TETRAHEDRON: ASYMMETRY

Ex-chiral pool synthesis and receptor binding studies of 4-substituted prolinol derivatives

Cornelia Heindl, Harald Hübner and Peter Gmeiner*
Department of Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University, Schuhstr. 19, D-91052 Erlangen, Germany

Received 3 June 2003; revised 15 August 2003; accepted 19 August 2003

Abstract

Starting from natural 4-hydroxyproline, preparation of the four possible stereoisomers of 4-amino- and 4-aminomethylsubstituted prolinol derivatives, respectively, was accomplished by chemo- and regioselective functional group transformations at the 2- and 4-positions of the pyrrolidine moiety. These building blocks were used as valuable precursors for the preparation of new methoxybenzamide derivatives. Dopamine and serotonin binding studies involving the subtypes D1, D2 $2_{\text {long }}, \mathrm{D} 2_{\text {short }}, \mathrm{D} 3$ and D4 as well as $5-\mathrm{HT} 1_{\mathrm{A}}$ and $5-\mathrm{HT} 2$, respectively, displayed interesting structure activity relationships, especially with respect to the absolute and relative configuration of the test compounds. As a complement to the D3 receptor preferring aminomethylpyrrolidine FAUC 21, the ($2 R, 4 R$)-aminoprolinol derivative ent-24 (FAUC 65) preferentially recognizing the D4 subtype was developed. © 2003 Elsevier Ltd. All rights reserved.

1. Introduction

2-Methoxybenzamide derivatives are known as highly active agents for the treatment of psychotic disorders including schizophrenia. ${ }^{1}$ Unfortunately, their application is associated with extrapyramidal side-effects which are due to the affinity of these compounds to dopamine D2 receptors in striatal regions of the brain. ${ }^{2}$ To decrease these negative side-effects, we were interested in the design of methoxybenzamide derived dopamine receptor antagonists with reduced D2 affinity and preference for the D3 and D4 subtype that seem to be especially involved in the symptoms of schizophrenia. In conjunction with this program, the correlation between the binding affinity and subtype selectivity on the one hand and the absolute and relative configuration on the other, as well as the spatial distance of the two nitrogen-atoms within the diaminopropane substructure, seemed to be of particular interest. Employing the antipsychotic agents sulpiride and nemonapride and our previously developed D3 ligand FAUC 21 as lead compounds, ${ }^{3}$ structural hybridization led us to target compounds of type 1. Starting from natural 4-hydroxyproline (Hyp), we herein describe an ex-chiral

[^0]pool synthesis of the four possible stereoisomers of 4 -amino and 4 -aminomethyl substituted prolinol derivatives involving functional group transformations at the 2- and 4-positions of the pyrrolidine moiety. Coupling reactions of these compounds with pharmacophoric benzoic acids were performed leading to the test compounds of type 1 in all possible configurations (Scheme 1). Receptor binding investigations and subsequent SAR studies provided interesting results with respect to the substitution pattern and the stereochemistry.

Scheme 1.

2. Synthesis

Recent SAR studies on nemonapride ${ }^{3,4}$ and FAUC 21 derivatives led to the assumption that a benzyl substituent at the 1 -position of the pyrrolidine moiety would induce high binding affinity. Thus, for the synthesis of the pyrrolidine moiety, we first reflected on the N-benzylated benzyl ester 7 as a suitable intermediate ${ }^{5}$ giving access to further structural modifications at the 2- and 4 -positions of the pyrrolidine moiety. Starting from natural 4-hydroxyproline, a one-step synthesis of 7 failed when the formation of 62% of the C-benzyl derivative 6 was observed as a 2:1 mixture of diastereomers (Scheme 2). Thus, we turned to a twostep synthesis of ($2 S, 4 R$)-1-benzylproline ethyl ester 2 involving esterification and subsequent N-benzylation. ${ }^{6,7}$ Interestingly, slight modification of the described conditions ${ }^{6}$ gave an excellent yield (97\%). The further three stereoisomeric hydroxyproline derivatives 5, ent-2 and ent-5 with a $(2 S, 4 S)$-, $(2 R, 4 S)$ - and a $(2 R, 4 R)$-configuration, respectively, were synthesized by combinations of isomerizations at the 2- and 4-positions (Scheme 2). ${ }^{8-16}$

Scheme 2. Reagents and conditions: (a) 1. see Ref. 6 (2: 97\%, ent-5: 98%); (b) TsCl , pyridine, $0^{\circ} \mathrm{C}$ to rt, $48 \mathrm{~h} \mathrm{(3:} 67 \%$, 8: 89%); (c) tetrabutylammonium acetate, toluene, reflux, $4 \mathrm{~h} \mathrm{(4:}$ 91\%, 9: 85%); (d) NaOEt, EtOH, 30 min , rt (5: 90\%, ent-2: 81%); (e) aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}(20 \%)$, BnBr , reflux, $3 \mathrm{~h}(6: 62 \%$), 2:1 mixture of diastereomers; (f) see Refs. 12, 14, 15.

In detail, inversion at the 4-position was accomplished by O-sulfonylation of 2 (67% yield) and subsequent treatment of the tosylate $\mathbf{3}$ with tetrabutylammonium acetate. Selective cleavage of the thus formed acetoxy derivative 4 was performed with NaOEt giving access to the cis-hydroxyproline derivative 5 in 90% yield. ${ }^{9-14}$ NOE experiments were performed, which clearly established the S_{N} 2-type character of the nucleophilic displacement and thus complete inversion at the 4-position of the pyrrolidine moiety.

Epimerization of natural 4-hydroxyproline at the 2position was done by subsequent treatment with acetic anhydride and $2 \mathrm{M} \mathrm{HCl},{ }^{8,13-16}$ Esterification and N benzylation of the thus produced cis-isomer afforded a 98% yield of the chiral building block ent-5. ${ }^{6}$ The ($2 R, 4 S$)-1-benzyl-4-hydroxyproline ethyl ester ent-2 was synthesized in high overall yield by successive isomerization of both stereogenic centers. ${ }^{8-16}$ Thus, O-activation of the protected cis-hydroxyproline derivative ent-5
and subsequent nucleophilic displacement of the tosylate $\mathbf{8}$ employing tetrabutylammonium acetate resulted in formation of the trans-4-acetoxyproline derivative 9 . Finally, alcoholysis afforded the synthetic intermediate ent-2.

Selective functional group transformations at the 2- and 4-positions of the proline derivatives 2, 5, ent-2 and ent-5 gave access to the all possible stereoisomeres of 2-hydroxymethyl-4-aminomethylpyrrolidine ${ }^{3} \quad \mathbf{1 6}, \quad 20$, ent-16 and ent-20 and 2-hydroxymethyl-4aminopyrrolidine ${ }^{8,17-19}$ 17, 21, ent-17 and ent-21 as central intermediates for the preparation of the methoxybenzamides of type 1 . Two alternative synthetic pathways are also elaborated (Scheme 3).

Scheme 3. Reagents and conditions: (a) $1 . \mathrm{LiAlH}_{4}, \mathrm{THF}, 0^{\circ} \mathrm{C}$, 1 h ; 2. imidazole, TBSCl, DMF, $0^{\circ} \mathrm{C}$, $1 \mathrm{~h}(\mathbf{1 0}: 38 \%)$; (b) NEt_{3}, $\mathrm{MsCl}, \mathrm{CHCl}_{3},-10^{\circ} \mathrm{C}, 3 \mathrm{~h}$ (11: 80%); (c) NaCN , tetrabutylammonium cyanide, DMSO, $70^{\circ} \mathrm{C}, 24 \mathrm{~h}$ (12: 38%); or NaN_{3}, DMF, $60^{\circ} \mathrm{C}, 4 \mathrm{~h}(13: 53 \%)$; (d) TsCl , pyridine, $0^{\circ} \mathrm{C}$ to rt, 48 h (3: 67%, ent-8: 89%); (e) NaCN , DMSO, $60^{\circ} \mathrm{C}, 4 \mathrm{~h}$ (14: $90 \%, 18: 98 \%)$; or $\mathrm{NaN}_{3}, \mathrm{DMF}, 60^{\circ} \mathrm{C}, 7 \mathrm{~h}(15: 92 \%, 19$: 98\%); (f) $\mathrm{LiAlH}_{4}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 1.5 \mathrm{~h}(\mathbf{1 6}: 40 \%, \mathbf{2 0}: 52 \%)$ or LiAlH_{4}, THF, $0^{\circ} \mathrm{C}, 1 \mathrm{~h}(17: 94 \%$, 21: 48%).

Following the first strategy, regioselective O activation ${ }^{8-14,20-23}$ at the 4-position of the pyrrolidine 2 was accomplished after LiAlH_{4} reduction at the 2position ${ }^{6,7}$ and subsequent protection of the resulting primary alcohol using TBSCl in the presence of imidazole, ${ }^{6,24,25}$ when the success of the selective silylation was strongly dependent on the reaction time due to the formation of the disilylated product ${ }^{26}$ in case of prolonged treatment with TBSCl. Using MsCl in the presence of NEt_{3}, activation at the 4-position of the monosilylated hydroxyprolinol 10, gave the sulfonate 11 in 80% yield, ${ }^{8,18,22,23,27,28}$ which could then be readily transformed into the nitrile $\mathbf{1 2}$ upon nucleophilic displacement of the sulfonate leaving group with sodium cyanide in combination with tetrabutylammonium cyanide as a phase transfer catalyst. ${ }^{10,20,21,29,30}$ Employing sodium azide as a nucleophilic agent for the displacement reaction, the formation of the azide $\mathbf{1 3}$ in 53% yield was observed. ${ }^{8,18,21,28,31}$ Alternatively, we tried to
avoid the need of a regioselective protection by changing the order of reaction steps. Activation at the 4-position by TsCl was possible on the stage of the carboxylate 2 resulting in the formation of the tosylate 3 in 67% yield. ${ }^{8-14,20,21}$ The corresponding mesylate could be prepared in 98% yield. ${ }^{8,17,18}$ However, despite of the higher yield of the methane sulfonylation, tosylate $\mathbf{3}$ was used for further reactions because of its high stability, allowing for more convenient handling. Replacement of the leaving group by sodium cyanide ${ }^{10,20,21}$ followed by simultaneous LiAlH_{4} reduction of the nitrile function and the ethyl ester group of the intermediate 14 resulted in the formation of the primary amine $16 .{ }^{3}$ Synthesis of the aminopyrrolidine 17 was achieved by $\mathrm{S}_{\mathrm{N}} 2$ displacement of the tosyl group with sodium azide and subsequent LiAlH_{4} reduction of the azide 15. ${ }^{8,17-19,21,28,31}$ NOE experiments unambiguously established the cis-configuration indicating that the reaction proceeded under inversion. Neighboringgroup participation of the pyrrolidine nitrogen facilitating an aziridiniumion formation and, as a consequence, a double inversion process with net retention of the configuration could not be observed. ${ }^{17,18}$ The diastereomers $\mathbf{2 0}$ and $\mathbf{2 1}$ as well as the optical antipodes $\boldsymbol{e n t}-16, \boldsymbol{e n t}-17$ and $\boldsymbol{e n t}-20$, ent-21 could be readily synthesized along the same sequence starting from 5, ent-2 and ent-5 in comparable yields.

As an extension of these studies, the N-benzyl protected 4-carboxyproline $\mathbf{2 2}$ as a conformationally constrained analogue of the excitatory neurotransmitter glutamic acid was prepared in an almost quantitative yield by refluxing the cyanoproline 18 in conc. HCl (Scheme 4). ${ }^{10,32}$ The amino acid 22 can be applied as a useful building block for the synthesis of new peptidomimetics.

Scheme 4.

