a white solid (69 mg, 92% yield, 92% ee). *Rf*: 0.30 (ethyl acetate: hexane = 1:3); ¹H NMR (500 MHz, CDCl₃) δ 7.39-7.31 (m, 5H), 7.27-7.26 (m, 2H), 7.06-7.03 (m, 2H), 6.99-6.96 (m, 2H), 6.89-6.86 (m, 2H), 4.89-4.81 (m, 2H), 4.44 (d, *J* = 9.5 Hz, 1H), 4.40-4.35 (m, 1H), 3.84 (s, 3H), 3.80 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 191.5, 190.7, 161.2, 161.1, 136.0, 135.9, 135.3, 129.1, 128.6, 128.4 (x2), 116.7, 115.2, 115.0, 68.8, 55.5, 55.4, 44.3 ppm; IR (neat) 1700, 1593, 1550, 1496, 1457, 1378, 1292, 1254, 1174, 971, 824, 654 cm⁻¹; HRMS (EI-Magnetic Sector) m/z: [M]⁺ Calcd for C₂₅H₂₃NO₆S₂ 497.0967, found 497.0968; HPLC Chiracel OD-H column, *i*-PrOH/*n*-hexane = 30/70, 40 °C, 1.0 ml/min, λ = 254 nm, t_R= 21.92 min (minor), t_R= 23.91 min (major); [α]²⁰_D = -100.5 (c = 1.0, CHCl₃; 92% ee); mp: 110-135 °C decomposed.

(*R*)-2-(2-nitro-1-phenylethyl)-malonic acid dipropyl dithioester (11ac). Following the general procedure with nitroolefin 1a (45 mg, 0.30 mmol), *S*,*S*'-dipropyl dithiomalonate 2c (33 mg, 0.15 mmol) and catalyst 9f (3.3 mg, 5 mol%), the desired product was obtained as a white solid (53 mg, 95% yield, 73% ee). *Rf*: 0.48 (ethyl acetate: hexane = 1:5); ¹H NMR (500 MHz, CDCl₃) δ 7.32-7.24 (m, 3H), 7.22-7.19 (m, 2H), 4.78-4.71 (m, 2H), 4.39-4.34 (m, 1H), 4.27 (d, *J* = 10.1 Hz, 1H), 2.95 (t, *J* = 7.2 Hz, 2H), 2.79-2.74 (m, 1H), 2.71-2.66 (m, 1H), 1.67-1.60 (m, 2H), 1.43-1.31 (m, 2H), 0.98 (t, *J* = 7.4 Hz, 3H), 0.77 (t, *J* = 7.4 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 192.3, 191.3, 135.5, 129.1, 128.5, 128.3, 77.6, 70.6, 44.3, 32.0, 31.8, 22.7, 22.5, 13.4, 13.1 ppm; IR (neat) 1697, 1559, 1381, 977, 663 cm⁻¹; HRMS (EI-Magnetic Sector) m/z: $[MI]^+$ Calcd for C_{1.7}H_{2.3}NO₄S₂ 369.1069, found 369.1071; HPLC

Chiracel OD-H column, *i*-PrOH/*n*-hexane = 20/80, 25 °C, 1.0 ml/min, λ = 254 nm, t_R= 6.93 min (major), t_R= 7.76 min (minor); $[\alpha]^{20}_{D}$ = -27.4 (c = 1.0, CHCl₃; 73% ee); mp: 66-69 °C.

(*R*)-2-(2-nitro-1-phenylethyl)-malonic acid diethyl dithioester (11ad). Following the general procedure with nitroolefin 1a (45 mg, 0.30 mmol), *S*,*S*'-diethyl dithiomalonate 2d (29 mg, 0.15 mmol) and catalyst 9f (3.3 mg, 5 mol%), the desired product was obtained as a white solid (48 mg, 93% yield, 89% ee). *Rf*: 0.41 (ethyl acetate: hexane = 1:5); ¹H NMR (500 MHz, CDCl₃) δ 7.32-7.25 (m, 3H), 7.22-7.20 (m, 2H), 4.79-4.72 (m, 2H), 4.40-4.35 (m, 1H), 4.25 (d, *J* = 10.1 Hz, 1H), 2.98 (qd, *J* = 7.4, 1.1 Hz, 2H), 2.81-2.74 (m, 1H), 2.74-2.67 (m, 1H), 1.29 (t, *J* = 7.4 Hz, 3H), 1.02 (t, *J* = 7.4 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 192.1, 191.1, 135.3, 128.9, 128.4, 128.2, 77.4, 70.3, 44.2, 24.5, 24.3, 14.2, 14.1 ppm; IR (neat) 2929, 1692, 1560, 1457, 1379, 1261, 1090, 967, 701, 640 cm⁻¹; HRMS (EI-Magnetic Sector) m/z: [M]⁺ Calcd for C₁₅H₁₉NO₄S₂ 341.0756, found 341.0756; HPLC Chiracel OD-H column, *i*-PrOH/*n*-hexane = 5/95, 25 °C, 1.0 ml/min, λ = 254 nm, t_R= 13.85 min (major), t_R= 15.02 min (minor); [α]²⁰n = -34.3 (c = 1.0, CHCl₃; 89% ee); mp; 72-75 °C.

(*R*)-2-(1-(4-fluoro-phenyl)-2-nitro-ethyl)-malonic acid diphenyl dithioester (11ba). Following the general procedure with nitroolefin 1b (50 mg, 0.30 mmol), *S*,*S*'-diphenyl dithiomalonate 2a (43 mg, 0.15 mmol) and catalyst 9f (3.3 mg, 5 mol%), the desired product was obtained as a white solid (63 mg, 92% yield, 87% ee). *Rf*: 0.33 (ethyl acetate: hexane = 1:5); ¹H NMR (500 MHz, CDCl₃) δ 7.48-7.36 (m, 8H), 7.27-7.25 (m, 2H), 7.18-7.16 (m, 2H), 7.09-7.04 (m, 2H), 4.81 (d, *J* = 6.7 Hz, 2H), 4.45 (d, *J* = 9.7 Hz, 1H), 4.42–4.37 (m, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 190.3, 189.5, 162.7 (d, *J* = 248.2 Hz), 134.3, 134.2, 131.0 (d, *J* = 3.3 Hz), 130.3, 130.2, 130.1, 129.6, 129.5, 125.9 (d, *J* = 6.6 Hz), 116.2, 116.1, 77.1, 69.3, 43.6 ppm; IR (neat) 1709, 1558, 1512, 1478, 1442, 1375, 1231, 1163, 968, 838, 668 cm⁻¹; HRMS (EI-Magnetic Sector) m/z: [M]⁺ Calcd for C₂₃H₁₈FNO₄S₂ 455.0661, found 455.0664; HPLC Chiracel OD-H column, *i*-PrOH/*n*-hexane = 20/80, 25 °C, 1.0 ml/min, λ = 254 nm, t_R= 16.83 min (minor), t_R= 24.81 min (major); [α]²⁰_D = -92.8 (c =1.0, CHCl₃; >99% ee); mp: 141-145 °C.

