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Previously unknown 2,5-bis-sulfonylpyrazines are prepared and their SyAr reactions are investigated.
When 2 equiv of thiols are employed, the corresponding bis-thiopyrazines are obtained exclusively. How-
ever, phenols or alkoxides gave rise to only the corresponding mono-substituted aryloxy- or alkoxy-sul-
fonylpyrazines in excellent yields. A carbon nucleophile prepared by treating malonate with NaH also
produced the corresponding mono-sulfonylpyrazines. Aliphatic amines and anilines only provided the
mono-anilino-sulfonylpyrazines in poor to moderate yields.
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Pyrazines are not common in nature. However, the importance
of pyrazine as the bioisostere for either benzene or pyridine rings
has been manifested by eszopiclone (Fig. 1, 1, Lunesta)' as a synap-
tic y-aminobutyric acid (GABA) receptor modulator for the treat-
ment of insomnia. Another pyrazine-containing drug is
bortezomib (2, Velcade), an intravenously administered first-in-
class proteasome inhibitor for the treatment of patients with
multiple myeloma (MM) who had received at least two prior
therapies.?

Sulfonylpyrazines, on the other hand, have emerged as impor-
tant moieties in pharmaceutical agents. Conspicuously, (methyl-
sulfonyl)pyrazine 3 is a cell proliferation inhibitor®> and
sulfonylpyrazine 4 is a prostacyclin (PGIl,) receptor agonist, poten-
tially used for the treatment of various vascular diseases (Fig. 2).*
In addition, (methylsulfonyl)pyrazine 5 is an adenosine antago-
nist,”> and sulfonylpyrazine 6 was investigated as an insecticide,
acaricide, or nematicide.®

During our drug discovery programs, we have developed a no-
vel methodology for preparing 2,5-bis-sulfonylpyrazines from
commercially available 2,5-bis-bromopyrazine (7). Surprisingly,
neither 2,5-bis-alkylsulfonylpyrazines nor 2,5-bis-arylsulfonyl-
pyrazines were previously known in the literature.

We prepared 2,5-bis-(sulfonyl)pyrazines 9 from readily
commercially available 2,5-bis-bromopyrazine (7). As shown in
Scheme 1, disulfide 8a was obtained by refluxing 7 with 10 equiv
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of sodium methanethiolate in DMF overnight.> Oxidation of disul-
fides 8a to bis-sulfones 9a was initially accomplished by using
6 equiv of Oxone® in i-PrOH/H,0 (5:1) at room temperature in
nearly quantitative yields.” However, the reaction was heteroge-
neous and the workup was cumbersome because of large amounts
of Oxone® used. An alternative oxidation employing hydrogen per-
oxide in acetic acid is homogeneous and operationally more
convenient.®

With bis-sulfone 9a in hand, we explored its ability to undergo
SNAT reactions with a wide variety of nucleophiles. As shown in
Scheme 2, when 4-fluorophenol was employed, the SyAr reaction
halted after 1 equiv of the nucleophile was added to the pyrazine
ring. After the phenyl-pyrazinyl ether 10 is formed, the pyrazine
ring is deactivated because of the strong electron-donating nature
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Figure 1. Pyrazine-containing drugs on the market.
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Figure 2. Sulfonylpyrazine-containing compounds in medicinal chemistry.
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Scheme 1. Two-step preparation of 2,5-bis-(methysulfonyl)pyrazine 9a.
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Scheme 2. S\Ar reactions of 9a with phenol and thiophenol.
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Scheme 3. SyAr reactions of 9a with sodium ethoxide and malonate.

of the oxygen atom. Therefore, even though an excess amount of 4-
fluorophenol (2.5 equiv) was used, the mono-SyAr product was the
sole product produced, giving rise to 10 in 90% isolated yield.® In
contrast, when 2.5 equiv of 4-fluorothiophenol was used as the
nucleophile, bis-sulfide 11 was isolated exclusively. Interestingly,
employing only 1 equiv of 4-fluorothiophenol, the mono-substitu-
tion product 12 was produced as the sole product (Table 1, entry
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Scheme 4. Two-step preparation of 2,5-bis-t-butylsulfonylpyrazine 9b.
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Scheme 5. Two-step preparation of 2,5-bis(tolylsulfonyl)pyrazine 9c.