DCC/HOBt promoted coupling of the prepared amines 16, 17, 20 and 21 as well as their optical antipodes ent-16, ent-17, ent-20, ent-21 to 5-chloro-2-methoxy-4methylaminobenzoic acid gave the benzamides 23-26 and the optical antipodes ent-23-ent-26, respectively (Scheme 5). Employing the diamines $\mathbf{1 6}$ and 17 as

Scheme 5.
representative examples, amide formation with 4-acetyl-amino- and 4-acetylmethylamino-substituted analogues was carried out to give the test compounds 27, 28 and 29. ${ }^{3,8}$

3. Pharmacology

The novel methoxybenzamide derivatives were evaluated in vitro with respect to their binding affinities and receptor subtype selectivities by radioligand binding assays for the dopamine receptors D1-D4 ${ }^{33-36}$ and for the serotonin receptors $5-\mathrm{HT1}_{\mathrm{A}}$ and $5-\mathrm{HT} 2$. Binding affinities for the D1 receptor were determined by employing bovine striatal membranes and the selective antagonist $\left[{ }^{3} \mathrm{H}\right] \mathrm{SCH} 23390$ as a radioligand. ${ }^{36}$ Binding studies on the subtypes of the D2 family were performed using membrane preparations of CHO cells stably expressing the human dopamine receptors $\mathrm{D} 2_{\text {long }}$, $\mathrm{D} 2_{\text {short }}{ }^{33}, \mathrm{D} 3^{34}$ and $\mathrm{D} 4.4^{35}$ and $\left[{ }^{3} \mathrm{H}\right]$ spiperone as the radioligand. Since both dopamine and serotonin receptors play an important part in psychotic disorders and some methoxybenzamides are known for their serotoninergic properties, ${ }^{37}$ 5-HT binding was investigated employing porcine cortical membrane preparations and the radioligands $\left[{ }^{3} \mathrm{H}\right] 8-\mathrm{OH}$-DPAT and $\left[{ }^{3} \mathrm{H}\right]$ ketanserin for $5-\mathrm{HT}_{\mathrm{A}}$ and $5-\mathrm{HT} 2$, respectively. The antipsychotic drug sulpiride and the D3 preferring ligand FAUC 21 were utilized as reference compounds and the results are presented in Table 1. In particular, the aminopyrrolidine derivatives 23, 24, ent-23 and ent-24 displayed substantial affinities to the subtypes of the D2 family including D $2_{\text {long }}, ~ D 2_{\text {short }}, D 3$ and D4. In contrast, the aminomethyl-substituted homologues showed only modest receptor binding indicating that the distance between the basic pyrrolidine nitrogen and the methoxybenzamide functionality as the major pharmacophoric elements is crucial for the receptor recognition. Within the aminopyrrolidine series, binding data gave interesting insights into the relationship of receptor binding and subtype selectivity and the stereochemical entities. Among the cis-isomers, ent-24 (FAUC 65) displayed high binding affinity to the D4.4 receptor with a K_{i} value of 3.4 nM and a selectivity of 1800,17 , $5,11,850$ and 1200 when compared to D1 ($K_{\mathrm{i}}=6000$ $\mathrm{nM}), \mathrm{D} 2_{\text {long }}\left(K_{\mathrm{i}}=59 \mathrm{nM}\right), \mathrm{D} 2_{\text {short }}\left(K_{\mathrm{i}}=17 \mathrm{nM}\right), \mathrm{D} 3$ $\left(K_{\mathrm{i}}=37 \mathrm{nM}\right), 5-\mathrm{HT} 1_{\mathrm{A}}\left(K_{\mathrm{i}}=2900 \mathrm{nM}\right)$ and $5-\mathrm{HT} 2\left(K_{\mathrm{i}}=\right.$ $4000 \mathrm{nM})$. On the other hand the $(2 S, 4 S)$-substituted antipode 24 as well as the trans-aminopyrrolidines 23 and $\boldsymbol{e n t} \mathbf{t 2 3}$ showed comparable dopaminergic properties without a D4 preference. Interestingly, D3 affinities were significantly lower for the trans-diastereomers. Furthermore, it is worthy to note that the $5-\mathrm{HTl}_{\mathrm{A}}$ binding of the ($2 R$)-configured isomers 23 and 24 was substantially higher than those of their ($2 S$)-enantiomers. Variations in the substitution pattern of the aromatic moiety resulted in a strongly decreased binding affinity of the test compounds 27-29. ${ }^{3}$

In conclusion, starting form natural 4-hydroxyproline, practical and efficient methodology has been elaborated for the synthesis of all stereoisomeres of 4 -amino- and 4 -aminomethylprolinol in its N-benzyl protected form.

Table 1. Binding affinities of the methoxybenzamides 23-26, ent-23-ent-26, 27-29 and the reference compounds sulpiride and FAUC 21 to the bovine dopamine D1, the human $\mathrm{D} 2_{\text {long }}, \mathrm{D} 2_{\text {short }}$, D3 and D 4.4 as well as to the porcine $5-\mathrm{HT} 1_{\mathrm{A}}$ and 5-HT2 receptors

Compound	R	R1	Pos. 2	Pos. 4	n	K_{i} values $[\mathrm{nM}]^{\text {a }}$						
						[$\left.{ }^{3} \mathrm{H}\right] \mathrm{SCH} 23390$		$\left[{ }^{3} \mathrm{H}\right]$ Spiperone		[$\left.{ }^{3} \mathrm{H}\right] 8-\mathrm{OH}-\mathrm{DPAT}$		[$\left.{ }^{3} \mathrm{H}\right]$ Ketanserin 5-HT2
						D1	$\mathrm{D} 2_{\text {long }}$	$\mathrm{D} 2_{\text {short }}$	D3	D4.4	$5-\mathrm{HT} 1_{\text {A }}$	
23	H	CH_{3}	R	S	0	29000	150	90	490	35	360	4300
ent-23	H	CH_{3}	S	R	0	37000	160	110	2200	52	1600	2000
24	H	CH_{3}	S	S	0	21000	59	44	43	47	250	1200
ent-24	H	CH_{3}	R	R	0	6000	59	17	37	3.4	2900	4000
25	H	CH_{3}	S	R	1	17000	330	310	1700	430	980	6700
ent-25	H	CH_{3}	R	S	1	17000	290	430	510	210	2000	3600
26	H	CH_{3}	R	R	1	9900	280	220	1100	970	4800	4900
ent-26	H	CH_{3}	S	S	1	17000	12000	6500	2600	680	1900	8800
$27^{\text {b }}$	H	Ac	S	S	0	27\%	9\%	18\%	45\%	67\%	17000	30000
$28^{\text {b }}$	H	Ac	S	R	1	26\%	8\%	13\%	31\%	7\%	34000	44000
29	CH_{3}	Ac	S	S	0	>100000	25000	22000	5800	5500	13000	14000
Sulpiride						50000	120	51	88	2100	9800	4300
FAUC 21						2800	190	190	31	200	N.d.	N.d.

${ }^{\text {a }} K_{\mathrm{i}}$ value in [nM] are the means of two to three competition experiments each carried out in triplicate.
${ }^{\mathrm{b}}$ Data in [\%] show the ability of the test compound to displace the radioligand at a concentration of $10 \mu \mathrm{M}$.

The building blocks were employed for the preparation of biologically active methoxybenzamides. SAR studies led to the dopamine D4 receptor preferring nemonapride analogue FAUC 65.

4. Experimental

4.1. General procedures

$\mathrm{Et}_{2} \mathrm{O}$, THF and toluene were distilled from $\mathrm{Na}, \mathrm{CHCl}_{3}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ from CaH_{2}, and EtOH from Mg immediately before use. Dry DMF, DMSO and dry pyridine were bought from FLUKA. All liquid reagents were also purified by distillation. All reactions were conducted under anhydrous N_{2}. Evaporation of the final product solution was performed under vacuum with a rotatory evaporator. Flash chromatography was carried out with $230-400$ mesh silica gel. Melting points: Büchi melting point apparatus, uncorrected. IR spectra: PERKIN-ELMER FT/IR 241 or Jasco FT/IR 410 spectrometer. Mass spectra: FINNIGAN MAT TSQ 70 instrument. High resolution mass spectrometry: FINNIGAN MAT 8200. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra: BRUKER AM 360 spectrometer at 360,90 and 62 MHz . Spectra were measured in CDCl_{3} using TMS as the internal standard or in $\mathrm{D}_{2} \mathrm{O}$ or DMSO. Optical rotations were measured at $23^{\circ} \mathrm{C}$ with a PERKINELMER 241 polarimeter. Elementary analyses were performed by the Organic Chemistry Department of the Friedrich-Alexander-University Erlangen-Nürnberg or Beetz Microanalysis Laboratory, Kronach, Germany. For all new compounds satisfactory microanalysis obtained $\mathrm{C} \pm 0.39, \mathrm{H} \pm 0.17, \mathrm{~N} \pm 0.29, \mathrm{~S} \pm 0.13$.

4.2. Ethyl (2S,4R)-1-benzyl-4-hydroxyprolinate 2

First preparation of ethyl $(2 S, 4 R)$-4-hydroxyprolinate hydrochloride $2 \mathbf{2 a}$ was performed according to the literature ${ }^{6}$ as follows.

To a solution of ($2 S, 4 R$)-4-hydroxyproline (Hyp) (17.42 $\mathrm{g}, 133 \mathrm{mmol}$) in $\mathrm{EtOH}(174 \mathrm{~mL})$ was added $\mathrm{SOCl}_{2}(10.8$ $\mathrm{mL}, 160 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The mixture was refluxed for 6 h. After cooling to rt the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and the resulting precipitate collected by suction filtration. The filter cake was washed with ether and dried in vacuo to leave pure $\mathbf{2 a}\left(25.48 \mathrm{~g}, 98 \%\right.$, lit.: ${ }^{6} 86 \%$), which was used without further purification.

According to the literature, ${ }^{6}$ preparation of $\mathbf{2}$ was performed in a simply modified way as follows:

A solution of crude $\mathbf{2 a}(10.04 \mathrm{~g}, 51.5 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(16.6$ $\mathrm{mL}, 117 \mathrm{mmol}$) and benzyl bromide ($6.48 \mathrm{~mL}, 54.7$ $\mathrm{mmol})$ in $\mathrm{CHCl}_{3}(200 \mathrm{~mL})$ was refluxed for 6 h . After cooling to rt, aq. $1 \mathrm{M} \mathrm{NaOH}(200 \mathrm{~mL})$ was added and the mixture extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over MgSO_{4} and evaporated. The resulting residue was purified by flash chromatography (petroleum ether/EtOAc, 3:7) to give $2(12.40 \mathrm{~g}$, 97%; lit.: ${ }^{6} 70 \%$) as a colorless oil: EI-MS $m / z=249$ [${ }^{+}$]; TLC: $R_{\mathrm{f}}=0.19$ (petroleum ether/EtOAc, 1:2); IR (film): v 3417, 2935, 1731, 1450, 1187, 1033, $752 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.25(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.08 (ddd, $1 \mathrm{H}, J=13.5,7.7,2.5 \mathrm{~Hz}$, $\mathrm{H}-3 \mathrm{a}$), 2.26 (ddd, $1 \mathrm{H}, J=13.5,7.7,7.0 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{~b}$), 2.46 (dd, $1 \mathrm{H}, J=10.0,3.8 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{a}$), 3.32 (dd, $1 \mathrm{H}, J=10.0$, $5.7 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{~b}), 3.60(\mathrm{dd}, 1 \mathrm{H}, J=7.7,7.7 \mathrm{~Hz}, \mathrm{H}-2), 3.66$
(d, $\left.1 \mathrm{H}, J=13.0 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.93(\mathrm{~d}, 1 \mathrm{H}, J=13.0 \mathrm{~Hz}$, $\left.\mathrm{NCH}_{2} \mathrm{Ph}\right), 4.13\left(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.45$ (m, 1H, H-4), 7.18-7.36 (m, 5H, Ar); $[\alpha]_{\mathrm{D}}^{20}=-56.3$ (c 1.0, $\left.\mathrm{CHCl}_{3}\right),\left\{\right.$ Lit. $\left.^{6}:[\alpha]_{\mathrm{D}}^{20}=-65.0,(c 1.07, \mathrm{MeOH})\right\}$.

Preparation of ent-2 was accomplished starting from 9 as follows.

To a solution of $9(1.56 \mathrm{~g}, 5.35 \mathrm{mmol})$ in $\mathrm{EtOH}(25 \mathrm{~mL})$ was added $\mathrm{NaOEt}(542 \mathrm{mg}, 7.97 \mathrm{mmol})$ with the resulting mixture left to stir at rt for 30 min . Solid $\mathrm{NH}_{4} \mathrm{Cl}$ was then added and the mixture stirred for another 10 min . The solvent was evaporated and the residue purified by flash chromatography (petroleum ether/EtOAc, 6:4) to give ent-2 $(1.1 \mathrm{~g}, 83 \%)$ as a colorless oil: $[\alpha]_{\mathrm{D}}^{20}=+49.0$ (c 0.99, CHCl_{3}).

4.3. Ethyl (2S,4R)-1-benzyl-4-(4-methylphenylsulfonyloxy)prolinate 3

To a stirred solution of $2(247 \mathrm{mg}, 0.99 \mathrm{mmol})$ in dry pyridine (5 mL) was added p-toluenesulfonyl chloride $(226.5 \mathrm{mg}, 1.19 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The solution was then allowed to warm up to rt. After 48 h of stirring, an aqueous solution of citric acid (40 g citric acid $/ 250 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$) was added and the mixture extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and evaporated. The residue was purified by flash chromatography (petroleum ether/EtOAc, 9:1) to give 3 (226 mg , 57%) as a slightly yellowish glutinous mass. $\mathrm{Mp}: \sim 24^{\circ} \mathrm{C}$ (rt). EI-MS $m / z=403.1\left[\mathrm{M}^{+}\right] ;$TLC: $R_{\mathrm{f}}=0.59$ (petroleum ether/EtOAc, 1:1); IR (film): v 2980, 1740, 1597, 1495, 1366, 1177, 893, $752 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.23\left(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.27(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}-3 \mathrm{a} / \mathrm{H}-3 \mathrm{~b}), 2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OSO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 2.63$ (dd, 1 H , $J=10.9,3.8 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{a}$), 3.24 (dd, $1 \mathrm{H}, J=10.9,5.7 \mathrm{~Hz}$, $\mathrm{H}-5 \mathrm{~b}), 3.54(\mathrm{dd}, 1 \mathrm{H}, J=7.5,7.5 \mathrm{~Hz}, \mathrm{H}-2), 3.59(\mathrm{~d}, 1 \mathrm{H}$, $\left.J=13.0 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.87(\mathrm{~d}, 1 \mathrm{H}, \quad J=13.0 \mathrm{~Hz}$, $\left.\mathrm{NCH}_{2} \mathrm{Ph}\right), 4.11\left(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.98$ (m, 1H, H-4), 7.24-7.33 (m, 7H, Ar/ $\mathrm{OSO}_{2} \mathrm{C}_{6} \underline{\mathrm{H}}_{4} \mathrm{CH}_{3}$), 7.74 (m, $2 \mathrm{H} \mathrm{OSO}{ }_{2} \mathrm{C}_{6} \underline{\mathrm{H}}_{4} \mathrm{CH}_{3}$); Anal. calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{~S}$ (403.50): C, $62.51 ; \mathrm{H}, 6.25 ; \mathrm{N}, 3.74 ; \mathrm{S}, 7.95$, found: C, $62.54 ; \mathrm{H}, 6.31 ; \mathrm{N}, 3.48 ; \mathrm{S}, 7.82 ;[\alpha]_{\mathrm{D}}^{20}=-13.8$ (c 0.99, CHCl_{3}). ent-3 was prepared under the same reaction conditions, starting from ent-2: $[\alpha]_{\mathrm{D}}^{20}=+14.1$ (c 1.0, CHCl_{3}).