The Journal of Organic Chemistry

(*R*)-2-(*1*-(2-*fluoro-phenyl*)-2-*nitro-ethyl*)-*malonic acid diphenyl dithioester* (11ca). Following the general procedure with nitroolefin 1c (50 mg, 0.30 mmol), *S*,*S*'-diphenyl dithiomalonate 1a (43 mg, 0.15 mmol) and catalyst 9f (3.3 mg, 5 mol%), the desired product was obtained as a white solid (68 mg, 99% yield, 91% ee). *Rf* : 0.40 (ethyl acetate: hexane = 1:5); ¹H NMR (500 MHz, CDCl₃) δ 7.46-7.42 (m, 5H), 7.38-7.33 (m, 4H), 7.25-7.22 (m, 1H), 7.14-7.10 (m, 4H), 4.94 (dd, *J* = 13.2, 9.7 Hz, 1H), 4.80 (dd, *J* = 13.2, 4.0 Hz, 1H), 4.65 (d, *J* = 10.1 Hz, 1H), 4.59 (ddd, *J* = 10.1, 9.7, 4.0 Hz, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 190.1, 189.4, 161.3 (d, *J* = 246.6 Hz), 134.3, 134.2, 131.6 (d, *J* = 4.2 Hz), 130.6 (d, *J* = 8.8 Hz), 130.3, 130.1, 129.6, 129.4, 126.0 (d, *J* = 2.6 Hz), 124.8 (d, *J* = 3.3 Hz), 122.1 (d, *J* = 12.7 Hz), 116.4, 116.2, 75.7 (d, *J* = 2.9 Hz), 67.2 (d, *J* = 2.2 Hz), 40.5 ppm; IR (neat) 2974, 2927, 1708, 1556, 1494, 1441, 1377, 1052, 1033, 1006, 969, 650 cm⁻¹; HRMS (EI-Magnetic Sector) m/z: [M]⁺ Calcd for C₂₃H₁₈FNO₄S₂ 455.0661, found 455.0664; HPLC Chiracel OD-H column, *i*-PrOH/*n*-hexane = 20/80, 25 °C, 1.0 ml/min, λ = 254 nm, t_R= 11.00 min (minor), t_R= 18.32 min (major); [α]²⁰_D = -85.5 (c = 1.0, CHCl₃; 91% ee); mp; 88-92 °C.

(*R*)-2-(1-(4-bromo-phenyl)-2-nitro-ethyl)-malonic acid diphenyl dithioester (11da). Following the general procedure with nitroolefin 1d (68 mg, 0.30 mmol), *S*,*S*'-diphenyl dithiomalonate 2a (43 mg, 0.15 mmol) and catalyst 9f (3.3 mg, 5 mol%), the desired product was obtained as a white solid (76 mg, 98% yield, 90% ee). *Rf*: 0.43 (ethyl acetate: hexane = 1:5); ¹H NMR (500 MHz, CDCl₃) δ 7.52-7.45 (m, 5H), 7.44-7.36 (m, 5H), 7.20-7.14 (m, 4H), 4.85-4.79 (m, 2H), 4.44 (d, *J* = 9.6 Hz, 1H), 4.39-4.34 (m, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 190.2, 189.4, 134.34, 134.26, 134.2, 132.3, 130.3, 130.2, 130.0, 129.6, 129.5, 125.93, 125.86, 122.8, 76.8, 69.0, 43.7 ppm; IR (neat) 2923, 2850, 1701, 1555, 1478, 1441, 1377, 1059, 1033, 1012, 967, 752, 655 cm⁻¹; HRMS (EI-Magnetic Sector) m/z: [M]⁺ Calcd for C₂₃H₁₈BrNO₄S₂ 514.9861, found 514.9863; HPLC Chiracel OD-H column, *i*-PrOH/*n*-hexane = 20/80, 25 °C, 1.0 ml/min, λ = 254 nm, t_R= 19.86 min (minor), t_R= 31.74 min (major); [*a*]²⁰_D = -100.2 (c = 1.0, CHCl₃; >99% ee); mp: 147-149 °C.

(R)-2-(1-(2-bromo-phenyl)-2-nitro-ethyl)-malonic acid diphenyl dithioester (11ea). Following the general procedure with nitroolefin 1e (68 mg, 0.30 mmol), S,S'-diphenyl dithiomalonate 2a (43 mg, ACS Paragon Plus Environment

0.15 mmol) and catalyst **9f** (3.3 mg, 5 mol%), the desired product was obtained as a light yellow oil (76 mg, 98% yield, 97% ee). *Rf* : 0.42 (ethyl acetate: hexane = 1:5); ¹H NMR (500 MHz, CDCl₃) δ 7.64 (dd, J = 8.0, 1.0 Hz, 1H), 7.47-7.35 (m, 8H), 7.33-7.27 (m, 3H), 7.26-7.18 (m, 2H), 5.13-5.08 (m, 1H), 4.97-4.78 (m, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 190.8, 189.8, 134.4, 134.32, 134.29, 134.1, 130.3, 130.2, 130.1, 129.6, 129.5, 128.0 (x2), 126.2, 126.0, 124.9, 75.1, 67.0, 43.0 ppm; IR (neat) 2919, 1706, 1558, 1478, 1442, 1377, 1058, 1033, 747, 668 cm⁻¹; HRMS (EI-Magnetic Sector) m/z: [M]⁺ Calcd for C₂₃H₁₈BrNO₄S₂ 514.9861, found 514.9857; HPLC Chiracel OD-H column, *i*-PrOH/*n*-hexane = 20/80, 25 °C, 1.0 ml/min, λ = 254 nm, t_R= 11.31 min (minor), t_R= 21.30 min (major); [α]²⁰_D = -21.5 (c = 1.0, CHCl₃; 97% ee).

(*R*)-2-(1-(4-trifluoromethyl-phenyl)-2-nitro-ethyl)-malonic acid diphenyl dithioester (11fa). Following the general procedure with nitroolefin 1f (65 mg, 0.30 mmol), *S*,*S*'-diphenyl dithiomalonate **2a** (43 mg, 0.15 mmol) and catalyst 9f (3.3 mg, 5 mol%), the desired product was obtained as a white solid (67 mg, 88% yield, 92% ee). *Rf*: 0.45 (ethyl acetate: hexane = 1:5); ¹H NMR (500 MHz, CDCl₃) δ 7.64 (d, *J* = 8.1 Hz, 2H), 7.50–7.35 (m, 10H), 7.15–7.12 (m, 2H), 4.90–4.82 (m, 2H), 4.50–4.45 (m, 2H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 190.1, 189.4, 139.4, 134.3, 134.2, 130.9 (q, *J* = 33.0 Hz), 130.4, 130.3, 129.6, 129.5, 129.0, 126.1 (q, *J* = 3.7 Hz), 125.8, 125.7, 123.8 (q, *J* = 272.3 Hz), 76.7, 68.8, 43.9 ppm; IR (neat) 2919, 1738, 1696, 1558, 1479, 1442, 1377, 1327, 1167, 1124, 1070, 966, 852, 747, 658 cm⁻¹; HRMS (EI-Magnetic Sector) m/z: [M]⁺ Calcd for C₂₄H₁₈F₃NO₄S₂ 505.0629, found 505.0632; HPLC Chiracel OD-H column, *i*-PrOH/*n*-hexane = 20/80, 25 °C, 1.0 ml/min, λ = 254 nm, t_R= 15.00 min (minor), t_R= 28.76 min (major); [α]²⁰_D = -95.0 (c = 1.0, CHCl₃; >99% ee); mp: 110-120 °C.