3). In the same vein, the SyAr reaction of 9a with 2.5 equiv of ethyl
2-mercaptoacetate, perhaps not surprisingly, afforded the double
SNAr reaction product, bis-sulfide 13. Again, employing only
1 equiv of ethyl 2-mercaptoacetate, the mono-substitution product
14 was produced in 69% yield, along with concurrent formation of
29% of 13.1° Unfortunately, the yields for the SyAr reactions of the
nitrogen nucleophiles were poor to moderate. When the aliphatic
amine tert-butyl piperazine-1-carboxylate was used, only 37% of
the mono-substituted pyrazine 15 was isolated. The bis-substitu-
tion product was not isolated presumably because of its extremely
low solubility. When a bis-Boc-guanidine was employed as the
nucelophile, the mono-substituted product 16 was isolated. Our
methodology was also found to have additional limitations in ali-
phatic alcohols. No reaction was observed when aliphatic alcohols
were used as nucleophiles. However, when sodium ethoxide was
used, 2-ethoxy-5-(methylsulfonyl)pyrazine (17) was isolated in
84% yield. In addition, when the SyAr reaction of 9a with a carbon
nucleophile was initially carried out using diethyl malonate trea-
ted with 1 equiv of NaOEt, a mixture of 2-ethoxy-5-(methylsulfo-
nyl)pyrazine (17) and diethyl 2-(5-(methylsulfonyl)pyrazin-2-
yl)malonate (18) was afforded in 55% and 33% yields, respectively
(Scheme 3). This is a reflection of the fact that NaOEt is more nucle-
ophilic than sodium malonate. Although when sodium malonate
was derived by the treatment of diethyl malonate with 1 equiv of
NaH, 2-(5-(methylsulfonyl)-pyrazin-2-yl)malonate (18) was iso-
lated as the sole product in 86% yield. This was the case even when
2 equiv of the nucleophile was employed.'!

Meanwhile, 2,5-bis-t-butylsulfonylpyrazine (9b) was prepared
in a similar fashion to that described for 9a (Scheme 4). Double
SNAr displacement of 2,5-bis-bromopyrazine (7) with 2.5 equiv of
sodium t-butanethiolate upon microwave irradiation (MeCN,
30 min, 100 °C) provided disulfide 8b. Oxidation of disulfide 8b
to bis-sulfone 9b was accomplished by using 6 equiv of Oxone®
in i-PrOH/H,0 at room temperature over 4 days. The prolonged
reaction time may be a reflection of the steric hindrance that the
t-butyl group exerted.