4.4. Ethyl (2S,4S)-4-acetyloxy-1-benzylprolinate 4

To a stirred solution of $3(23.5 \mathrm{~g}, 58.1 \mathrm{mmol})$ in toluene $(250 \mathrm{~mL})$ was added tetrabutylammonium acetate (22.78 $\mathrm{g}, 75.6 \mathrm{mmol}$) with the mixture allowed to reflux for 4 h . After cooling to rt the mixture was washed with water three times. The organic layer was dried over MgSO_{4} and evaporated. The residue was purified by flash chromatography (petroleum ether/EtOAc, 8:2) to give $\mathbf{4}$ as a yellow oil ($15.46 \mathrm{~g}, 91 \%$): EI-MS $m / z=291\left[\mathrm{M}^{+}\right]$; TLC: $R_{\mathrm{f}}=0.13$ (petroleum ether/EtOAc, 8:2); IR (film): v 2981, 1737, 1369, 1243, 1027, $701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.22\left(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.95(\mathrm{~s}, 3 \mathrm{H}$, OCOCH_{3}), 2.01 (ddd, $1 \mathrm{H}, J=14.0,8.1,3.4 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{a}$), 2.51 (ddd, $1 \mathrm{H}, J=14.0,8.1,8.1 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{~b}), 2.61$ (dd, 1 H , $J=11.1,6.2 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{a}), 3.00(\mathrm{dd}, 1 \mathrm{H}, J=11.1,0.7 \mathrm{~Hz}$,

H-5b), 3.18 (dd, $1 \mathrm{H}, J=8.1,8.1 \mathrm{~Hz}, \mathrm{H}-2), 3.48$ (d, 1 H , $\left.J=13.0 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.95(\mathrm{~d}, 1 \mathrm{H}, J=13.0 \mathrm{~Hz}$, $\left.\mathrm{NCH}_{2} \mathrm{Ph}\right), 4.12\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.05(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4)$, 7.15-7.28 (m, 5H, Ar); Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{4}$ (291.35): C, 65.96; H, 7.27; N, 4.81, found: C, $66.04 ; \mathrm{H}$, 7.19; N, 4.70; $[\alpha]_{\mathrm{D}}^{20}=-55.0\left(c 1.0, \mathrm{CHCl}_{3}\right)$.

4.5. Ethyl (2R,4R)-1-benzyl-4-hydroxyprolinate ent-5

First preparation of $(2 R, 4 R)$-4-hydroxyproline hydrochloride ent-5a was performed according to the literature ${ }^{8,13-16}$ in a slightly modified way as follows.

A mixture of acetic anhydride ($204 \mathrm{~g}, 2 \mathrm{~mol}$) and glacial acetic acid $(600 \mathrm{~mL}, 10.5 \mathrm{~mol})$ was heated to $50^{\circ} \mathrm{C}$ at which point ($2 S, 4 R$)-4-hydroxyproline (Hyp) ($47.09 \mathrm{~g}, 360$ mmol) was added in one portion. The mixture was refluxed for 5.5 h . After cooling to rt, the solvent was removed under reduced pressure. The residue was dissolved in $2 \mathrm{M} \mathrm{HCl}(650 \mathrm{~mL})$ and refluxed for another 3 h . After cooling to rt the mixture was filtered through Celite and concentrated by rotary evaporation until white needles were formed. The precipitate was collected by suction filtration, washed with $\mathrm{Et}_{2} \mathrm{O}$ and dried in vacuo to leave pure ent-5a ($57.66 \mathrm{~g}, 96 \%$, lit.: ${ }^{13} 87 \%$). Mp: $114-116^{\circ} \mathrm{C}$; IR (KBr): v 3421-2507, 1708, 1581, 1373, 1272, 1087, 1064, 1025, 960, 902, 863, 829, 790, $763 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.33(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{a}), 2.48$ (ddd, $1 \mathrm{H}, J=14.4,10.3,4.2 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{~b}), 3.40$ (m, 2H, H-5a, $\mathrm{H}-5 \mathrm{~b}), 4.45$ (dd, $1 \mathrm{H}, J=10.3,3.4 \mathrm{~Hz}, \mathrm{H}-2), 4.58$ (m, 1H, $\mathrm{H}-4) ;[\alpha]_{\mathrm{D}}^{20}=+6.5$ (с 1.0, MeOH).

Crude ent-5a was used for the preparation of ethyl ($2 R, 4 R$)-4-hydroxyprolinate hydrochloride ent-5b. This compound is described in the literature. ${ }^{6}$ Preparation was performed according to $\mathbf{2 a}$ as follows.

To a solution of crude ent-5a ($493.3 \mathrm{mg}, 2.95 \mathrm{mmol}$) in $\mathrm{EtOH}(40.0 \mathrm{~mL})$ was added $\mathrm{SOCl}_{2}(0.31 \mathrm{~mL}, 4.51 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. Further treatment and work up was carried out as described for 2a to give pure ent-5b ($470 \mathrm{mg}, 82 \%$) as a white solid. Mp: $138-140^{\circ} \mathrm{C}$; EI-MS $m / z=86$ (α-cleavage, $\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right]^{+}$); IR (KBr): v 3270, 2977, 1727, 1585, 1380, 1249, 1064, $651 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (360 MHz , DMSO): $\delta 1.24\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.14$ (brd, 1 H , $J=13.5 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{a}), 2.31$ (ddd, $1 \mathrm{H}, J=13.5,9.6,4.3 \mathrm{~Hz}$, $\mathrm{H}-3 \mathrm{~b}), \quad 3.19 \quad(\mathrm{~m}, \quad 2 \mathrm{H}, \quad \mathrm{H}-5 \mathrm{a} / \mathrm{H}-5 \mathrm{~b}), 4.21(\mathrm{~m}, \quad 2 \mathrm{H}$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $4.37(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 4.44(\mathrm{dd}, 1 \mathrm{H}, J=9.6$, $3.9 \mathrm{~Hz}, \mathrm{H}-2) ;[\alpha]_{\mathrm{D}}^{20}=+20.1\left(c 3.08, \mathrm{CHCl}_{3}\right)$.

Preparation of ent-5 was accomplished according to $\mathbf{2}$ as follows.

Crude ent-5b (238.4 mg, 1.22 mmol$), \mathrm{Et}_{3} \mathrm{~N}(0.39 \mathrm{~mL}, 2.8$ mmol) and benzyl bromide ($0.15 \mathrm{~mL}, 1.3 \mathrm{mmol}$) were dissolved in $\mathrm{CHCl}_{3}(40 \mathrm{~mL})$, reacted and worked up (petroleum ether/EtOAc, 1:1) as described for 2 to give ent-5 ($298 \mathrm{mg}, 98 \%$) as a colorless oil: EI-MS $m / z=249$ [M ${ }^{+}$; TLC: $R_{\mathrm{f}}=0.16$ (petroleum ether/EtOAc, 1:1); IR (film): $v 3412,1732,1454,1375,1198,1028,751,701 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.21(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.94 (brd, $1 \mathrm{H}, J=14.2 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{a}$), 2.37 (ddd, $1 \mathrm{H}, J=14.2,9.7,5.7 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{~b}), 2.64$ (dd, 1 H ,
$J=9.7,3.9 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{a}), 3.02(\mathrm{dd}, 1 \mathrm{H}, J=9.7,1.4 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{~b})$, 3.33 (dd, 1H, $J=9.7,3.6 \mathrm{~Hz}, \mathrm{H}-2), 3.71(\mathrm{~d}, 1 \mathrm{H}, J=13.0$ $\left.\mathrm{Hz}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.87\left(\mathrm{~d}, 1 \mathrm{H}, J=13.0 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 4.08$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.24(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 7.19-7.34(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{Ar}) ;[\alpha]_{\mathrm{D}}^{20}=+37.9\left(c 1.0, \mathrm{CHCl}_{3}\right),\left\{\right.$ lit.: ${ }^{6}[\alpha]_{\mathrm{D}}^{20}=+76.2$ (c $1.2, \mathrm{MeOH})\}$.

Preparation of $\mathbf{5}$ was accomplished starting from 4 as follows.

A mixture of $4(3.04 \mathrm{~g}, 10.4 \mathrm{mmol})$ and $\mathrm{NaOEt}(1.05 \mathrm{~g}$, 15.6 mmol) in EtOH (50 mL) was reacted and worked up as described for ent-2 to give $\mathbf{5}$ as a colorless oil (2.33 $\mathrm{g}, 90 \%) .[\alpha]_{\mathrm{D}}^{20}=-38.2\left(c \quad 0.99, \mathrm{CHCl}_{3}\right)$.

4.6. Benzyl (2SR,4R)-1,2-dibenzyl-4-hydroxyprolinate 6

To a suspension of (4R)-4-hydroxy-L-proline (Hyp) (109 $\mathrm{mg}, 0.83 \mathrm{mmol})$ in aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}(6 \mathrm{~mL}, 20 \%)$ was added benzyl bromide $(0.36 \mathrm{~mL}, 3.05 \mathrm{mmol})$ and the mixture refluxed for 3 h . After cooling to rt the mixture extracted with $\mathrm{Et}_{2} \mathrm{O}$, the organic layer dried over MgSO_{4} and evaporated. The residue was purified by flash chromatography (petroleum ether/EtOAc, 8:2) to give 6 as a $2: 1$ diastereomeric mixture ($207 \mathrm{mg}, 62 \%$) which could be isolated as a colorless oil: TLC*: $R_{\mathrm{f}}=0.17$ (petroleum ether/EtOAc, 8:2); IR (film)*: v 3360, 3086-2873, 1721, 1495, 1454, 1176, 1090, 1023, 736, $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{*}: \delta 1.94$ (brd, $\left.1 \mathrm{H}, J=14.1 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{a}\right)$, 2.56 (dd, $1 \mathrm{H}, J=14.1,6.8 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{~b}), 2.77$ (m, 2H, $\mathrm{H}-5 \mathrm{a} / \mathrm{H}-5 \mathrm{~b}), 3.12\left(\mathrm{~d}, 1 \mathrm{H}, J=13.8 \mathrm{~Hz}, \mathrm{CCH}_{2} \mathrm{Ph}\right), 3.27$ (m, $\left.2 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{Ph} / \mathrm{NCH}_{2} \mathrm{Ph}\right), 4.16(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 4.23(\mathrm{~d}, 1 \mathrm{H}$, $\left.J=13.6 \mathrm{~Hz}, \quad \mathrm{NCH}_{2} \mathrm{Ph}\right), 5.19(\mathrm{~d}, 1 \mathrm{H}, \quad J=12.2 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{Ph}\right), 5.24\left(\mathrm{~d}, 1 \mathrm{H}, J=12.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 7.11-7.48$ (m, $15 \mathrm{H}, \mathrm{Ar}$); Anal. calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}_{3}$ (401.51): C, $77.78 ; \mathrm{H}, 6.78$; N, 3.49, found: C, 77.86; H, 6.75; N, 3.55.
*Data representing one isolated diastereomer.

4.7. Ethyl (2R,4R)-1-benzyl-4-(4-methylphenylsulfonyloxy)prolinate 8

A stirred solution of ent-5 (17.08 g, 62.5 mmol$)$ in dry pyridine (250 mL) and p-toluenesulfonyl chloride (15.7 $\mathrm{mg}, 82.2 \mathrm{mmol}$) were reacted and worked up (petroleum ether/EtOAc, 9:1) as described for 3 to give $\mathbf{8}(27.7 \mathrm{~g}$, 100%) as slightly yellowish crystals. Mp: $47^{\circ} \mathrm{C}$; EI-MS $m / z=403\left[\mathrm{M}^{+}\right]$; TLC: $R_{\mathrm{f}}=0.53$ (petroleum ether/EtOAc, 1:1); IR (film): v 2981, 1742, 1362, 1176, 904, $702 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.26(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.21 (ddd, $1 \mathrm{H}, J=14.5,6.5,2.9 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{a}$), $2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OSO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 2.48$ (ddd, $1 \mathrm{H}, J=14.5,8.5$, $7.9 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{~b}), 2.61$ (dd, 1H, $J=11.1,6.0 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{a}), 3.07$ (dd, $1 \mathrm{H}, J=11.1,1.9 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{~b}), 3.25$ (brdd, $1 \mathrm{H}, J=8.5$, 6.5 Hz, H-2), $3.51\left(\mathrm{~d}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.98$ $\left(\mathrm{d}, \quad 1 \mathrm{H}, \quad J=13.2 \mathrm{~Hz}, \quad \mathrm{NCH}_{2} \mathrm{Ph}\right), \quad 4.15(\mathrm{~m}, \quad 2 \mathrm{H}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.98(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 7.21-7.32(\mathrm{~m}, 7 \mathrm{H}$, $\mathrm{Ar} / \mathrm{OSO}_{2} \mathrm{C}_{6} \underline{\mathrm{H}}_{4} \mathrm{CH}_{3}$), $7.74\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OSO}_{2} \mathrm{C}_{6} \underline{\mathrm{H}}_{4} \mathrm{CH}_{3}\right)$; Anal. calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{~S}(403.50)$: C, $62.51 ; \mathrm{H}, 6.25 ; \mathrm{N}, 3.47$; $\mathrm{S}, 7.95$, found: $\mathrm{C}, 62.57 ; \mathrm{H}, 6.20 ; \mathrm{N}, 3.50 ; \mathrm{S}, 7.92$; $[\alpha]_{\mathrm{D}}^{20}=+39.2\left(c 1.0, \mathrm{CHCl}_{3}\right)$. ent $-\mathbf{8}$ was prepared under the same reaction conditions, starting from $5 ;[\alpha]_{\mathrm{D}}^{20}=-39.7$ (c $1.0, \mathrm{CHCl}_{3}$).