(*R*)-2-(1-(4-methyl-phenyl)-2-nitro-ethyl)-malonic acid diphenyl dithioester (11ga). Following the general procedure with nitroolefin 1g (49 mg, 0.30 mmol), *S*,*S*'-diphenyl dithiomalonate 2a (43 mg, 0.15 mmol) and catalyst 9f (3.3 mg, 5 mol%), the desired product was obtained as a white solid (64 mg, 94% yield, 90% ee). *Rf* : 0.36 (ethyl acetate: hexane = 1:5); ¹H NMR (500 MHz, CDCl₃) δ 7.47-7.40 (m, 5H), 7.40-7.34 (m, 3H), 7.19-7.13 (m, 6H), 4.87-4.79 (m, 2H), 4.46 (d, *J* = 9.5 Hz, 1H), 4.36 (ddd, *J* = 9.5, 8.7, 5.0 Hz, 1H), 2.34(s,1H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 190.5, 189.6, 138.4, 134.3, 134.2, ACS Paragon Plus Environment

132.1, 130.2, 130.0, 129.8, 129.5, 129.4, 128.2, 126.18, 126.16 77.2, 69.5, 44.1, 21.2ppm; IR (neat) 1708, 1555, 1478, 1441, 1376, 1257, 954 cm⁻¹; HRMS (FAB-Magnetic Sector) m/z: $[M + H]^+$ Calcd for C₂₄H₂₂NO₄S₂ 452.0990, found 452.0993; HPLC Chiracel OD-H column, *i*-PrOH/*n*-hexane = 20/80, 25 °C, 1.0 ml/min, λ = 254 nm, t_R= 14.31 min (minor), t_R= 20.09 min (major); $[\alpha]^{20}_{D}$ = -88.5 (c = 1.0, CHCl₃; 93% ee); mp: 150-155 °C.

(*R*)-2-(1-(4-methoxy-phenyl)-2-nitro-ethyl)-malonic acid diphenyl dithioester (11ha). Following the general procedure with nitroolefin 1h (54 mg, 0.30 mmol), *S*,*S*'-diphenyl dithiomalonate 2a (43 mg, 0.15 mmol) and catalyst 9f (3.3 mg, 5 mol%), the desired product was obtained as a white solid (69 mg, 98% yield, 87% ee). *Rf*: 0.32 (ethyl acetate: hexane = 1:5); ¹H NMR (500 MHz, CDCl₃) δ 7.46-7.42 (m, 5H), 7.39-7.34 (m, 3H), 7.20-7.17 (m, 4H), 6.90-6.86 (m, 2H), 4.84-4.77 (m, 2H), 4.45 (d, *J* = 9.7 Hz, 1H), 4.37-4.33 (m, 1H), 3.80 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 190.5, 189.6, 159.7, 134.3, 134.2, 130.2, 130.1, 129.6, 129.5, 129.4, 127.0, 126.17, 126.16, 114.5, 77.3, 69.6, 55.3, 43.8 ppm; IR (neat) 2984, 1703, 1559, 1515, 1442, 1376, 1255, 1181, 1057, 1033, 968, 831, 751, 646 cm⁻¹; HRMS (EI-Magnetic Sector) m/z: [M]⁺ Calcd for C₂₄H₂₁NO₅S₂ 467.0861, found 467.0864; HPLC Chiracel OD-H column, *i*-PrOH/*n*-hexane = 30/70, 25 °C, 1.0 ml/min, λ = 254 nm, t_R= 14.62 min (minor), t_R= 19.86 min (major); [α]²⁰_D = -105.6 (c = 1.0, CHCl₃; 94% ee); mp: 130-135 °C.

(*R*)-2-(1-(2-methoxy-phenyl)-2-nitro-ethyl)-malonic acid diphenyl dithioester (11ia). Following the general procedure with nitroolefin 1i (54 mg, 0.30 mmol), *S*,*S*'-diphenyl dithiomalonate 2a (43 mg, 0.15 mmol) and catalyst 9f (3.3 mg, 5 mol%), the desired product was obtained as a white solid (69 mg, 98% yield, 94% ee). *Rf*: 0.37 (ethyl acetate: hexane = 1:5); ¹H NMR (500 MHz, CDCl₃) δ 7.44-7.41 (m, 5H), 7.37-7.29 (m, 4H), 7.15-7.13 (m, 1H), 7.06-7.04 (m, 2H), 6.93-6.89 (m, 2H), 5.08 (dd, *J* = 12.9, 9.8 Hz, 1H), 4.86 (d, *J* = 10.2 Hz, 1H), 4.73 (dd, *J* = 12.9, 4.2 Hz, 1H), 4.53 (ddd, *J* = 10.2, 9.8, 4.2 Hz, 1H), 3.94 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 190.6, 189.8, 157.7, 134.34, 134.25, 131.9, 130.1, 130.0, 129.9, 129.5, 129.3, 126.3 (x2), 122.5, 121.0, 111.2, 75.6, 66.6, 55.5, 42.6 ppm; IR (neat) 3059, 1711, 1555, 1495, 1441, 1378, 1247, 973, 745, 652 cm⁻¹; HRMS (EI-Magnetic Sector) m/z: [M]⁺ Calcd for C₂₄H₂₁NO₅S₂ 467.0861, found 467.0858; HPLC Chiracel OD-H column, *i*-PrOH/*n*-hexane = 30/70, ACS Paragon Plus Environment

25 °C, 1.0 ml/min, λ = 254 nm, t_R= 8.11 min (minor), t_R= 10.29 min (major); $[\alpha]^{20}_{D}$ = -128.8 (c = 1.0, CHCl₃; 94% ee); mp: 110-113 °C.

(*S*)-2-(1-(2-thiophenyl)-2-nitro-ethyl)-malonic acid diphenyl dithioester (11ja). Following the general procedure with nitroolefin 1j (47 mg, 0.30 mmol), *S*,*S*'-diphenyl dithiomalonate 2a (43 mg, 0.15 mmol) and catalyst 9f (3.3 mg, 5 mol%), the desired product was obtained as a white solid (66 mg, 99% yield, 90% ee). *Rf* : 0.40 (ethyl acetate: hexane = 1:5); ¹H NMR (500 MHz, CDCl₃) δ 7.46-7.36 (m, 8H), 7.29-7.24 (m, 3H), 6.99-6.96 (m, 2H), 4.88-4.81 (m, 2H), 4.69 (ddd, *J* = 7.8, 8.9, 5.1 Hz, 1H), 4.55 (d, *J* = 8.9 Hz, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 190.3, 189.6, 137.7, 134.3, 130.3, 130.2, 129.6, 129.5, 127.6, 127.2, 126.09, 126.06, 125.9, 77.7, 69.8, 39.8 ppm; IR (neat) 1700, 1556, 1478, 1441, 1378, 1264, 1059, 963, 747, 673 cm⁻¹; HRMS (EI-Magnetic Sector) m/z: [M]⁺ Calcd for C₂₁H₁₇NO₄S₃ 443.0320, found 443.0322; HPLC Chiracel OD-H column, *i*-PrOH/*n*-hexane = 20/80, 25 °C, 1.0 ml/min, λ = 254 nm, t_R= 15.72 min (minor), t_R= 23.07 min (major); [α]²⁰_D = -45.6 (c = 1.0, CHCl₃; 90% ee); mp: 133-137 °C.