The SNAr reactions of bis-sulfones 9b with a wide variety of
nucleophiles have been explored. Compared to 9a, a similar trend
of reactivity for 9b was observed. As shown in Table 2, sulfur
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Table 1
SNAr reactions of 2,5-bis-(methylsulfonyl)pyrazine 9a
Entry Bis-sulfone Nucleophile Product Yield (%)
N (0]
v IRl
1 9a Me pZ 90
S N F
0, 10
F. N S
HS F | N
2 9a Z 100°
S N F
1
N S
HS F | \j/
3 9a Me Pz 89°
S N F
0O, 12
EtO,C._SH Ny S._CO,Et
4 9a JI /j/ 882
Et0,c7 87 N
13
EtO,C._SH N\ S _COEt
5 9a Me JI /j/ 69°
S N
O, 14
/ N\ .Boc
HN  N-Boc N
— NN
6 9% JI j/ 37
Me =
S N
0, 15
ji NH O N N H
“Boc
BuO” "N OBu J: j/ N
7 9a H Me . | _ HN. 34
S N Boc
0O, 16
N O.
| N Et
8 9a NaOEt Me ~ 844
S N
0, 17
® COsEt CO,Et
N
9 9a COEt JI 2Et 86°
Me =
S N
0O, 18
4 2.5 equiv of the nucleophile were used.
b 1.0 equiv of the nucleophile was used.
€ 1.0 equiv of the nucleophile was used and a mixture of 14/13 was isolated in 7:3 ratio.
4 Refluxed in THF for 3 h with 2.2 equiv of NaOEt.
¢ Refluxed in THF overnight with 2.2 equiv of the nucleophile generated by treating malonate with NaH.
Table 2
SNATr reactions of 2,5-bis-t-butylsulfonylpyrazines (9b)
Entry Bis-sulfone Nucleophile Product Yield (%)
N._ _O
HO F | N
1 9b Bu > 72
S N F
O, 19
N (0]
@ (T 1)
2 9b Bu _ _ 96
S N
0O, 20
N S
HS Br | \j/
3 9b Bu — 79
S N Br
0O, 21
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HS F | \j/
4 9b 7 582
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Table 2 (continued)

Entry Bis-sulfone Nucleophile Product Yield (%)
=, 5
M N NN
5 9b ; | | 23
Bu. = _N
S N
0, 22
M M
el N
HN \/) N N \/
6 9b | = 81
Bu =
S N
0, 23
Me Me
_N NN
HN N N
7 9b | N 65
‘Bu. z
S N
0O, 24
® CO.Et CO,Et
Na @< N
8 9b CO,Et JI ST COEt 86"
Bu. =z
S N
0O, 25
@ 2.2 equiv of the nucleophile were used.
b Refluxed overnight in THF with 2.2 equiv of the nucleophile generated by treating malonate with NaH.
Table 3
SNAT reactions of 2,5-bis-arylsulfonylpyrazines (9c)
Entry Bis-sulfone Nucleophile Product Yield (%)
- Me N (o}
-G QLT
1 9c N = 93
s7ON Z
0O, 26
- Me Ny (0} Ny
o T O
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S N Z
0, 27
HO Me
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3 9c Me \©\ JI /j/ 99
S N
0, 28
H,N o N §
T pevNsns
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S7ON Z
02 29
—_ Me
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Me Me N\ N N
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=
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6 9c CO,Et

Me N
\©\ JI j)\COZEt 89
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0O, 31

@ Refluxed overnight in THF with 2.2 equiv of the nucleophile generated by treating malonate with NaH.

nucleophile is the most reactive toward the replacement of t-butyl-
sulfone, followed by phenolic oxygen, selected heterocyclic ring
nitrogen, and amine nitrogen. When 1 equiv of 4-bromothiol was
used (entry 3), mono-SyAr product 21 was the sole product gener-
ated in good yields. On the other hand, when 2.2 equiv of a 4-flu-
orobenzenethiol nucleophile were used, the bis-sulfide product

11 was isolated exclusively under the reaction conditions. In con-
trast, when 2.5 equiv of 4-fluorophenol were employed (entry 1),
only mono-SyAr product 19 was produced due to the deactivation
of the pyrazine ring as discussed above. Amine nitrogen showed
limited reactivity toward this type of reaction. While 9b was trea-
ted with N-methylpyridin-4-amine (entry 5), the desired mono-
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SnAr product 22 was produced in 23% yield, we were unable to per-
form the similar transformation with aliphatic amines. Heterocy-
clic ring nitrogen can also be used as nucleophiles for this
reaction. Both 2-methylimidazole (entry 6) and 2-methyl-1H-
benzo[d]imidazole (entry 7) react readily with 9b to provide only
the mono-SyAr products 23 and 24 in good to excellent yields.
When sodium malonate (entry 8) was prepared by the treatment
of diethyl malonate with 1 equiv of NaH, 2-(5-(t-butylsulfonyl)pyr-
azin-2-yl)malonate (25) was isolated as the major product in 86%
yield even when 2 equiv of nucleophile was employed.