4.8. Ethyl (2R,4S)-4-acetyloxy-1-benzylprolinate 9

A mixture of $\mathbf{8}(104 \mathrm{mg}, 0.26 \mathrm{mmol})$ and tetrabutylammonium acetate ($100 \mathrm{mg}, 0.33 \mathrm{mmol}$) in toluene $(10 \mathrm{~mL})$ was reacted and worked up (petroleum ether/ EtOAc, 8:2) as described for $\mathbf{4}$ to give 9 as a colorless oil ($64 \mathrm{mg}, 85 \%$): EI-MS $m / z=291\left[\mathrm{M}^{+}\right] ;$TLC: $R_{\mathrm{f}}=0.62$ (petroleum ether/EtOAc, 1:1); IR (film): v 2981, 1740, 1242, 1029, $701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $1.26\left(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.02(\mathrm{~s}, 3 \mathrm{H}$, OCOCH_{3}), 2.16 (ddd, $1 \mathrm{H}, J=13.9,7.6,3.1 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{a}$), 2.35 (ddd, $1 \mathrm{H}, J=13.9,7.6,7.4 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{~b}), 2.52$ (dd, 1 H , $J=11.0,3.8 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{a}), 3.43$ (dd, $1 \mathrm{H}, J=11.0,6.2 \mathrm{~Hz}$, $\mathrm{H}-5 \mathrm{~b}), 3.54(\mathrm{dd}, 1 \mathrm{H}, J=7.6,7.6 \mathrm{~Hz}, \mathrm{H}-2), 3.62(\mathrm{~d}, 1 \mathrm{H}$, $\left.J=12.8 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.93(\mathrm{~d}, 1 \mathrm{H}, J=12.8 \mathrm{~Hz}$, $\left.\mathrm{NCH}_{2} \mathrm{Ph}\right), 4.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4)$, 7.22-7.34 (m, 5H, Ar); Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{4}$ (291.35): C, 65.96; H, 7.27; N, 4.81, found: C, $65.66 ; \mathrm{H}$, $7.30 ; \mathrm{N}, 4.77 ;[\alpha]_{\mathrm{D}}^{20}=+36.6\left(c 1.0, \mathrm{CHCl}_{3}\right)$.

4.9. (3R,5S)-1-Benzyl-5-(tert-butyldimethylsilyloxy-methyl)pyrrolidin-3-ol 10

To a solution of $(3 R, 5 S)$-1-benzyl-5-(hydroxy-methyl)pyrrolidin-3-ol ${ }^{6}$ ($93.4 \mathrm{mg}, 0.45 \mathrm{mmol}$) in DMF (5 mL) was added imidazole ($222 \mathrm{mg}, 1.8 \mathrm{mmol}$) and TBSCl $(134 \mathrm{mg}, 0.9 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After stirring at $0^{\circ} \mathrm{C}$ for 1 h, an aqueous saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the mixture extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was dried over MgSO_{4} and evaporated. The residue was purified by flash chromatography (petroleum ether/ EtOAc, 1:1) to give $\mathbf{1 0}(55.2 \mathrm{mg}, 38 \%)$ as a colorless oil: EI-MS $m / z=321\left[\mathrm{M}^{+}\right] ;$TLC: $R_{\mathrm{f}}=0.2$ (petroleum ether/ EtOAc, 1:1); IR (film): v 3442, 2928, 1471, 1254, 1086, 835, $699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.08$ (s , $\left.3 \mathrm{H}, \mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{2} t \mathrm{Bu}\right), 0.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{2} t \mathrm{Bu}\right), 0.90(\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{2} t \mathrm{Bu}\right), 1.90(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4 \mathrm{a} / \mathrm{H}-4 \mathrm{~b}), 2.31(\mathrm{dd}$, $1 \mathrm{H}, J=10.1,5.0 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{a}), 3.02$ (m, 1H, H-5), 3.19 (dd, $1 \mathrm{H}, \quad J=10.1, \quad 5.7 \mathrm{~Hz}, \quad \mathrm{H}-2 \mathrm{~b}), \quad 3.52(\mathrm{~m}, \quad 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{2} t \mathrm{Bu} / \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.64(\mathrm{dd}, 1 \mathrm{H}, J=10.3,5.1$ $\left.\mathrm{Hz}, \quad \mathrm{CH}_{2} \mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{2} t \mathrm{Bu}\right), 4.10(\mathrm{~d}, \quad 1 \mathrm{H}, \quad J=13.0 \mathrm{~Hz}$, $\mathrm{NCH}_{2} \mathrm{Ph}$), 4.33 (m, 1H, H-3), 7.20-7.34 (m, 5H, Ar); $[\alpha]_{\mathrm{D}}^{20}=-46.0\left(c \quad 1.0, \mathrm{CHCl}_{3}\right)$.

4.10. (3R,5S)-1-Benzyl-5-(tert-butyldimethylsilyloxy-methyl)pyrrolidin-3-yl methanesulfonate 11

To a solution of $\mathbf{1 0}(16.40 \mathrm{mg}, 0.05 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(1.5$ $\mathrm{mL})$ were added $\mathrm{NEt}_{3}(0.033 \mathrm{~mL}, 0.23 \mathrm{mmol})$ and MsCl over a period of $60 \mathrm{~min}(0.028 \mathrm{~mL}, 0.20 \mathrm{mmol})$ at $-10^{\circ} \mathrm{C}$. After another 2 h of stirring the solvent was removed under reduced pressure while the reaction mixture was kept at $-10^{\circ} \mathrm{C}$. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and immediately purified by flash chromatography (petroleum ether/EtOAc, 8:2) to give 11 ($16.2 \mathrm{mg}, 80 \%$) as a slightly yellowish liquid: EI-MS $m / z=399\left[\mathrm{M}^{+}\right]$; TLC: $R_{\mathrm{f}}=0.63$ (petroleum ether/EtOAc, 1:1); IR (film): v 2929, $1359,1255,1176,968,836,777,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (360 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{2} t \mathrm{Bu}\right), 0.06(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{2} t \mathrm{Bu}\right), 0.89\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{2} t \mathrm{Bu}\right), 2.07$ (ddd, $1 \mathrm{H}, J=14.1,7.2,7.2 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{a}), 2.22$ (ddd, $1 \mathrm{H}, J=14.1$, $7.6,3.5 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{~b}), 2.62$ (dd, $1 \mathrm{H}, J=10.2,3.9 \mathrm{~Hz}$,

H-2a), 2.97 (s, 3H, OMs), 3.05 (m, 1H, H-5), 3.34 (dd, $1 \mathrm{H}, \quad J=10.2, \quad 5.5 \mathrm{~Hz}, \quad \mathrm{H}-2 \mathrm{~b}), \quad 3.55 \quad(\mathrm{~m}, \quad 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{2} t \mathrm{Bu} / \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.66$ (dd, $1 \mathrm{H}, \quad J=10.1$, $\left.4.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{2} t \mathrm{Bu}\right), 4.12(\mathrm{~d}, 1 \mathrm{H}, J=13.4 \mathrm{~Hz}$, $\mathrm{NCH}_{2} \mathrm{Ph}$), $5.10(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 7.19-7.38$ (m, 5H, Ar); ${ }^{13} \mathrm{C}$ NMR ($90.56 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 18.21$ (C-Tbs), 25.87 (C-Tbs), $36.14 \quad(\mathrm{C}-4), \quad 38.32 \quad\left(\mathrm{CH}_{3}(\mathrm{Ms})\right), \quad 58.87$ $\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 59.49(\mathrm{C}-2), 63.44(\mathrm{C}-5), 65.69\left(\mathrm{CH}_{2} \mathrm{OTBS}\right)$, 79.34 (C-3), 127.17, 128.34, 128.72 (C-Ar); Anal. calcd for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{NO}_{4} \mathrm{SSi}$ (399.63): C, 57.11; H, 8.32; N, 3.50; S, 8.02, found: C, $57.12 ; \mathrm{H}, 8.37$; N, 3.52; S, 8.09.

4.11. (3S,5S)-1-Benzyl-5-(tert-butyldimethylsilyloxy-methyl)pyrrolidine-3-carbonitrile 12

To a solution of $\mathbf{1 1}(16.2 \mathrm{mg}, 0.041 \mathrm{mmol})$ in DMSO (6 mL) was added $\mathrm{NaCN}(8.5 \mathrm{mg}, 0.17 \mathrm{mmol})$ and tetrabutylammonium cyanide ($10.99 \mathrm{mg}, 0.041 \mathrm{mmol}$) under N_{2} atmosphere in a glove box. The mixture was stirred at $70^{\circ} \mathrm{C}$ for 24 h . Saturated aqueous NaHCO_{3} was then added and the mixture extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was dried over MgSO_{4} and evaporated. The residue was purified by flash chromatography (petroleum ether/EtOAc, 96:4) to give 12 ($5.1 \mathrm{mg}, 38 \%$) as a slightly yellowish oil: EI-MS $m / z=330\left[\mathrm{M}^{+}\right]$; TLC: $R_{\mathrm{f}}=0.07$ (petroleum ether/EtOAc, 96:4); IR (film): v 2928, 2240, 1471, 1256, 1107, 837, $699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.05\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{2} t \mathrm{Bu}\right), 0.07$ (s, $\left.9 \mathrm{H}, \mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{2} t \mathrm{Bu}\right), 2.01$ (ddd, $1 \mathrm{H}, J=13.3,5.7,5.7$ $\mathrm{Hz}, \mathrm{H}-4 \mathrm{a}), 2.34$ (ddd, $1 \mathrm{H}, J=13.3,8.6,8.6 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{~b})$, 2.54 (dd, 1H, $J=9.6,6.9 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{a}), 2.81(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3)$, 2.92 (m, 1H, H-5), 3.16 (dd, $1 \mathrm{H}, J=9.6,3.4 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{~b}$), $3.46\left(\mathrm{~d}, 1 \mathrm{H}, \quad J=13.7 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.61(\mathrm{dd}, 1 \mathrm{H}$, $\left.J=10.3,6.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{2} t \mathrm{Bu}\right), 3.73(\mathrm{dd}, 1 \mathrm{H}$, $\left.J=10.3,5.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{2} t \mathrm{Bu}\right), 4.12(\mathrm{~d}, 1 \mathrm{H}, J=$ $13.7 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{Ph}$), 7.20-7.37 (m, 5H, Ar); Anal. calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{OSi}$ (330.55): C, 69.04; H, 9.15; N, 8.47, found: C, 69.09; H, 9.13; N, 8.41; $[\alpha]_{\mathrm{D}}^{20}=-67.5$ (c 0.07, CHCl_{3}).

4.12. (2S,4S)-4-Azido-1-benzyl-2-(tert-butyldimethylsilyloxymethyl)pyrrolidine 13

Compound 11 ($24.40 \mathrm{mg}, 0.06 \mathrm{mmol}$) and NaN_{3} (39.65 $\mathrm{mg}, 0.61 \mathrm{mmol}$) were dissolved in DMF (5 mL) and heated to $60^{\circ} \mathrm{C}$. After stirring for 4 h and then cooling to rt water was added and the mixture extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was separated, washed with water $(2 \times 5 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was purified by flash chromatography (petroleum ether/EtOAc, 96:4) to give $13(11.2 \mathrm{mg}$, $53 \%)$ as a colorless liquid: CI-MS $m / z 347\left[\mathrm{M}^{+}\right]$; TLC: $R_{\mathrm{f}}=0.64$ (petroleum ether/EtOAc, 1:1); IR (film): v 2954, 2104, 1257, 1108, 837, 776, $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.07\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{2} t \mathrm{Bu}\right), 0.90$ $\left(\mathrm{s}, 9 \mathrm{H}, \mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{2} t \mathrm{Bu}\right), 1.78(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{a}), 2.34$ (ddd, $1 \mathrm{H}, J=14.8,8.3,7.8 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{~b}), 2.43$ (dd, $1 \mathrm{H}, J=10.6$, $5.1 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{a}$), 2.74 (m, 1H, H-2), 2.99 (brd, 1H, $J=10.6 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{~b}), 3.38\left(\mathrm{~d}, 1 \mathrm{H}, J=13.4 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{Ph}\right)$, $3.58\left(\mathrm{dd}, 1 \mathrm{H}, J=9.9,6.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.76(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{OH} / \mathrm{H}-4\right), 4.17\left(\mathrm{~d}, 1 \mathrm{H}, J=13.4 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{Ph}\right)$, 7.21-7.37 (m, 5H, Ar); Anal. calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{OSi}$ (346.55): C, 62.39; H, 8.73; N, 16.17, found: C, 62.23; $\mathrm{H}, 8.61 ; \mathrm{N}, 16.25 ;[\alpha]_{\mathrm{D}}^{20}=-79.0\left(c 0.3, \mathrm{CHCl}_{3}\right)$.