(*S*)-2-(1-(2-furyl)-2-nitro-ethyl)-malonic acid diphenyl dithioester (11ka). Following the general procedure with nitroolefin 1k (42 mg, 0.30 mmol), *S*,*S*'-diphenyl dithiomalonate 2a (43 mg, 0.15 mmol) and catalyst 9f (3.3 mg, 5 mol%), the desired product was obtained as a white solid (63 mg, 98% yield, 93% ee). *Rf*: 0.40 (ethyl acetate: hexane = 1:5); ¹H NMR (500 MHz, CDCl₃) δ 7.46-7.39 (m, 9H), 7.32-7.31 (m, 2H), 6.35 (dd, *J* = 3.2, 1.9 Hz, 1H), 6.27 (d, *J* = 3.3 Hz, 1H), 4.88-4.79 (m, 2H), 4.62 (d, *J* = 8.9 Hz, 1H), 4.51 (ddd, *J* = 8.9, 8.6, 4.2 Hz, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 190.1, 189.7, 148.5, 143.2, 134.32, 134.29, 130.3, 130.2, 129.6, 129.5, 126.08, 126.06, 110.7, 109.5, 75.1, 66.9, 38.1 ppm; IR (neat) 2930, 1708, 1555, 1478, 1442, 1376, 1257, 982 cm⁻¹; HRMS (FAB-Magnetic Sector) m/z: [M + H]⁺ Calcd for C₂₁H₁₈NO₅S₂ 428.0626, found 428.0624; HPLC Chiracel OD-H column, *i*-PrOH/*n*-hexane = 30/70, 25 °C, 1.0 ml/min, λ = 254 nm, t_R= 10.81 min (minor), t_R= 17.04 min (major); [α]²⁰_D = - 64.9 (c = 1.0, CHCl₃; 93% ee); mp: 114-122 °C decomposed.

(*R*)-2-(1-(2-naphthyl)-2-nitro-ethyl)-malonic acid diphenyl dithioester (111a). Following the general procedure with nitroolefin 11 (60 mg, 0.30 mmol), *S*,*S*'-diphenyl dithiomalonate 2a (43 mg, 0.15 mmol) and catalyst 9f (3.3 mg, 5 mol%), the desired product was obtained as a white solid (67 mg, 92% yield, 86% ee). *Rf*: 0.37 (ethyl acetate: hexane = 1:5); ¹H NMR (500 MHz, CDCl₃) δ 7.88-7.81 (m, 3H), 7.74-7.71 (m, 1H), 7.53-7.49 (m, 2H), 7.48-7.33 (m, 7H), 7.30-7.25 (m, 2H), 7.07-7.05 (m, 2H), 5.02-4.91 (m, 2H), 4.60-4.55 (m, 2H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 190.5, 189.6, 134.3, 134.2, 133.3, 133.1, 132.6, 130.3, 130.0, 129.6, 129.4, 129.1, 128.04, 127.96, 127.8, 126.7, 126.1, 126.0, 125.3, 77.0, 69.3, 44.5 ppm; IR (neat) 3064, 2926, 1710, 1684, 1561, 1478, 1441, 1425, 1379, 1251, 1069, 1023, 962, 911, 859, 828, 746, 668 cm⁻¹; HRMS (EI-Magnetic Sector) m/z: [M]⁺ Calcd for C₂₇H₂₁NO₄S₂ 487.0912, found 487.0910; HPLC Chiracel OD-H column, *i*-PrOH/*n*-hexane = 30/70, 25 °C, 1.0 ml/min, λ = 254 nm, t_R= 26.03 min (major), t_R= 33.66 min (minor); [α]²⁰_D = -81.5 (c = 1.0, CHCl₃; >99% ee); mp: 165-175 °C decomposed.

(*S*)-2-(1-(*n*-propyl)-2-nitro-ethyl)-malonic acid diphenyl dithioester (11ma). Following the general procedure with nitroolefin 1m (35 μ L, 0.30 mmol), *S*,*S*'-diphenyl dithiomalonate 2a (43 mg, 0.15 mmol) and catalyst 9f (3.3 mg, 5 mol%), the desired product was obtained as a yellow solid (56 mg, 93% yield, 90% ee). *Rf* : 0.45 (ethyl acetate: hexane = 1:5); ¹H NMR (500 MHz, CDCl₃) δ 7.45 (s, 5H), 7.44 (s, 5H), 4.73 (dd, *J* = 13.6, 4.090 Hz, 1H), 4.49 (dd, *J* = 13.6, 6.4 Hz, 1H), 4.34 (d, *J* = 7.2 Hz, 1H), 3.07-3.01 (m, 1H), 1.57-1.40 (m, 4H), 0.95 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 190.98, 190.96, 134.37, 134.32, 130.19, 130.16, 129.55, 129.52, 126.37, 126.32, 76.0, 67.6, 38.4, 32.0, 19.9, 13.8 ppm; IR (neat) 2960, 2930, 1707, 1552, 1478, 1441, 1381, 1266, 997, 971, 688 cm⁻¹; HRMS (FAB-Magnetic Sector) m/z: [M + H]⁺ Calcd for C₂₀H₂₂NO₄S₂ 404.0990, found 404.0988; HPLC Chiracel OD-H column, *i*-PrOH/*n*-hexane = 20/80, 25 °C, 1.0 ml/min, λ = 254 nm, t_R= 6.57 min (minor), t_R= 9.44 min (major); [α]²⁰_D = -46.6 (c = 1.0, CHCl₃; 90% ee); mp: 63-67 °C.

(S)-2-(1-isobutyl-2-nitro-ethyl)-malonic acid diphenyl dithioester (11na). Following the general procedure with nitroolefin 1n (40 μ L, 0.30 mmol), S,S'-diphenyl dithiomalonate 2a (43 mg, 0.15 mmol) and catalyst 9f (3.3 mg, 5 mol%), the desired product was obtained as a colorless oil (60 mg, 96% yield, ACS Paragon Plus Environment

86% ee). *Rf* : 0.48 (ethyl acetate: hexane = 1:5); ¹H NMR (500 MHz, CDCl₃) δ 7.45 (s, 5H), 7.44 (s, 5H), 4.74 (dd, J = 13.7, 4.1 Hz, 1H), 4.49 (dd, J = 13.7, 6.1 Hz, 1H), 4.34 (d, J = 6.8 Hz, 1H), 3.11-3.05 (m, 1H), 1.78-1.70 (m, 1H), 1.40 (t, J = 7.1 Hz, 2H), 0.95 (d, J = 6.7 Hz, 3H), 0.94 (d, J = 6.7 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 191.05, 191.02, 134.4, 134.3, 130.18, 130.15, 129.55, 129.51, 126.4, 126.3, 76.3, 67.5, 38.8, 36.6, 25.2, 22.6, 22.0 ppm; IR (neat) 2962, 2918, 1708, 1552, 1478, 1441, 1382, 1270, 1208, 979, 744, 669, 640 cm⁻¹; HRMS (EI-Magnetic Sector) m/z: [M]⁺ Calcd for C₂₁H₂₃NO₄S₂ 417.1069, found 417.1066; HPLC Chiracel OD-H column, *i*-PrOH/*n*-hexane = 20/80, 25 °C, 1.0 ml/min, λ = 254 nm, t_R= 5.64 min (minor), t_R= 8.25 min (major); [α]²⁰_D = -48.6 (c = 1.0, CHCl₃; 86% ee).