We further investigated the arylsulfonyl-pyrazines using 2,5-
bis-(tolylsulfonyl)-pyrazine (9c¢) as an example. As shown in
Scheme 5, double SyAr displacement of 2,5-bis-bromopyrazine
(7) gave di-sulfide 8c. Same oxidation procedure using hydrogen
peroxide in glacial acetic acid produced bis-sulfone 9¢c. We also at-
tempted to prepare 9c¢ in one step by treating 2,5-bisbromopyr-
azine (7) with 2 equiv of sodium sulfinate with no success.'?

With substrate 9c¢ in hand, its SyAr reactions with several differ-
ent nucleophiles were explored. Reaction of 2,5-ditosylsulfonyl-
pyrazine (9c¢) with pyridin-3-ol under typical conditions afforded
2-(pyridin-3-yloxy)-5-tosylsulfonylpyrazine (26) in excellent yield
(Table 3, entry 1), while a much lower yield of 2-(pyridin-2-yloxy)-
5-tosylsulfonylpyrazine (27) was obtained with pyridin-2-ol (entry
2). The lower yield resulted from the formation of 2,5-bis(pyridin-
2-yloxy)pyrazine (structure not shown) as a major side product. In
addition to pyridinols, we also evaluated o-cresol, a relatively ste-
rically hindered phenol. This phenol (entry 3) underwent smooth
mono-SyAr substitution to furnish 2-(o-tolyloxy)-5-tosylsulfonyl-
pyrazine (28) in nearly quantitative yield. This methodology has
also been extended to aminopyridines with limited success. In gen-
eral, multiple substitution products from aminopyridines were ob-
served in the crude reaction mixture as shown by LC-MS analysis,
thus resulting in poor yields. For example, both pyridin-4-amine
(entry 4) and N-methylpyridin-4-amine (entry 5) furnished the de-
sired mono-substituted products 29 and 30 in roughly 30% yield.
When pyridin-2-amine was utilized, only a trace amount of the de-
sired mono-substituted product was formed. As aminopyridines
are common building blocks for medicinal chemistry research, fu-
ture work will be directed toward improving the efficiency of the
reactions with 2,5-ditosylsulfonylpyrazine involving aminopyri-
dines. When sodium malonate was prepared by the treatment of
diethyl malonate with 1 equiv of NaH (entry 6), 2-(5-(tolylsulfo-
nyl)pyrazin-2-yl)malonate (31) was isolated as the predominant
product in 89% yield even when 2 equiv of nucleophile was
employed.

In summary, we have prepared the previously unknown 2,5-
bis-(sulfonyl)-pyrazines including 2,5-bis-(methysulfonyl)-pyra-

zine (9a), 2,5-bis(t-butylsulfonyl)-pyrazine (9b), and 2,5-bis(toly-
lsulfonyl)pyrazine (9c). The respective SyAr reactions of these
have been explored with a variety of nucleophiles. When 2 equiv
of thiols or thiophenols were employed as the nucleophiles, bis-
thiopyrazines were obtained exclusively. However, phenols or alk-
oxides only gave rise to the corresponding mono-substituted aryl-
oxy- or alkoxy-sulfonylpyrazines in excellent yields because the
pyrazine is deactivated by the oxygen atom. A carbon nucleophile
prepared by treating malonate with NaH also produced the corre-
sponding mono-sulfonylpyrazines even though 2 equiv of the
nucleophile was used. Finally, the SyAr reaction of aliphatic amines
and anilines with 2,5-bis-(sulfonyl)pyrazines provided the mono-
anilino-sulfonylpyrazines in poor to moderate yields.

Supplementary data

Supplementary data (full experimental detail, as well as charac-
terization of all compounds) associated with this article can be
found, in the online version, at http://dx.doi.org/10.1016/
j-tetlet.2013.01.106.
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