4.13. Ethyl (2S,4S)-1-benzyl-4-cyanoprolinate 14

A mixture of 3 ($275.7 \mathrm{mg}, 0.68 \mathrm{mmol}$) and NaCN (50.1 $\mathrm{mg}, 1.02 \mathrm{mmol})$ in DMSO $(10 \mathrm{~mL})$ was stirred at $60^{\circ} \mathrm{C}$ for 4 h . After cooling to rt , saturated aqueous NaHCO_{3} was added and the mixture extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was dried over MgSO_{4} and evaporated. The residue was purified by flash chromatography (petroleum ether/EtOAc, 85:15) to give 14 (158.4 mg , 90%) as a colorless oil: EI-MS $m / z=258\left[\mathrm{M}^{+}\right]$; TLC: $R_{\mathrm{f}}=0.51$ (petroleum ether/EtOAc, 1:1); IR (film): v 2981, 2241, 1730, 1454, 1186, 753, $701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.30(\mathrm{t}, 3 \mathrm{H}, \quad J=7.1 \mathrm{~Hz}$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.34 (ddd, $1 \mathrm{H}, J=13.4,5.5,5.4 \mathrm{~Hz}$, $\mathrm{H}-3 \mathrm{a}$), 2.53 (ddd, $1 \mathrm{H}, J=13.4,9.6,8.4 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{~b}$), 2.86 (dd, $1 \mathrm{H}, J=9.4,7.7 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{a}), 3.05(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 3.24$ (dd, $1 \mathrm{H}, J=9.4,5.1 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{~b}), 3.47$ (dd, $1 \mathrm{H}, J=8.4$, $5.4 \mathrm{~Hz}, \mathrm{H}-2), 3.67\left(\mathrm{~d}, 1 \mathrm{H}, J=13.1 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.97$ $\left(\mathrm{d}, 1 \mathrm{H}, J=13.1 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 4.21(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $7.24-7.35(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR (90.56 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.17\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 25.90(\mathrm{C}-4)$, 33.48 (C-3), 55.01 (C-5), $56.35\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 60.96$ $\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 63.41(\mathrm{C}-2), 121.22,127.37,128.63$, 137.50, 171.94 (C-Ar); Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$ (258.32): C, $69.74 ; \mathrm{H}, 7.02 ; \mathrm{N}, 10.84$, found: $\mathrm{C}, 69.70$; $\mathrm{H}, 7.13 ; \mathrm{N}, 10.92 ;[\alpha]_{\mathrm{D}}^{20}=-17.9\left(c 1.0, \mathrm{CHCl}_{3}\right)$; ent-14 was prepared under the same reaction conditions, starting from ent-3: $[\alpha]_{\mathrm{D}}^{20}=+17.9$ (c 1.0, CHCl_{3}).

4.14. Ethyl (2S,4S)-4-azido-1-benzylprolinate 15

A mixture of 3 ($269 \mathrm{mg}, 0.66 \mathrm{mmol}$) and $\mathrm{NaN}_{3}(433$ $\mathrm{mg}, 6.64 \mathrm{mmol}$) in DMF (20 mL) was stirred at $60^{\circ} \mathrm{C}$ for 7 h . After cooling to rt, saturated aqueous NaHCO_{3} was added and the mixture extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was dried over MgSO_{4} and evaporated. The residue was purified by flash chromatography (petroleum ether/EtOAc, 85:15) to give 15 (169 mg , $92 \%)$ as a slightly yellowish oil: EI-MS $m / z=274\left[\mathrm{M}^{+}\right]$; TLC: $R_{\mathrm{f}}=0.67$ (petroleum ether/EtOAc, 1:1); IR (film): v 2984, 2105, 1740, 1265, 1182, $705 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.28(\mathrm{t}, \quad 3 \mathrm{H}, \quad J=7.0 \mathrm{~Hz}$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.15 (ddd, $1 \mathrm{H}, J=14.1,6.2,3.3 \mathrm{~Hz}$, $\mathrm{H}-3 \mathrm{a}$), 2.51 (ddd, $1 \mathrm{H}, \mathrm{J}=14.1,9.3,7.9 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{~b}$), 2.63 (dd, $1 \mathrm{H}, J=10.3,5.8 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{a}), 3.06$ (dd, $1 \mathrm{H}, J=10.3$, $2.0 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{~b}), 3.32(\mathrm{dd}, 1 \mathrm{H}, J=9.3,6.2 \mathrm{~Hz}, \mathrm{H}-2), 3.54$ $\left(\mathrm{d}, 1 \mathrm{H}, J=13.1 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.88(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 4.05$ $\left(\mathrm{d}, 1 \mathrm{H}, J=13.1 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 4.18(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 7.21-7.38 (m, 5H, Ar); Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$ (274.33): $\mathrm{C}, 61.30 ; \mathrm{H}, 6.61 ; \mathrm{N}, 20.42$, found: $\mathrm{C}, 61.37 ; \mathrm{H}, 6.65 ; \mathrm{N}, 20.71 ;[\alpha]_{\mathrm{D}}^{20}=-57.5$ (c 1.0, CHCl_{3}). ent-15 was prepared under the same reaction conditions, starting from ent-3: $[\alpha]_{\mathrm{D}}^{20}=+55.2$ (c 1.0, CHCl_{3}).

4.15. (2S,4R)-(4-Aminomethyl-1-benzylpyrrolidin-2yl)methanol 16

To a stirred solution of $\mathbf{1 4}(281 \mathrm{mg}, 1.08 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was added $\mathrm{LiAlH}_{4}(2.18 \mathrm{~mL}, 1 \mathrm{M}$ solution in THF) at $0^{\circ} \mathrm{C}$. After 1.5 h the reaction was quenched with saturated aqueous NaHCO_{3}. The mixture was filtered through Celite and the filter cake extracted with
$\mathrm{MeOH}(3 \times 10 \mathrm{~mL})$. The filtrate was evaporated and the residue purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ $\mathrm{MeOH}=8: 2+6 \mathrm{~mL}$ solution of MeOH saturated with $\mathrm{NH}_{3} / 500 \mathrm{~mL}$ eluent) to give $16(95.1 \mathrm{mg}, 40 \%)$ as a yellow oil: EI-MS $m / z=189$ (α-cleavage); TLC: $R_{\mathrm{f}}=$ $0.17\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=8: 2+6 \mathrm{~mL}\right.$ solution of MeOH saturated with $\mathrm{NH}_{3} / 500 \mathrm{~mL}$ eluent); IR (film): v 3351, 2919, 1585, 1454, 1033, 744, $701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (360 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.07(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3 \mathrm{a} / \mathrm{H}-3 \mathrm{~b} / \mathrm{H}-4), 2.47$ (dd, $1 \mathrm{H}, J=9.8,7.5 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{a}$), 2.70 (m, $4 \mathrm{H}, \mathrm{H}-2 /$ $\left.\mathrm{CH}_{2} \mathrm{NH}_{2} / \mathrm{CH}_{2} \mathrm{NH}_{2} / \mathrm{H}-5 \mathrm{~b}\right), 3.23(\mathrm{~d}, \quad 1 \mathrm{H}, \quad J=13.2 \mathrm{~Hz}$, $\left.\mathrm{NCH}_{2} \mathrm{Ph}\right), 3.51\left(\mathrm{dd}, 1 \mathrm{H}, J=11.0,1.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right)$, $3.78\left(\mathrm{dd}, 1 \mathrm{H}, J=11.0,3.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.00(\mathrm{~d}, 1 \mathrm{H}$, $J=13.2 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{Ph}$), 7.22-7.35 (m, 5H, Ar); HR-EIMS for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{2}$ (M-): calcd 189.13918 found 189.13967, for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}$: calcd 172.11263 found 172.11293, for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}$: calcd 158.09697 found $158.09705 ;[\alpha]_{\mathrm{D}}^{20}=-30.7$ (c $0.27, \mathrm{CHCl}_{3}$). ent $\mathbf{- 1 6}$ was prepared under the same reaction conditions, starting from ent-14: $[\alpha]_{\mathrm{D}}^{20}=+29.3\left(c \quad 0.04, \mathrm{CHCl}_{3}\right)$.
4.16. (2S,4S)-(4-Amino-1-benzylpyrrolidin-2-yl)methanol 17

To a stirred solution of $\mathbf{1 5}(146 \mathrm{mg}, 0.53 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was added $\mathrm{LiAlH}_{4}(1.06 \mathrm{~mL}, 1 \mathrm{M}$ solution in THF) at $0^{\circ} \mathrm{C}$. After 1 h the reaction was quenched with saturated aqueous NaHCO_{3}. The mixture was filtered through Celite and the filter cake extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was evaporated and the residue purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=\right.$ $8: 2+6 \mathrm{~mL}$ solution of MeOH saturated with $\mathrm{NH}_{3} / 500$ mL eluent) to give $\mathbf{1 7}(102 \mathrm{mg}, 94 \%)$ as a colorless oil: EI-MS $m / z=175$ (α-cleavage, $\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{OH}\right]^{+}$); TLC: $R_{\mathrm{f}}=0.19 \quad\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=8: 2+6 \quad \mathrm{~mL}\right.$ solution of MeOH saturated with $\mathrm{NH}_{3} / 1000 \mathrm{~mL}$ eluent); IR (film): v 3391, 2925, 1559, 1406, 1028, 745, $701 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.01$ (brd, $1 \mathrm{H}, J=14.1 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{a}$), 2.24 (ddd, $1 \mathrm{H}, J=14.1,10.1,6.3 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{~b}$), 2.50 (dd, $1 \mathrm{H}, J=10.3,4.1 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{a}), 2.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 2.95$ (brd, $1 \mathrm{H}, J=10.3 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{~b}), 3.46\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH} /\right.$ $\mathrm{NCH}_{2} \mathrm{Ph}$), $3.59(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 3.68$ (brd, $1 \mathrm{H}, J=10.0$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.98\left(\mathrm{~d}, 1 \mathrm{H}, J=13.4 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{Ph}\right)$, 7.18-7.37 (m, 5H, Ar); HR-EIMS for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{2}([\mathrm{M}-$ $\left.\mathrm{CH}_{2} \mathrm{OH}\right]^{+}$): calcd 175.12352, found 175.12326; $[\alpha]_{\mathrm{D}}^{20}=$ $-14.2\left(c 0.5, \mathrm{CHCl}_{3}\right)$. ent-17 was prepared under the same reaction conditions, starting from ent $-15:[\alpha]_{\mathrm{D}}^{20}=$ $+13.5\left(c \quad 0.3, \mathrm{CHCl}_{3}\right)$.

4.17. Ethyl (2S,4R)-1-benzyl-4-cyanoprolinate 18

A mixture of ent-8 (130 mg, 0.32 mmol$)$ and NaCN $(23.6 \mathrm{mg}, 0.48 \mathrm{mmol})$ in DMSO $(10 \mathrm{~mL})$ was reacted and worked up as described for $\mathbf{1 4}$ to give $\mathbf{1 8}(81.2 \mathrm{mg}$, 98%) as a colorless oil: EI-MS $m / z=258\left[\mathrm{M}^{+}\right]$; TLC: $R_{\mathrm{f}}=0.48$ (petroleum ether/EtOAc, 1:1); IR (film): v 2913, 2240, 1730, 1450, 1189, $701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (360 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.21$ (t, $3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.35 (m, 2H, H-3a/H-3b), 2.70 (dd, $1 \mathrm{H}, J=8.5,7.9 \mathrm{~Hz}$, H-5a), 3.09 (m, 1H, H-4), 3.23 (dd, $1 \mathrm{H}, J=8.5,8.2 \mathrm{~Hz}$, H-5b), 3.46 (dd, $1 \mathrm{H}, J=8.2,6.2 \mathrm{~Hz}, \mathrm{H}-2), 3.59$ (d, 1 H , $\left.J=13.0 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.90(\mathrm{~d}, 1 \mathrm{H}, J=13.0 \mathrm{~Hz}$, $\left.\mathrm{NCH}_{2} \mathrm{Ph}\right), 4.09\left(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 7.17-$
7.32 (m, 5H, Ar); ${ }^{13} \mathrm{C}$ NMR ($90.56 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $14.17\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 22.68(\mathrm{C}-4), 33.54(\mathrm{C}-3), 55.61$ (C-5), $57.20 \quad\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 60.99\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 63.39$ (C-2), 120.94, 127.50, 128.40, 128.82, 137.27, 171.95 (C-Ar); Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$ (258.32): C, 69.74; H, 7.02; N, 10.84, found: C, 69.34; H, 6.98; N, 11.04; $[\alpha]_{\mathrm{D}}^{20}=-64.8\left(c 1.0, \mathrm{CHCl}_{3}\right)$. ent $-\mathbf{1 8}$ was prepared under the same reaction conditions, starting from 8: $[\alpha]_{\mathrm{D}}^{20}=$ +64.8 (c 1.0, CHCl_{3}).