(*S*)-2-(1-(2-phenylethyl)-2-nitro-ethyl)-malonic acid diphenyl dithioester (110a). Following the general procedure with nitroolefin 10 (48 μL, 0.30 mmol), *S*,*S*'-diphenyl dithiomalonate 2a (43 mg, 0.15 mmol) and catalyst 9f (3.3 mg, 5 mol%), the desired product was obtained as a white solid (66 mg, 95% yield, 90% ee). *Rf*: 0.47 (ethyl acetate: hexane = 1:5); ¹H NMR (500 MHz, CDCl₃) δ 7.46-7.43 (m, 10H), 7.32-7.29 (m, 2H), 7.24-7.17 (m, 3H), 4.76 (dd, *J* = 13.7, 4.1 Hz, 1H), 4.52 (dd, *J* = 13.7, 6.4 Hz, 1H), 4.37 (d, *J* = 7.2 Hz, 1H), 3.10-3.04 (m, 1H), 2.81-2.69 (m, 2H), 1.94-1.80 (m, 2H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 190.93, 190.86, 140.1, 134.4, 134.3, 130.22, 130.21, 129.56, 129.55, 128.8, 128.3, 126.5, 126.3, 126.2, 75.9, 67.4, 38.2, 33.0, 31.6 ppm; IR (neat) 2919, 1704, 1551, 1478, 1442, 1382, 1271, 970, 746, 688 cm⁻¹; HRMS (FAB-Magnetic Sector) m/z: [M + H]⁺ Calcd for C₂₅H₂₄NO4S₂ 466.1147, found 466.1146; HPLC Chiracel OD-H column, *i*-PrOH/*n*-hexane = 20/80, 25 °C, 1.0 ml/min, λ = 254 nm, t_R= 13.27 min (minor), t_R= 17.46 min (major); [α]²⁰_D = -40.9 (c = 1.0, CHCl₃; 90% ee); mp: 94-98 °C.

(*S*)-2-(1-(*n*-hexyl)-2-nitro-ethyl)-malonic acid diphenyl dithioester (11pa). Following the general procedure with nitroolefin 1p (47 μ L, 0.30 mmol), *S*,*S*'-diphenyl dithiomalonate 2a (43 mg, 0.15 mmol) and catalyst 9f (3.3 mg, 5 mol%), the desired product was obtained as a white solid (65 mg, 97% yield, 86% ee). *Rf*: 0.60 (ethyl acetate: hexane = 1:5); ¹H NMR (500 MHz, CDCl₃) δ 7.47-7.43 (m, 10H), 4.74 (dd, *J* = 13.6, 4.0 Hz, 1H), 4.50 (dd, *J* = 13.6, 6.5 Hz, 1H), 4.35 (d, *J* = 7.3 Hz, 1H), 3.05-2.99 (m, 1H), ACS Paragon Plus Environment

1.59-1.48 (m, 2H), 1.47-1.37 (m, 2H), 1.35-1.25 (m, 6H), 0.89 (t, J = 6.9 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 191.00, 190.98, 134.4, 134.3, 130.20, 130.17, 129.55, 129.52, 126.34, 126.28, 76.0, 67.5, 38.6, 31.5, 29.8, 29.0, 26.5, 22.5, 14.1 ppm; IR (neat) 2957, 2932, 2856, 1707, 1551, 1478, 1441, 1380, 967, 746, 688, 668 cm⁻¹; HRMS (EI-Magnetic Sector) m/z: [M]⁺ Calcd for C₂₃H₂₇NO₄S₂ 445.1382, found 445.1383; HPLC Chiracel OD-H column, *i*-PrOH/*n*-hexane = 20/80, 25 °C, 1.0 ml/min, λ = 254 nm, t_R= 5.79 min (minor), t_R= 7.90 min (major); [α]²⁰_D = -41.5 (c = 1.0, CHCl₃; 86% ee); mp: 68-73 °C.

(*S*)-2-(1-(*n*-hexyl)-2-nitro-ethyl)-malonic acid bis(4-methoxyphenyl) dithioester (11pb). Following the general procedure with nitroolefin 1p (47 µL, 0.30 mmol), *S*,*S*'-bis-4-methoxyphenyl dithiomalonate **2b** (52 mg, 0.15 mmol), and catalyst 9f (3.3 mg, 5 mol%), the desired product was obtained as a colorless oil (72 mg, 95% yield, 85% ee). *Rf* : 0.34 (ethyl acetate: hexane = 1:5); ¹H NMR (500 MHz, CDCl₃) δ 7.38-7.33 (m, 4H), 6.99-6.95 (m, 4H), 4.73 (dd, *J* = 13.6, 4.0 Hz, 1H), 4.48 (dd, *J* = 13.6, 6.6 Hz, 1H), 4.32 (d, *J* = 7.1 Hz, 1H), 3.835 (s, 3H), 3.832 (s, 3H), 3.03-2.97 (m, 1H), 1.58-1.48 (m, 2H), 1.44-1.36 (m, 2H), 1.33-1.26 (m, 6H), 0.90 (t, *J* = 6.9 Hz, 3H). ppm; ¹³C NMR (125 MHz, CDCl₃) δ 192.10, 192.06, 161.19, 161.16, 136.06, 136.00, 116.96, 116.90, 115.17, 115.14, 76.1, 66.9, 55.4, 38.6, 31.5, 29.9, 29.0, 26.5, 22.5, 14.1 ppm; IR (neat) 2932, 2857, 1707, 1593, 1552, 1496, 1440, 1380, 1291, 1251, 1174, 1029, 968, 826, 668 cm⁻¹; HRMS (EI-Magnetic Sector) m/z: [M]⁺ Calcd for C₂₅H₃₁NO₆S₂ 505.1593, found 505.1597; HPLC Chiracel OD-H column, *i*-PrOH/*n*-hexane = 30/70, 25 °C, 1.0 ml/min, λ = 254 nm, t_R= 10.10 min (minor), t_R= 12.56 min (major); [α]²⁰_D = -43.2 (c = 1.0, CHCl₃; 85% ee).

(*S*)-2-(1-cyclohexyl-2-nitro-ethyl)-malonic acid diphenyl dithioester (11qa). Following the general procedure with nitroolefin 1q (21 μL, 0.15 mmol), *S*,*S*'-diphenyl dithiomalonate 2a (22 mg, 0.075 mmol) and catalyst 9f (3.3 mg, 10 mol%), the desired product was obtained as a white solid (22 mg, 65% yield, 81% ee). *Rf* : 0.47 (ethyl acetate: hexane = 1:5); ¹H NMR (500 MHz, CDCl₃) δ 7.47-7.41 (m, 10H), 4.82 (dd, *J* = 14.8, 3.2 Hz, 1H), 4.60 (dd, *J* = 14.8, 7.1 Hz, 1H), 4.42 (d, *J* = 5.4 Hz, 1H), 3.04-3.00 (m, 1H), 1.83-1.69 (m, 5H), 1.57-1.50 (m, 1H), 1.31-1.26 (m, 1H), 1.23-1.03 (m, 4H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 191.5, 191.1, 134.5, 134.3, 130.2, 130.1, 129.6, 129.5, 126.4, 126.3, 74.9, 65.7, 44.3, 40.0, ACS Paragon Plus Environment

30.6, 29.8, 26.32, 26.25, 26.0 ppm; IR (neat) 2930, 2853, 1706, 1553, 1442, 1375, 1264, 745, 619 cm⁻¹; HRMS (FAB-Magnetic Sector) m/z: $[M + H]^+$ Calcd for C₂₃H₂₆NO₄S₂ 444.1303, found 444.1301; HPLC Chiracel OD-H column, *i*-PrOH/*n*-hexane = 20/80, 25 °C, 1.0 ml/min, λ = 254 nm, t_R= 5.45 min (minor), t_R= 7.68 min (major); $[\alpha]^{20}_{D}$ = -80.6 (c = 1.0, CHCl₃; 81% ee); mp: 80-85 °C.