4.18. Ethyl (2S,4R)-4-azido-1-benzylprolinate 19

A mixture of ent-8 (360 mg, 0.89 mmol$)$ and $\mathrm{NaN}_{3}(578$ $\mathrm{mg}, 8.89 \mathrm{mmol}$) in DMF (20 mL) was reacted and worked up as described for 15 to give 19 (240.1 mg , 98%) as a colorless oil: EI-MS $m / z=274\left[\mathrm{M}^{+}\right]$; TLC: $R_{\mathrm{f}}=0.65$ (petroleum ether/EtOAc, 1:1); IR (film): v 2981, 2102, 1730, 1263, 1186, $700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (360 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.26\left(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), 2.16 (ddd, $1 \mathrm{H}, J=13.5,8.3,4.8 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{a}$), 2.33 (ddd, $1 \mathrm{H}, J=13.5,7.5,7.0 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{~b}), 2.53$ (dd, $1 \mathrm{H}, J=10.1$, $5.0 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{a}), 3.30(\mathrm{dd}, 1 \mathrm{H}, J=10.1,6.4 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{~b})$, $3.54(\mathrm{dd}, 1 \mathrm{H}, J=8.3,7.0 \mathrm{~Hz}, \mathrm{H}-2), 3.65(\mathrm{~d}, 1 \mathrm{H}, J=13.0$ $\left.\mathrm{Hz}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.93\left(\mathrm{~d}, 1 \mathrm{H}, J=13.0 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 4.14$ (m, 3H, H-4/ $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 7.23-7.36 (m, $\left.5 \mathrm{H}, \mathrm{Ar}\right)$; Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$ (274.33): C, 61.30; $\mathrm{H}, 6.61$; $\mathrm{N}, 20.42$, found: $\mathrm{C}, 61.60 ; \mathrm{H}, 6.69 ; \mathrm{N}, 20.63 ;[\alpha]_{\mathrm{D}}^{20}=$ -53.2 (c 1.0, CHCl_{3}). ent-19 was prepared under the same reaction conditions, starting from 8: $[\alpha]_{\mathrm{D}}^{20}=+48.5$ (c $1.0, \mathrm{CHCl}_{3}$).

4.19. (2S,4S)-(4-Aminomethyl-1-benzylpyrrolidin-2-yl)methanol 20

A mixture of $\mathbf{1 8}(48.9 \mathrm{mg}, 0.19 \mathrm{mmol})$ in THF (5 mL) and $\mathrm{LiAlH}_{4}(0.38 \mathrm{~mL}, 1 \mathrm{M}$ solution in THF) was reacted and worked up $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=8: 2+10 \mathrm{~mL}\right.$ solution of MeOH saturated with $\mathrm{NH}_{3} / 1000 \mathrm{~mL}$ eluent) as described for $\mathbf{1 6}$ to give $20(21.8 \mathrm{mg}, 52 \%)$ as a colorless oil: EI-MS $m / z=189$ (α-cleavage, [M$\left.\left.\mathrm{CH}_{2} \mathrm{OH}\right]^{+}\right)$; TLC: $\quad R_{\mathrm{f}}=0.08 \quad\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=8: 2+10\right.$ mL solution of MeOH saturated with $\mathrm{NH}_{3} / 1000 \mathrm{~mL}$ eluent); IR (film): $v 3355,1604,1454,1376,1033,755$, $701 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}^{20}=+27.9$ (c 0.96, CHCl_{3}). ent-20 was prepared under the same reaction conditions, starting from ent-18: $[\alpha]_{D}^{20}=-30.1$ (c 1.0, CHCl_{3}).

4.20. (2S,4R)-(4-Amino-1-benzylpyrrolidin-2-yl)methanol 21

A mixture of $\mathbf{1 9}(31.0 \mathrm{mg}, 0.11 \mathrm{mmol})$ in THF (5 mL) and $\mathrm{LiAlH}_{4}(0.23 \mathrm{~mL}, 1 \mathrm{M}$ solution in THF) was reacted and worked up $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=8: 2+6 \mathrm{~mL}\right.$ solution of MeOH saturated with $\mathrm{NH}_{3} / 500 \mathrm{~mL}$ eluent) as described for $\mathbf{1 7}$ to give $21(11.1 \mathrm{mg}, 48 \%)$ as a colorless oil. ent-21 was prepared under the same reaction conditions, starting from ent-19: EI-MS $m / z=206$ $\left[\mathrm{M}^{+}\right]$; TLC: $R_{\mathrm{f}}=0.33\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=8: 2+6 \mathrm{~mL}\right.$ solution of MeOH saturated with $\mathrm{NH}_{3} / 500 \mathrm{~mL}$ eluent); IR (film): v 3349, 2926, 1586, 1453, 1043, 746, $700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.65$ (ddd, $1 \mathrm{H}, J=12.9$, 9.4, 7.0 Hz, H-3a), 2.12 (dd, $1 \mathrm{H}, J=8.8,8.7 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{a}$), 2.18 (ddd, 1H, $J=12.9,7.4,5.3 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{~b}), 2.99(\mathrm{~m}, 1 \mathrm{H}$,
$\mathrm{H}-2), 3.18$ (dd, $1 \mathrm{H}, J=8.8,6.2 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{~b}$), 3.44 (m, 3 H , $\mathrm{H}-4 / \mathrm{CH}_{2} \mathrm{OH} / \mathrm{NCH}_{2} \mathrm{Ph}$), 3.65 (dd, $1 \mathrm{H}, J=11.0,3.1 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 3.96\left(\mathrm{~d}, 1 \mathrm{H}, J=13.0 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 7.21-7.34$ (m, 5H, Ar); $[\alpha]_{\mathrm{D}}^{20}=-65.8\left(c \quad 1.0, \mathrm{CHCl}_{3}\right) ;[\alpha]_{\mathrm{D}}^{20}=+74.7$ (c $1.0, \mathrm{CHCl}_{3}$).

4.21. (2S,4R)-1-Benzylpyrrolidine-2,4-dicarboxylic acid hydrochloride 22

A solution of $\mathbf{1 8}(12.7 \mathrm{mg}, 0.05 \mathrm{mmol})$ in conc. $\mathrm{HCl}(15$ mL) was refluxed for 2 h . After cooling to rt the solvent was removed under reduced pressure to give pure 22 $(13.78 \mathrm{mg}, 99 \%)$ as a white solid: $\mathrm{Mp}: 60-62^{\circ} \mathrm{C}$; EI-MS $m / z=204\left(\alpha\right.$-cleavage, $\left(\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{H}\right]^{+}\right)$; IR (KBr): v 3378, 2923, 1646, 1403, 1249, 1157, 1045, 890, 790, $698 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta 2.43$ (ddd, $1 \mathrm{H}, J=13.9$, 8.9, 8.9 Hz, H-3a), 2.75 (ddd, $1 \mathrm{H}, J=13.9,8.9,6.2 \mathrm{~Hz}$, $\mathrm{H}-3 \mathrm{~b}), 3.33$ (m, 1H, H-4), 3.60 (dd, $1 \mathrm{H}, J=12.0,8.5$ Hz, H-5a), 3.79 (dd, $1 \mathrm{H}, J=12.0,7.8 \mathrm{~Hz}, \mathrm{H}-5 b), 4.31$ (dd, 1H, $J=8.9,8.9 \mathrm{~Hz}, \mathrm{H}-2), 4.39(\mathrm{~d}, 1 \mathrm{H}, J=12.9 \mathrm{~Hz}$, $\left.\mathrm{NCH}_{2} \mathrm{Ph}\right), 4.54\left(\mathrm{~d}, 1 \mathrm{H}, J=12.9 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 7.40-$ 7.55 (m, 5H, Ar); HR-EIMS for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{4}$: calcd 249.10011 found 249.10185, for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}_{2}$: calcd 204.10245 found 204.10306 (Anal. calcd); $[\alpha]_{\mathrm{D}}^{20}=+29.4$ (c $0.78, \mathrm{MeOH})$.

4.22. (3S,5R)-N-(1-Benzyl-5-hydroxymethyl-3-pyrro-lidinyl)-5-chloro-2-methoxy-4-methylaminobenzamide 23

A suspension of 5-chloro-2-methoxy-4-methylaminobenzoic acid ($34.85 \mathrm{mg}, 0.16 \mathrm{mmol}$), HOBt (22.22 $\mathrm{mg}, 0.15 \mathrm{mmol})$ and $\mathrm{DCC}(30.3 \mathrm{mg}, 0.15 \mathrm{mmol})$ in EtOAc (15 mL) was stirred at rt for 15 min . ent-21 $(27.6 \mathrm{mg}, 0.13 \mathrm{mmol})$, dissolved in EtOAc, was added and the mixture stirred for another 24 h . The mixture was filtered through Celite and the filtrate evaporated. The residue was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$ to give $23(32.7 \mathrm{mg}, 60 \%)$ as a yellowish solid: Mp: 63-64 ${ }^{\circ} \mathrm{C}$; EI-MS $m / z=402\left[\mathrm{M}^{+}\right]$, $404\left[\mathrm{M}^{+}\right] ;$TLC: $R_{\mathrm{f}}=0.24\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5\right) ;$ IR (film): v 3388, 1602, 1519, 1282, 1248, 1036, 912, 732 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.91$ (ddd, 1 H , $J=13.2,9.1,6.7 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{a}), 2.39$ (m, 2H, H-4b/H-2a), 2.95 (d, $\left.3 \mathrm{H}, J=5.1 \mathrm{~Hz}, \mathrm{NHCH}_{3}\right), 3.10(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5)$, 3.49 (m, $3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH} / \mathrm{NCH}_{2} \mathrm{Ph} / \mathrm{H}-2 \mathrm{~b}$), 3.75 (dd, 1 H , $\left.J=11.1,3.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.09(\mathrm{~d}$, $\left.1 \mathrm{H}, J=13.0 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 4.46(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 4.73$ (m, $\left.1 \mathrm{H}, \mathrm{NHCH}_{3}\right), 6.09(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCOCH} 3), 7.21-7.34(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{Ar}$), 7.69 (brd, $1 \mathrm{H}, J=6.5 \mathrm{~Hz}, \mathrm{NHCO}$), 8.06 (s, $1 \mathrm{H}, \mathrm{CHCCl}$); Anal. calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{ClN}_{3} \mathrm{O}_{3}$ (403.91): C, $62.45 ; \mathrm{H}, 6.49 ; \mathrm{N}, 10.40$, found: C, $62.34 ; \mathrm{H}, 6.42 ; \mathrm{N}$, $10.37 ;[\alpha]_{\mathrm{D}}^{20}=+64.4\left(c 0.15, \mathrm{CHCl}_{3}\right)$.
ent-23 was prepared under the same reaction conditions, starting from 21: $[\alpha]_{\mathrm{D}}^{20}=-58.1$ (c 0.52, CHCl_{3}).

4.23. (3S,5S)-N-(1-Benzyl-5-hydroxymethyl-3-pyrro-lidinyl)-5-chloro-2-methoxy-4-methylaminobenzamide 24

A suspension of 5-chloro-2-methoxy-4-(methylamino)benzoic acid ($29.16 \mathrm{mg}, 0.14 \mathrm{mmol}$), HOBt $(18.63 \mathrm{mg}, 0.12 \mathrm{mmol})$ and DCC $(25.42 \mathrm{mg}, 0.12 \mathrm{mmol})$ was reacted with $17(23.1 \mathrm{mg}, 0.11 \mathrm{mmol})$ and worked
up $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$ as described for 23 to give 24 $(27.1 \mathrm{mg}, 60 \%)$ as a yellowish solid. $\mathrm{Mp}: 127-129^{\circ} \mathrm{C}$; EI-MS $m / z=372$ (α-cleavage, $\left(\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{OH}\right]^{+}\right)$, $198(\alpha-$ cleavage, $\left(\left[\mathrm{M}-\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}\right]^{+}\right)$; TLC: $R_{\mathrm{f}}=0.62\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ MeOH 9:1); IR (film): v 3379, 1601, 1518, 1284, 1247, 1036, $700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.80$ (brdd, $1 \mathrm{H}, J=14.1,5.8 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{a}$), 2.48 (ddd, 1 H , $J=14.1,9.9,7.9 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{~b}), 2.63$ (dd, $1 \mathrm{H}, J=9.9,5.1$ Hz, H-2a), 2.85 (m, 1H, H-5), 2.95 (d, $3 \mathrm{H}, J=5.1 \mathrm{~Hz}$, NHCH_{3}), 3.02 (brd, $1 \mathrm{H}, J=9.9 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{~b}$), 3.44 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH} / \mathrm{NCH}_{2} \mathrm{Ph}$), 3.69 (dd, $1 \mathrm{H}, J=11.0,3.1 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 3.96\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{3} / \mathrm{NCH}_{2} \mathrm{Ph}\right), 4.53(\mathrm{~m}, 1 \mathrm{H}$, $\overline{\mathrm{H}-3}), 4.69\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NHCH}_{3}\right), 6.10\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCOCH}_{3}\right)$, $7.21-7.34$ (m, 5H, Ar), 8.06 (s, 1H, CHCCl), 8.13 (brd, $1 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{NHCO}$) ; ${ }^{13} \mathrm{C}$ NMR (62.89 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 30.12\left(\mathrm{NHCH}_{3}\right), 34.87(\mathrm{C}-4), 47.68(\mathrm{C}-3)$, $55.79\left(\mathrm{OCH}_{3}\right), 56.95\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 60.67,60.71(\mathrm{C}-2 /$ $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 64.21(\mathrm{C}-5), 92.85\left(\mathrm{CHCOCH}_{3}\right), 127.83$, 128.62, 129.16 (C-Ar), 132.10 (CHCCl), 148.13, 158.19, 164.18 (C-Ar), 170.15 (CONH); Anal. calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{ClN}_{3} \mathrm{O}_{3}$ (403.91): C, 62.45; H, 6.49; N, 10.40, found: C, $62.31 ; \mathrm{H}, 6.53 ; \mathrm{N}, 10.30 ;[\alpha]_{\mathrm{D}}^{20}=+42.3$ (c 1.0, CHCl_{3}).
ent-24 was synthesized under the same reaction conditions, starting from ent-17; $[\alpha]_{\mathrm{D}}^{20}=-40.4 \quad$ (c 0.47 , CHCl_{3}).

4.24. (3R,5S)-N-(1-Benzyl-5-hydroxymethyl-3-pyrro-lidinylmethyl)-5-chloro-2-methoxy-4-methylaminobenzamide 25

A suspension of 5-chloro-2-methoxy-4-methylaminobenzoic acid ($14.3 \mathrm{mg}, 0.07 \mathrm{mmol}$), HOBt (9.07 $\mathrm{mg}, 0.06 \mathrm{mmol}$) and DCC ($12.47 \mathrm{mg}, 0.06 \mathrm{mmol}$) was reacted with 16 ($12.1 \mathrm{mg}, 0.06 \mathrm{mmol}$) and worked up $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5\right)$ as described for 23 to give $\mathbf{2 5}$ ($11.9 \mathrm{mg}, 52 \%$) as an opaque, yellowish solid. Mp: $85-90^{\circ} \mathrm{C}$; EI-MS $m / z=386$ (α-cleavage, pyrrolidine moiety), 198 (aromatic moiety); TLC: $R_{\mathrm{f}}=0.22$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5\right)$; IR (film): v 3400, 1602, 1519, 1281, 1246, 1036, 910, $731 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (360 MHz , CDCl_{3}): $\delta 1.69$ (ddd, $1 \mathrm{H}, J=13.2,8.1,5.5 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{a}$), 2.13 (ddd, $1 \mathrm{H}, J=13.2,8.1,8.1 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{~b}), 2.53$ (m, 2H, $\mathrm{H}-2 \mathrm{a} / \mathrm{H}-3$), 2.88 (m, 2H, H-5/H-2b), 2.95 (d, 3H, $J=5.1$ $\left.\mathrm{Hz}, \mathrm{NHCH}_{3}\right), 3.40\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NHCO} / \mathrm{CH}_{2} \mathrm{NHCO} /\right.$ $\left.\mathrm{NCH}_{2} \mathrm{Ph}\right), 3.54\left(\mathrm{dd}, 1 \mathrm{H}, J=11.3,2.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right)$, 3.77 (dd, $\left.1 \mathrm{H}, J=11.3,3.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.86(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $4.05\left(\mathrm{~d}, 1 \mathrm{H}, J=13.4 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 4.71(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{NHCH}_{3}\right), 6.08(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCOCH} 3), 7.20-7.38(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{Ar}), 7.83(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NHCO}), 8.07(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCCl})$; ${ }^{13} \mathrm{C}$ NMR (90.56 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 30.16\left(\mathrm{NHCH}_{3}\right)$, 29.69 (C-4), $35.43(\mathrm{C}-3), 43.65\left(\mathrm{CH}_{2} \mathrm{NH}_{2}\right), 56.08$ $\left(\mathrm{OCH}_{3}\right), 56.17(\mathrm{C}-2), 57.28\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 60.54\left(\mathrm{CH}_{2} \mathrm{OH}\right)$, $65.34(\mathrm{C}-5), 93.08\left(\mathrm{CHCOCH}_{3}\right), 127.34,128.79(\mathrm{C}-\mathrm{Ar})$, 132.29 (CHCCl), 148.13, 158.20, 164.18 (C-Ar); Anal. calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{ClN}_{3} \mathrm{O}_{3}$ (417.94): C, 63.23; $\mathrm{H}, 6.75 ; \mathrm{N}$, 10.05 , found: $\mathrm{C}, 63.05 ; \mathrm{H}, 6.76 ; \mathrm{N}, 10.15 ;[\alpha]_{\mathrm{D}}^{20}=-35.6$ (c $0.32, \mathrm{CHCl}_{3}$).
ent-25 was synthesized under the same reaction conditions, starting from ent-16; $\quad[\alpha]_{\mathrm{D}}^{20}=+32.8 \quad(c \quad 0.41$, CHCl_{3}).

4.25. (3R,5R)-N-(1-Benzyl-5-hydroxymethyl-3-pyrro-lidinylmethyl)-5-chloro-2-methoxy-4-methylaminobenzamide 26

ent-20 was synthesized from ent-18 ($16.9 \mathrm{mg}, 0.07$ mmol) and was reacted with a suspension of 5-chloro-2-methoxy-4-methylaminobenzoic acid $(17.0 \mathrm{mg}, 0.07$ mmol), HOBt ($10.0 \mathrm{mg}, 0.07 \mathrm{mmol}$) and DCC (14.0 $\mathrm{mg}, 0.07 \mathrm{mmol}$) as described for 23 and purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 99: 1\right)$ and HPLC (column: RP 18, eluent: $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 95: 5$) to give 26 ($12.6 \mathrm{mg}, 46 \%$ over two steps) as a glutinous, colorless mass: EI-MS $m / z=404\left[\mathrm{M}^{+}\right]$; TLC: $R_{\mathrm{f}}=0.35$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$; IR (film): v 3397, 1635, 1600, 1519, 1457, 1280, 1245, 1214, 1037, 809, $752 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.75$ (ddd, $1 \mathrm{H}, J=13.0$, 9.0, $9.0 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{a}$), 2.05 (ddd, $1 \mathrm{H}, J=13.0,8.3,5.0 \mathrm{~Hz}$, H-4b), 2.14 (dd, 1H, $J=9.8,9.0, H-2 \mathrm{a}), 2.38$ (m, 1H, H-3), 2.87 (m, 1H, H-5), 2.95 (d, $3 \mathrm{H}, J=5.0 \mathrm{~Hz}$, $\left.\mathrm{NHCH}_{3}\right), 3.12(\mathrm{dd}, 1 \mathrm{H}, J=9.8,6.7 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{~b}), 3.41(\mathrm{~m}$, $\left.4 \mathrm{H}, \quad \mathrm{CH}_{2} \mathrm{NHCO} / \mathrm{CH}_{2} \mathrm{NHCO} / \mathrm{NCH}_{2} \mathrm{Ph} / \mathrm{CH}_{2} \mathrm{OH}\right), 3.66$ (dd, $\left.1 \mathrm{H}, J=11.0,3.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.97\left(\mathrm{~d}, 1 \mathrm{H}, J=12.8 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 4.71(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{NHCH}_{3}\right), 6.08\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCOCH}_{3}\right), 7.14-7.43(\mathrm{~m}, 5 \mathrm{H}$, Ar), 7.63 (m, 1H, NHCO), 8.08 (s, $1 \mathrm{H}, \mathrm{CHCCl}$); HR-EI-MS: for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{ClN}_{3} \mathrm{O}_{2}$: calcd 399.17136 found 399.17133, for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{ClN}_{3} \mathrm{O}_{2}$: calcd 386.16354 found 386.16383, for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClNO}_{2}$: calcd 198.03218 found 198.03279; $[\alpha]_{\mathrm{D}}^{20}=+30.1$ (cc0.05, $\left.\mathrm{CHCl}_{3}\right)$.
ent-26 was synthesized under the same reaction conditions, starting from ent-18; $\quad[\alpha]_{\mathrm{D}}^{20}=-25.8 \quad(c \quad 0.09$, CHCl_{3}).

4.26. (3S,5S)-4-Acetylamino- N-(1-benzyl-5-hydroxy-methyl-3-pyrrolidinyl)-5-chloro-2-methoxybenzamide 27

A suspension of 4-acetylamino-5-chloro-2-methoxybenzoic acid ($39.88 \mathrm{mg}, 0.2 \mathrm{mmol}$), HOBt ($27.8 \mathrm{mg}, 0.2$ $\mathrm{mmol})$ and DCC ($37.9 \mathrm{mg}, 0.2 \mathrm{mmol}$) was reacted with $17(34.6 \mathrm{mg}, 0.17 \mathrm{mmol})$ and worked up $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ $\mathrm{MeOH}, 95: 5)$ as described for 23 to give $27(72.3 \mathrm{mg}$, $88 \%)$ as a colorless, glutinous: EI-MS $m / z=432\left[\mathrm{M}^{+}\right]$; TLC: $R_{\mathrm{f}}=0.51\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$; IR (film): v 3345, 1687, 1637, 1508, 1242, 1012, $742 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (360 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.08(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{a}), 2.26(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{COCH}_{3}\right), 2.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{~b}), 3.10(\mathrm{dd}, 1 \mathrm{H}, J=11.1$, $5.7 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{a}), 3.46(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 3.57$ (brd, 1 H , $J=11.1 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{~b}$), 3.71 (dd, $1 \mathrm{H}, J=12.3,3.1 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.97(\mathrm{dd}, 1 \mathrm{H}, J=13.3,2.2$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.05\left(\mathrm{~d}, 1 \mathrm{H}, J=13.7 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 4.37$ (d, $\left.1 \mathrm{H}, J=13.7 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 4.67(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3)$, $7.20-7.38$ (m, 5H, Ar), 7.55 (d, 1H, $J=7.5 \mathrm{~Hz}, \mathrm{NHCO}$), $7.70 \quad(\mathrm{~s}, \quad 1 \mathrm{H}, \quad \mathrm{NHCOCH} 3), \quad 8.02 / 8.08 \quad(\mathrm{~s} / \mathrm{s}, \quad 1 \mathrm{H} / 1 \mathrm{H}$, $\left.\mathrm{CHCCl} / \mathrm{CHCOCH}_{3}\right)$; Anal. calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{ClN}_{3} \mathrm{O}_{4} \times$ $0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 60.55 ; \mathrm{H}, 6.12, \mathrm{~N} ; 9.24$, found: C, 60.29 ; H, 5.98; N, 9.43; $[\alpha]_{\mathrm{D}}^{20}=+60.1$ (c 0.23, $\left.\mathrm{CHCl}_{3}\right)$.

4.27. (3R,5S)-4-Acetylamino- N-(1-benzyl-5-hydroxy-methyl-3-pyrrolidinylmethyl)-5-chloro-2-methoxybenzamide 28

A suspension of 4-aetylamino-5-chloro-2-methoxyben-
zoic acid ($30.72 \mathrm{mg}, 0.15 \mathrm{mmol}$), HOBt ($21.3 \mathrm{mg}, 0.14$ $\mathrm{mmol})$ and DCC ($29.06 \mathrm{mg}, 0.14 \mathrm{mmol}$) was reacted with $16(28.3 \mathrm{mg}, 0.13 \mathrm{mmol})$ and worked up $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ $\mathrm{MeOH}, 95: 5)$ as described for 23 to give $28(16.9 \mathrm{mg}$, 29%) as a yellowish, opaque solid. Mp: 78-81 ${ }^{\circ} \mathrm{C}$. EIMS $m / z=414$ (α-cleavage, $\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{OH}\right]^{+}$); TLC: $R_{\mathrm{f}}=$ $0.29\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right)$; IR (film): v 3398, 1682, 1639, 1508, 1398, 1241, $729 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (360 MHz , CDCl_{3}): $\delta 1.67$ (ddd, $1 \mathrm{H}, J=13.2,8.1,4.9 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{a}$), 2.13 (ddd, 1H, $J=13.2,8.3,7.9 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{~b}$), 2.27 (s, 3 H , COCH_{3}), 2.47 (m, 2H, H-2a/H-3), $2.80(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5 / \mathrm{H}-$ 2b), 3.44 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH} / \mathrm{CH}_{2} \mathrm{NH} / \mathrm{CH}_{2} \mathrm{OH} / \mathrm{NCH}_{2} \mathrm{Ph}$), 3.76 (dd, $1 \mathrm{H}, J=10.9,3.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}$), 3.88 (s, 3 H , $\left.\mathrm{OCH}_{3}\right), 4.01\left(\mathrm{~d}, 1 \mathrm{H}, J=13.0 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 7.22-7.36$ (m, $5 \mathrm{H}, \mathrm{Ar}), 7.77(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NHCOCH} 3), 7.90(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{NHCO}\right), \quad 8.18 / 8.30 \quad(\mathrm{~s} / \mathrm{s}, \quad 1 \mathrm{H} / 1 \mathrm{H}, \quad \mathrm{CHCCl} /$ CHCOCH_{3}); Anal. calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{ClN}_{3} \mathrm{O}_{4}$: C, 61.95; $\mathrm{H}, 6.33$; N, 9.42, found: C, 62.08; H, 6.41; N, 9.32; $[\alpha]_{\mathrm{D}}^{20}=-52.0\left(c \quad 0.03, \mathrm{CHCl}_{3}\right)$.