(*S*)-2-(*1*-cyclohexyl-2-nitro-ethyl)-malonic acid bis(4-methoxyphenyl) dithioester (11qb). Following the general procedure with nitroolefin 1q (21 μL, 0.15 mmol), *S*,*S*'-bis-4-methoxyphenyl dithiomalonate **2b** (26 mg, 0.075 mmol) and catalyst 9f (3.3 mg, 10 mol%), the desired product was obtained as a light yellow oil (31 mg, 82% yield, 82% ee). *Rf* : 0.27 (ethyl acetate: hexane = 1:5); ¹H NMR (500 MHz, CDCl₃) δ 7.38-7.35 (m, 2H), 7.34-7.31 (m, 2H), 6.99-6.94 (m, 4H), 4.81 (dd, *J* = 14.8, 3.1 Hz, 1H), 4.59 (dd, *J* = 14.8, 7.2 Hz, 1H), 4.40 (d, *J* = 5.3 Hz, 1H), 3.835 (s, 3H), 3.828 (s, 3H), 3.01-2.97 (m, 1H), 1.82-1.77 (m, 3H), 1.73-1.68 (m, 2H), 1.54-1.48 (m, 1H), 1.24-1.19 (m, 2H), 1.17-1.01 (m, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 192.7, 192.3, 161.21, 161.15, 136.2, 136.0, 117.0, 116.9, 115.2, 115.1, 75.1, 65.1, 55.4, 44.3, 40.0, 30.6, 29.8, 26.32, 26.26, 26.0 ppm; IR (neat) 2924, 1706, 1593, 1559, 1496, 1464, 1378, 1295, 1252, 1174, 1097, 827, 668, 649 cm⁻¹; HRMS (EI-Magnetic Sector) m/z: [M]⁺ Calcd for C₂₅H₂₉NO₆S₂ 503.1436, found 503.1439; HPLC Chiracel OD-H column, *i*-PrOH/*n*-hexane = 30/70, 25 °C, 1.0 ml/min, λ= 254 nm, t_R= 8.95 min (minor), t_R= 10.30 min (major); [α]²⁰_D = -83.9 (c = 1.0, CHCl₃; 82% ee).

(3S,4R)-S-phenyl 2-oxo-4-phenylpyrrolidine-3-carbothioate (12).^{8c} Adduct 11aa (118 mg, 0.27 mmol, 1.0 equiv) was dissolved in 5.0 mL of AcOH. A freshly activated zinc powder (178 mg, 2.72 mmol, 10 equiv) was added and the mixture was stirred at 25 °C under an argon atmosphere for 2 hours. After this period, TiCl₃ (30 μ L, 0.027 mmol, 0.1 equiv; 12% solution in 5% HCl) was added and the resulting mixture was stirred for additional 1 h. The mixture was filtered through a pad of Celite, the filter cake was washed with EtOAc and the obtained solution was concentrated *in vacuo*. The crude material was purified by flash column chromatography on silica gel to obtain the product **12** as a white solid (72 mg, 90% yield). *Rf* : 0.24 (ethyl ether: hexane = 1:1); ¹H NMR (500 MHz, CDCl₃) δ 7.37-7.28 (m, 7H), 7.25-7.18 (m, 4H), 4.06 (dd, *J* = 15.6, 8.0 Hz, 1H), 3.79-3.75 (m, 2H), 3.38 (dd, *J* = 9.8, 7.2 Hz, 1H)

ppm; ¹³C NMR (125 MHz, CDCl₃) δ 193.8, 172.2, 140.3, 134.5, 129.8, 129.3, 129.1, 127.7, 127.05, 127.01, 62.7, 48.0, 44.1 ppm; IR (neat) 3237 (br signal), 3095, 2917, 2106, 1692, 1478, 1419, 1265, 1017, 701 cm⁻¹; HRMS (FAB-Magnetic Sector) m/z: [M + H]⁺ Calcd for C₁₇H₁₆NO₂S 298.0902, found 298.0901; [α]²⁰_D = -218.5 (c = 1.0, CHCl₃); mp: 128-129 °C.

(3*R*)-4-amino-3-phenylbutanoic acid hydrochloride (13). The lactam 12 (48 mg, 0.16 mmol) was refluxed in 6N HCl (0.5 mL) for 24 h. After cooling, the reaction mixture was washed with EtOAc. The volatile components were removed under reduced pressure to give (*R*)-Phenibut (13) in HCl salt form as a white solid (29 mg, 85% yield). Analytical data are consistent with reported values.^{14c 1}H NMR (500 MHz, D₂O) δ 7.48-7.45 (m, 2H), 7.41-7.38 (m, 3H), 3.48-3.39 (m, 2H), 3.30-3.25 (m, 1H), 2.91-2.86 (m, 1H), 2.81-2.76 (m, 1H) ppm; ¹³C NMR (125 MHz, D₂O) δ 175.4, 138.3, 129.4, 128.3, 127.9, 43.8, 39.9, 38.2 ppm; MS (ESI-QTOF) m/z: [M + H]⁺ Calcd for C₁₀H₁₄NO₂ 180.102, found 180.098; [α]²⁰_D = +3.1 (c = 2.0, 1M HCl).

(3*R*)-phenyl 4-nitro-3-phenylbutanethioate (14). To a solution of 11aa (57 mg, 0.13 mmol, 1 equiv) and H₂O (14 µL, 0.78 mmol, 6 equiv) in THF (1.3 mL), Et₃N (5 µL, 0.03 mmol, 0.2 equiv) was added. The reaction mixture was stirred at 60 °C for 2 h. The resulting mixture was cooled to room temperature, and the solvent was evaporated under reduced pressure. The crude material was purified by flash column chromatography on silica gel to obtain the product 14 as a white solid (37 mg, 94% yield). Analytical data are consistent with reported values.²¹ *Rf* : 0.45 (ethyl acetate: hexane = 1:5); ¹H NMR (500 MHz, CDCl₃) δ 7.42-7.34 (m, 5H), 7.33-7.27 (m, 3H), 7.24-7.22 (m, 2H), 4.76 (dd, *J* = 12.7, 6.8 Hz, 1H), 4.67 (dd, *J* = 12.7, 8.1 Hz, 1H), 4.09-4.03 (m, 1H), 3.11 (d, *J* = 7.1 Hz, 2H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 195.0, 137.8, 134.4, 129.8, 129.3, 129.2, 128.2, 127.4, 126.8, 79.1, 46.2, 40.5 ppm; IR (neat) 1700, 1552, 1441, 1381, 981, 751, 657, 639 cm⁻¹; MS (ESI-QTOF) m/z: [M + Na]⁺ Calcd for C₁₆H₁₅NNaO₃S 324.067, found 324.060; [α]²⁰_D = -67.2 (c = 0.5, CHCl₃); mp: 60-63 °C.

(R)-4-nitro-3-phenylbutanal (15).^{7c} Compound 14 (37 mg, 0.12 mmol, 1 equiv) was dissolved in 1 mL of dry acetone under an argon atmosphere. To the solution, fresh activated 4Å molecular sieve (15 mg)

and Pd/C (10% Pd, 26 mg, 20 mol%) were added. Triethylsilane (0.36 mmol, 58 µL, 3 equiv) was added dropwise over 5 minutes, then stirred at room temperature for 0.5 h. The reaction mixture was filtered through a pad of Celite and the solvent was removed at reduced pressure. The crude material was purified by flash column chromatography on silica gel to obtain the product **15** as a colorless oil (17 mg, 74% yield). Analytical data are consistent with reported values.^{14d} *Rf* : 0.27 (ethyl acetate: hexane = 1:3); ¹H NMR (500 MHz, CDCl₃) δ 9.71 (t, *J* = 1.0 Hz, 1H), 7.37-7.33 (m, 2H), 7.31-7.28 (m, 1H), 7.25-7.22 (m, 2H), 4.69 (dd, *J* = 12.5, 7.2 Hz, 1H), 4.62 (dd, *J* = 12.5, 7.6 Hz, 1H), 4.09 (p, *J* = 7.3 Hz, 1H), 2.96 (ddd, *J* = 6.9, 3.0, 1.0 Hz, 2H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 198.8, 138.1, 129.3, 128.2, 127.4, 79.4, 46.4, 38.0 ppm; IR (neat) 2925, 2852, 1731, 1556, 1460, 1381, 1093, 668, 635 cm⁻¹; MS (ESI-QTOF) m/z: [M + MeOH + Na]⁺ Calcd for C₁₁H₁₅NNaO₄ 248.090, found 248.084; [α]²⁰_D = +7.1 (c = 1.0, CHCl₃). [lit.^{14d} [α]²⁰_D = +8.0 (c = 1.0, CHCl₃; 93.8% ee) for *R* enantiomer].

(R)-4-phenyl-2-pyrrolidinone (16).^{8c} Compound 14 (18 mg, 0.06 mmol, 1.0 equiv) was dissolved in 1.2 mL of AcOH. A freshly activated zinc powder (39 mg, 0.60 mmol, 10 equiv) was added and the mixture was stirred at 25 °C under an argon atmosphere for 2 hours. After this period, TiCl₃ (7 µL, 0.006 mmol, 0.1 equiv; 12% solution in 5% HCl) was added and the resulting mixture was stirred for additional 1 h. The mixture was filtered through a pad of Celite, the filter cake was washed with EtOAc and the obtained solution was concentrated in vacuo. The crude material was purified by flash column chromatography on silica gel to obtain the product 16 as a white solid (8 mg, 82% yield, 91% ee). Analytical data are consistent with reported values.¹⁶ Rf : 0.33 (ethyl acetate); ¹H NMR (500 MHz, CDCl₃) § 7.37-7.34 (m, 2H), 7.29-7.26 (m, 3H), 6.42 (br s, 1H), 3.81-3.78 (m, 1H), 3.74-3.67 (m, 1H), 3.43 (dd, J = 9.3, 7.4 Hz, 1H), 2.75 (dd, J = 16.9, 8.9 Hz, 1H), 2.52 (dd, J = 16.9, 8.9 Hz, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 177.7, 142.1, 128.9, 127.2, 126.8, 49.5, 40.4, 37.9 ppm; IR (neat) 3310 (br signal), 3064, 2924, 1646, 1488, 1453, 1372, 1293, 1265, 1044, 757, 700 cm⁻¹; MS (ESI-OTOF) m/z: [M + Na]⁺ Calcd for C₁₀H₁₁NNaO 184.074, found 184.069; HPLC Chiralpak IA column, *i*-PrOH/*n*hexane = 10/90, 25 °C, 1.0 ml/min, λ = 210 nm, t_R= 10.46 min (major), t_R= 11.64 min (minor); $[\alpha]^{20}_{D} = -$ 30.0 (c = 0.3, MeOH; 91% ee); The absolute configuration was determined to be R by the comparison of **ACS Paragon Plus Environment**

The Journal of Organic Chemistry

the optical rotation and HPLC spectra with reported data [lit.¹⁶ [α]²⁰_D = -31.7 (c = 0.29, MeOH; 93% ee); HPLC Chiralpak IA column, *i*-PrOH/*n*-hexane = 10/90, 25 °C, 1.0 ml/min, λ = 210 nm, t_R= 10.6 min (major), t_R= 12.2 min (minor)].

ASSOCIATED CONTENT

Supporting Information

¹H NMR, ¹³C NMR spectra for all products and HPLC traces for ee determination. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

dhryu@skku.edu; gshwang@kbsi.re.kr

Notes

The authors declare no competing financial interests.

ACKNOWLEDGMENTS

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2013R1A1A2059838) and the Ministry of Science, ICT & Future Planning (NRF-2013R1A1A2073207), by the National Research Council of Science and Technology [the Creative Allied Project (CAP)] and Korea Basic Science Institute [C35705].

REFERENCES

 For reviews, see: (a) Berner, O. M.; Tedeschi, L.; Enders, D. *Eur. J. Org. Chem.* 2002, *12*, 1877. (b)
 Zhang, Y.; Wang, W. *Catal. Sci. Technol.* 2012, *2*, 42. For selected examples of organocatalytic asymmetric Michael addition of various nucleophiles with nitroolefins, see: (c) List, B.; Pojarliev, P.; ACS Paragon Plus Environment Martin, H. J. Org. Lett. 2001, 3, 2423. (d) Terada, M.; Ube, H.; Yaguchi, Y. J. Am. Chem. Soc. 2006, 128, 1454. (e) Zea, A.; Alba, A. N. R.; Bravo, N.; Moyano, A.; Rios, R. Tetrahedron 2011, 67, 2513. (f) Terada, M.; Ando, K. Org. Lett. 2011, 13, 2026. (g) Patora - Komisarska, K.; Benohoud, M.; Ishikawa, H.; Seebach, D.; Hayashi, Y. Helv. Chim. Acta. 2011, 94, 719. (h) An, Q.; Shen, J.; Butt, N.; Liu, D.; Liu, Y.; Zhang, W. Synthesis, 2013, 45, 1612. (i) Zhao, L.; Shen, J.; Liu, D.; Liu, Y.; Zhang, W. Org. Biomol. Chem. 2012, 10, 2840.

(2) (a) Orlandi, M.; Tosi, F.; Bonsignore, M.; Benaglia, M. Org. Lett. 2015, 17, 3941. (b) Chikashita,
H.; Morita, Y.; Itoh, K. Synth. Commun. 1987, 17, 677. (c) Czekelius, C.; Carreira, E. M. Angew. Chem.
Int. Ed. 2005, 44, 612. (d) Mukaiyama, T.; Hoshino, T. J. Am. Chem. Soc. 1960, 82, 5339.