4.28. (3S,5S)-4-(N-Acetyl- N-methylamino)- N-(1-benzyl-5-hydroxymethyl-3-pyrrolidinyl)-5-chloro-2-methoxybenzamide 29

A suspension of 4-(N-acetyl- N-methylamino)-5-chloro-2-methoxybenzoic acid ($31.34 \mathrm{mg}, 0.12 \mathrm{mmol}$), HOBt $(16.8 \mathrm{mg}, 0.11 \mathrm{mmol})$ and $\mathrm{DCC}(22.8 \mathrm{mg}, 0.11 \mathrm{mmol})$ in EtOAc (10 mL) was reacted with $17(20.9 \mathrm{mg}, 0.10$ mmol) and worked up $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, ~ 95: 5\right)$ as described for 23 to give 29 ($15.0 \mathrm{mg}, 50 \%$) as a white, foamy mass. $\mathrm{Mp}: \sim 30^{\circ} \mathrm{C}$. EI-MS $m / z=414$ (α-cleavage, $\left(\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{OH}\right]^{+}\right) ;$TLC: $R_{\mathrm{f}}=0.57\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$, 9:1); IR (film): v 3384, 1651, 1531, 1486, 1232, 1036, $733 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.82(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{H}-4 \mathrm{a} / \mathrm{COCH}_{3}$), 2.52 (ddd, $1 \mathrm{H}, \quad J=14.1,10.3,7.9 \mathrm{~Hz}$, H-4b), 2.65 (m, 1H, H-2a), 2.88 (m, 1H, H-5), 3.04 (brd, $1 \mathrm{H}, J=9.9 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{~b}$), 3.19 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NCH}_{3}$), 3.45 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH} / \mathrm{NCH}_{2} \mathrm{Ph}$), 3.68 (brd, $1 \mathrm{H}, J=11.3 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{OH}$), $3.97\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{3} / \mathrm{NCH}_{2} \mathrm{Ph}\right), 4.53(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-3), 6.86\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} \mathrm{HCOCH}_{3}\right), 7.18-7.38$ (m, 5H, Ar), $8.21(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{NHCO}), 8.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCCl})$; Anal. calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{ClN}_{3} \mathrm{O}_{4} \times 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 60.72 ; \mathrm{H}$, 6.42 ; N, 9.24, found: $\mathrm{C}, 60.66 ; \mathrm{H}, 6.23 ; \mathrm{N}, 9.16 ;[\alpha]_{\mathrm{D}}^{20}=$ $+11.5\left(c 0.82, \mathrm{CHCl}_{3}\right)$.

4.29. Dopamine receptor binding studies

Receptor binding studies were carried out as described in the literature. ${ }^{36}$ In brief, the dopamine D1 receptor assay was done with bovine striatal membranes at a final protein concentration of $45 \mu \mathrm{~g} /$ assay tube and the radioligand $\left[{ }^{3} \mathrm{H}\right] \mathrm{SCH} 23390$ at $0.3 \mathrm{nM}\left(K_{\mathrm{d}}=0.35-0.75\right.$ $\mathrm{nM})$.

Competition experiments with the human $D 2_{\text {long }}$, D $2_{\text {short }}$, D3 and D4.4 receptors were run with preparations of membranes from CHO cells expressing the corresponding receptor and $\left[{ }^{3} \mathrm{H}\right]$ spiperone at a final concentration of 0.1 nM . The assays were carried out at a protein concentration of $5-25 \mu \mathrm{~g} /$ assay tube and K_{d} values of 0.10 nM for $\mathrm{D} 2_{\text {long }}$ and $\mathrm{D} 2_{\text {short }}, 0.10-0.40 \mathrm{nM}$ for D3 and $0.10-0.45 \mathrm{nM}$ for D 4.4 .

Protein concentration was established by the method of Lowry using bovine serum albumin as standard. ${ }^{38}$

4.30. 5-HT receptor binding studies

Receptor binding experiments were carried out with cortical homogenates prepared from porcine brain which was obtained from the local slaughterhouse. The cortex material was dissected and frozen at $-80^{\circ} \mathrm{C}$. Membranes were prepared by thawing, cutting up and homogenizing in an aqueous solution of sucrose (0.1 M). The suspension was washed by centrifugation at $2,500 \mathrm{~g}$. The resulting supernatant was then pelleted by centrifugation at $80,000 \mathrm{~g}$ for 40 min . The pellet was re-suspended in Tris-EDTA buffer (50 mM Tris-HCl, 1 mM EDTA; pH 7.4), homogenized with a PotterElvehjam homogenizer and stored at $-80^{\circ} \mathrm{C}$ in small aliquots.

For $5-\mathrm{HT}_{\mathrm{A}}$ receptor binding assay porcine cortical membranes were diluted with binding buffer (50 mM Tris- $\mathrm{HCl}, 4 \mathrm{mM} \mathrm{CaCl} 2,0.1 \%$ ascorbic acid and 10 nM pargyline; pH 7.4) to a final concentration of $460 \mu \mathrm{~g}$ protein/assay tube (K_{d} values from $2.4-4.8 \mathrm{nM}$). Tubes were prepared with the radioligand $\left[{ }^{3} \mathrm{H}\right] 8-\mathrm{OH}-\mathrm{DPAT}$ (0.5 nM) (specific activity $135.0 \mathrm{Ci} / \mathrm{mmol}$; PerkinElmer) and varying concentrations of test compounds (from $0.01-10,000 \mathrm{nM})$. Non-specific binding was determined in the presence of serotonine $(10 \mu \mathrm{M})$. Incubation was started by adding membranes to the assay tube with a final volume of $800 \mu \mathrm{~L}$ and continued for 60 min at $37^{\circ} \mathrm{C}$ after which it was stopped by rapid filtration through GF/B filters precoated with 0.3% polyethylenimine, using an automated cell harvester (Inotech, CH). Filters were washed five times with ice-cold Tris-EDTA buffer, dried and counted in a MicroBeta Trilux (PerkinElmerWallac).

Binding assay with 5-HT2 receptors was done at $200 \mu \mathrm{~g}$ protein/assay tube with the radioligand $\left[{ }^{3} \mathrm{H}\right]$ ketanserine (specific activity $63.3 \mathrm{Ci} / \mathrm{mmol}$; PerkinElmer) at K_{d} values from $2.6-3.1 \mathrm{nM}$ and methysergide $(10 \mu \mathrm{M})$ for determination of non-specific binding. Incubation was carried out at a final volume of $500 \mu \mathrm{~L}$ for 60 min at $37^{\circ} \mathrm{C}$ and worked up as described above.

4.31. Data analysis

The resulting competition curves were analyzed by nonlinear regression using the algorithms in PRISM (GraphPad Software, San Diego, CA). The data was initially fitted using a sigmoid model to provide an IC_{50} value, representing the concentration corresponding to 50% of maximal inhibition. The IC_{50} values were transformed to K_{i} values according to the equation of Cheng and Prusoff. ${ }^{39}$

Acknowledgements

The authors wish to thank Dr. H. H. M. Van Tol (Clarke Institute of Psychiatry, Toronto), Dr. J.-C. Schwartz and Dr. P. Sokoloff (INSERM, Paris) as well
as Dr. J. Shine (The Garvan Institute of Medical Research, Sydney) for providing dopamine D4, D3 and D2 receptor expressing cell lines, respectively. This work was supported by the Deutsche Forschungsgemeinschaft (DFG).

References

1. Iwanami, S.; Takashima, M.; Hirata, Y.; Hasegawa, O.; Usuda, S. J. Med. Chem. 1981, 24, 1224.
2. Mishra, R. K.; Chiu, S.; Chiu, P.; Mishra, C. P. Methods Find. Exp. Clin. Pharmacol. 1983, 5, 203.
3. Thomas, C.; Hübner, H.; Gmeiner, P. Bioorg. Med. Chem. Lett. 1999, 9, 841.
4. Ohmori, J.; Maeno, K.; Hidaka, K.; Nakato, K.; Matsumoto, M.; Tada, S.; Hattori, H.; Sakamoto, S.; Tsukamoto, S.; Usuda, S.; Mase, T. J. Med. Chem. 1996, 39, 2764.
5. Nagle, A. S.; Salvatore, R. N.; Chong, B.-D.; Jung, K. W. Tetrahedron Lett. 2000, 41, 3011.
6. Tanaka, K.; Sawanishi, H. Tetrahedron: Asymmetry 1995, 6, 1641.
7. Cossy, J.; Dumas, C.; Michel, P.; Gomez Pardo, D. Tetrahedron Lett. 1995, 36, 549.
8. Yanagi, T.; Katajima, A.; Anzai, K.; Kodama, K.; Mizoguchi, J.-I.; Fujiwara, H.; Sakiyama, H.; Kamoda, O.; Kamei, C. Chem. Pharm. Bull. 1999, 47, 1650.
9. Braish, T. F.; Fox, D. E. J. Org. Chem. 1990, 55, 1684.
10. Bridges, R. J.; Stanley, M. S.; Anderson, M. W.; Cotman, C. W.; Chamberlin, A. R. J. Med. Chem. 1991, 34, 717.
11. Peterson, M. L.; Vince, R. J. Med. Chem. 1991, 34, 2787.
12. Bouzard, D.; Di Cesare, P.; Essiz, M.; Jacquet, J. P.; Kiechel, J. R.; Remuzon, P.; Weber, A.; Oki, T.; Masuyoshi, M.; Kessler, R. E.; Fung-Tomc, J.; Desiderio, J. J. Med. Chem. 1990, 33, 1344.
13. Baker, G. L.; Fritschel, S. J.; Stille, J. R.; Stille, J. K. J. Org. Chem. 1981, 46, 2954.
14. Remuzon, P.; Bouzard, D.; Guiol, C.; Jacquet, J. P. J. Med. Chem. 1992, 35, 2898.
15. Greenstein, J. P. J. Biolog. Chem. 1953, 204, 307.
16. Greenstein, J. P. J. Biolog. Chem. 1952, 195, 383.
17. Rosen, T.; Fesik, S. W.; Chu, D. T. W.; Pernet, A. G. Synthesis 1988, 40.
18. Rosen, T.; Chu, D. T. W.; Lico, I. M.; Fernandes, P. B.; Marsh, K.; Shen, L.; Cepa, V. G.; Pernet, A. G. J. Med. Chem. 1988, 31, 1598.
19. Takahata, H.; Takamatsu, T.; Chen, Y.; Ohkubo, N.; Yamazaki, T.; Momose, T.; Date, T. J. Org. Chem. 1990, 55, 3792.
20. Monn, J. A.; Valli, M. J.; True, R. A.; Schoepp, D. D.; Leander, J. D.; Lodge, D. Bioorg. Med. Chem. Lett. 1993, 3, 95.
21. Smith, E. M.; Swiss, G. F.; Neustadt, B. R.; Gold, E. H.; Sommer, J. A.; Brown, A. D.; Chiu, P. J. S.; Moran, R.; Sybertz, E. J.; Baum, T. J. Med. Chem. 1988, 31, 875.
22. Gmeiner, P.; Kärtner, A. Synthesis 1995, 83.
23. Gmeiner, P.; Kärtner, A.; Junge, D. Tetrahedron Lett. 1993, 34, 4325.
24. Watanabe, K.; Fukumura, T.; Sasaki, S.; Maeda, M.; Takehara, S. Chem. Pharm. Bull. 1991, 39, 3211.
25. Gmeiner, P.; Junge, D.; Kärtner, A. J. Org. Chem. 1994, 59, 6766.
26. Sawanishi, H.; Myamoto, K.; Tanaka, K.; Suzuki, K. Jpn. Kokai Tokkyo Koho 1993, 40.
27. Gilbertson, S. R.; Pawlick, R. V. Angew. Chem., Int. Ed. 1996, 35, 902.
28. Williams, M. A.; Rapoport, H. J. Org. Chem. 1994, 59, 3616.
29. Seno, K.; Ohtani, M.; Watanabe, F. PCT Int. Appl. 1998, 178.
30. Thomas, C. Dissertation, Bonn, 1997.
31. Moriarty, K. J.; Shimshock, Y.; Ahmed, G.; Wu, J.; Wen, J.; Li, W.; Erickson, S. D.; Letourneau, J. J.; McDonald, E.; Leftheris, K.; Wrobleski, S. T. PCT Int. Appl. 2001, 123.
32. Arakawa, Y.; Yasuda, M.; Ohnishi, M.; Yoshifuji, S. Chem. Pharm. Bull. 1997, 45, 255.
33. Hayes, G.; Biden, T. J.; Selbie, L. A.; Shine, J. J. Mol. Endocrinol. 1992, 6, 920.
34. Sokoloff, P.; Andrieux, M.; Besancon, R.; Pilon, C.; Martres, M.-P.; Giros, B.; Schwartz, J.-C. Eur. J. Pharmacol. 1992, 225, 331.
35. Asghari, V. S.; Sanyal, S.; Buchwaldt, S.; Paterson, A.; Jovanovic, V.; Van Tol, H. H. M. J. Neurochem. 1995, 65, 1157.
36. Hübner, H.; Haubmann, C.; Utz, W.; Gmeiner, P. J. Med. Chem. 2000, 43, 756 and references cited therein.
37. Millan, M. J. J. Pharmacol. Exp. Ther. 2000, $295,853$.
38. Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J. J. Biol. Chem. 1951, 193, 265.
39. Cheng, Y. C.; Prusoff, W. H. Biochem. Pharmacol. 1973, 22, 3099.

[^0]: * Corresponding author. Tel.: +49-9131-8529383; fax: +49-91318522585; e-mail: gmeiner@pharmazie.uni-erlangen.de