(3) (a) Perlikowska, R.; Piekielna, J.; Mazur, M.; Koralewski, R.; Olczak, J.; do Rego, J. C.; Fichna, J.; Modranka, J.; Janecki, T.; Janecka, A. *Bioorg. Med. Chem.* 2014, *22*, 4803. (b) Li, F.; Li, Y. Z.; Jia, Z. S.; Xu, M. H.; Tian, P.; Lin, G. Q. *Tetrahedron* 2011, *67*, 10186. (c) Hynes, P. S.; Stupple, P. A.; Dixon, D. J. *Org. Lett.* 2008, *10*, 1389. (d) Xu, F.; Corley, E.; Zacuto, M.; Conlon, D. A.; Pipik, B.; Humphrey, G.; Tschaen, D. *J. Org. Chem.* 2010, *75*, 1343. (e) Baran, R.; Veverková, E.; Škvorcová, A.; Šebesta, R. *Org. Biomol. Chem.* 2013, *11*, 7705. (f) Ordóñez, M.; Cativiela, C. *Tetrahedron: Asymmetry* 2007, *18*, 3.

(4) (a) Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 12672. (b) Li, X. J.; Liu, K.;
Ma, H.; Nie, J.; Ma, J. A. Synlett. 2008, 20, 3242. (c) Andrés, J. M.; Manzano, R.; Pedrosa, R. Chem. Eur. J. 2008, 14, 5116.

(5) (a)Ye, J.; Dixon, D. J.; Hynes, P. S. *Chem. Commun.* 2005, *35*, 4481. (b) McCooey, S. H.; Connon,
S. J. *Angew. Chem.* 2005, *117*, 6525. (c) Bae, H. Y.; Song, C. E. *ACS Catal.* 2015, *5*, 3613.

(6) (a) Ye, W.; Jiang, Z.; Zhao, Y.; Goh, S. L. M.; Leow, D.; Soh, Y. T.; Tan, C. H. Adv. Synth. Catal.
2007, 349, 2454. (b) Jiang, Z.; Yang, Y.; Pan, Y.; Zhao, Y.; Liu, H.; Tan, C. H. Chem. Eur. J. 2009, 15, 4925. (c) Hatano, M.; Moriyama, K.; Maki, T.; Ishihara, K. Angew. Chem. Int. Ed. 2010, 49, 3823.

The Journal of Organic Chemistry

(7) (a) Tokuyama, H.; Yokoshima, S.; Yamashita, T.; Fukuyama, T. *Tetrahedron Lett.* 1998, *39*, 3189.
(b) Miyazaki, T.; Han-ya, Y.; Tokuyama, H.; Fukuyama, T. *Synlett.* 2004, 477. (c) Fukuyama, T.; Tokuyama, H. *Aldrichimica Acta.* 2004, *37*, 87. (d) Mori, Y.; Seki, M. *Adv. Synth. Catal.* 2007, *349*, 2027. (e) Cherney, A. H.; Reisman S. E. *Tetrahedron* 2014, *70*, 3259.

(8) (a) Clerici, P.; Wennemers, H. Org. Biomol. Chem. 2012, 10, 110. (b) Arakawa, Y.; Fritz, S. P.;
Wennemers, H. J. Org. Chem. 2014, 79, 3937. (c) Kolarovic, A.; Käslin, A.; Wennemers, H. Org. Lett.
2014, 16, 4236. (d) Engl, O. D.; Fritz, S. P.; Käslin, A.; Wennemers, H. Org. Lett. 2014, 16, 5454.

(9) (a) Cao, C. L.; Ye, M. C.; Sun, X. L.; Tang, Y. *Org. Lett.* **2006**, *8*, 2901. (b) Epimers (R²=H, R³=Ph) of **9a** and **9d** were reported: Vinayagam, P.; Vishwanath, M.; Kesavan, V. *Tetrahedron: Asymmetry* **2014**, *25*, 568.

(10) Cochi, A.; Burger, B.; Navarro, C.; Pardo, D. G.; Cossy, J.; Zhao, Y.; Cohen, T. *Synlett.* **2009**, *13*, 2157.

(11) Vargas-Caporali, J.; Cruz-Hernàndez, C.; Juaristi, E. Heterocycles. 2012, 86, 1275.

(12) Shi, Z.; Tan, B.; Leong, W. W. Y.; Zeng, X.; Lu, M.; Zhong, G. Org. Lett. 2010, 12, 5402.

(13) The preliminary result of Michael addition of *S*,*S*-diphenyl 2-methyldithiomalonate to *trans*nitrostyrene is shown as follows:

(14) For drug information of (*R*)-phenibut, see: (a) Lapin, I. *CNS Drug Rev.* 2001, 7, 471. (b) Dambrova, M.; Zvejniece, L.; Liepinsh, E.; Cirule, H.; Zharkova, O.; Veinberg, G.; Kalvinsh, I. *Eur. J. Pharmacol.* 2008, *583*, 128. For selected examples of asymmetric syntheses of (*R*)-phenibut using chiral organocatalysts, see: (c) Guo, X. T.; Shen, J.; Sha, F.; Wu, X. Y. *Synthesis* 2015, *47*, 2063. (d) Maltsev, O. V.; Kucherenko, A. S.; Beletskaya, I. P.; Tartakovsky, V. A.; Zlotin, S. G. *Eur. J. Org. Chem.* 2010,

2927. (e) Tsakos, M.; Kokotos, C. G.; Kokotos, G. Adv. Synth. Catal. 2012, 354, 740. (f) Feu, K. S.; de la

Torre, A. F.; Silva, S.; de Moraes, M. A. Jr.; Corrêa, F. A. G.; Paixão, M. W. Green Chem. 2014, 16,

3169. (g) Leyva-Pérez, A.; García-García, P.; Corma, A. Angew. Chem. Int. Ed. 2014, 53, 8687.

(15) (a) Sobocinska, M.; Zobacheva, M. M.; Perekalin, V. V.; Kupryszewski, G. Pol. J. Chem. 1979,

53, 435. (b) Zelle, R. E. Synthesis 1991, 1023.

(16) Wang, J.; Li, W.; Liu, Y.; Chu, Y.; Lin, L.; Liu, X.; Feng, X. Org. Lett. 2010, 12, 1280.

(17) (a) Hamza, A.; Schubert, G.; Soós, T.; Pápai, I. J. Am. Chem. Soc. 2006, 128, 13151. (b) Azuma,

T.; Kobayashi, Y.; Sakata, K.; Sasamori, T.; Tokitoh, N.; Takemoto, Y. J. Org. Chem. 2014, 79, 1805. (c)

Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto, Y. J. Am. Chem. Soc. 2005, 127, 119.

(18) Matsuo, K.; Shindo, M. Org. Lett. 2011, 13, 4406.

(19) Imamoto, T.; Kodera, M.; Yokoyama, M. Bull. Chem. Soc. Jpn. 1982, 55, 2303.

(20) Carbone, G.; O'Brien, P.; Hilmersson, G. J. Am. Chem. Soc. 2010, 132, 15445.

(21) Lubkoll, J.; Wennemers, H. Angew. Chem. Int. Ed. 2007, 46, 6841.

ACS Paragon Plus Environment