Tetrahedron xxx (2018) 1–11

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

A stereocontrolled total synthesis of (\pm) -saframycin A

Shinya Kimura, Naoki Saito^{*}

Graduate School of Pharmaceutical Sciences, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan

ARTICLE INFO

Article history: Received 29 May 2018 Received in revised form 28 June 2018 Accepted 7 July 2018 Available online xxx

Keywords: Total synthesis Saframycin A Antitumor antibiotic product 1,2,3,4-Tetrahydroisoquinoline Cytotoxicity

ABSTRACT

A thirteen-step total synthesis of (\pm) -saframycin A from a tricyclic lactam intermediate is described. The key step of this total synthesis is the stereocontrolled construction of a pentacyclic saframycin framework via a modified Pictet-Spengler type cyclization generating a bis-carboxylic acid ester derivative, followed by decarboxylation. The cytotoxicity profiles are also presented.

© 2018 Elsevier Ltd. All rights reserved.

Tetrahedro

1. Introduction

Bis-1,2,3,4-tetrahydroisoquinoline natural products, such as saframycin antibiotics and renieramycin marine natural products, have received considerable attention for their unique skeletal characteristics and biological activities (Fig. 1) [1,2]. Several scientific investigations of these compounds have yielded valuable information regarding the fundamental chemistry of ecteinascidin 743 (Et-743, Yondelis[®], trabectedin), the most bioactive member of this family. Et-743 has a remarkable mechanism of action: it binds to the minor groove of DNA to interfere with cell division, activated transcription, and DNA repair [3–7].

The research community considers saframycin A (1) to be the first example of these natural products. The chemical stabilization of **1** is very high along with holding an exceptional biological activities as well. To date, one racemic and three asymmetric total syntheses of **1** have been accomplished by the groups of Fukuyama [8], Corey [9], Myers [10,11], and Liu [12].

In the course of our research on new metabolites, which involves the isolation and characterization of biologically active compounds and the synthesis of their analogs, we have reported the total synthesis of saframycin antibiotics and renieramycin natural products, such as (\pm) -saframycins B [13], C, and D [14]. We have also reported the total synthesis of (\pm) -renieramycins G

[15,16] and I [17] and (\pm)-cribrostatin 4 [18], along with many transformation reactions of natural products [19,20]. Thus, it can be presented saframycin-renieramycin natural products exhibit biological activities, because of the cyano or hydroxyl group at C-21 position, which is essential to produce biological activity, and the elimination of those functional groups under physiological conditions would result in the formation of a reactive iminium species that is responsible for covalent bond formation with its target molecule. We have reported the preparation of key tricyclic lactam intermediate **2** [21] and its transformation into pentacyclic aminonitrile **4** via α -aminonitrile **3** in high yield (Scheme 1) [22]. Compound **4** was easily converted into oxazolidine **5**, the structure of which was confirmed by X-ray crystallographic analysis. However, the stereochemistry at C-1 position of **4** and **5** was epimeric to that of the natural product.

In order to solve the above-mentioned problem, we designed an alternative strategy for constructing the stereochemistry at C-1 position in the B ring of bis-1,2,3,4-tetrahydroisoquinoline natural products. The strategy includes two processes: (1) the Pictet-Spengler cyclization of **3** with dialkyl oxomalonate **6** to afford pentacyclic diester **7**; and (2) the decarboxylation of **7**, followed by stereoselective protonation from the convex face of the core ring system of these natural products to afford **9** (Scheme 2). In this paper, we describe a total synthesis of (rac)-saframycin A (\pm)-**1** from **2** via **3** in thirteen steps.

* Corresponding author. E-mail address: naoki@my-pharm.ac.jp (N. Saito).

https://doi.org/10.1016/j.tet.2018.07.017 0040-4020/© 2018 Elsevier Ltd. All rights reserved.

S. Kimura, N. Saito / Tetrahedron xxx (2018) 1-11

Fig. 1. Structures of bis-1,2,3,4-tetrahydroisoquinolinequinone natural products.

Scheme 1. Our approach for saframycin A synthesis [22].

Scheme 2. Strategy for constructing the stereochemistry of the pentacyclic framework of saframycin A.

2. Result and discussion

Our alternative total synthetic approach for saframycin A commenced with the preparation of precursor **12** for the Pictet-Spengler cyclization with dialkyl oxomalonate [23] (Scheme 3). Cleavage of lactam **2** [22] was carried out by employing the Fukuyama protocol [8] that had a three-step sequence: (1)

activation of the nitrogen of the lactam group of **2** with a Boc group; (2) reductive cleavage of the amide bond; and (3) removal of the Boc group under acidic condition generated **12** in 75% overall yield. The Pictet-Spengler cyclization of **12** with 5 equivalents of diethyl oxomalonate **6a** in AcOH/TFA (1:4) at 25 °C for 4 h gave **13a** in 75% yield. The Swern oxidation of **13a** and subsequent treatment of the resulting unstable aminal with KCN afforded pentacycle **14a** in 76%

S. Kimura, N. Saito / Tetrahedron xxx (2018) 1-11

Scheme 3. (a) Boc₂O, DMAP, MeCN, 110 °C, 46 h, 82%; (b) NaBH₄, EtOH, 25 °C, 2.5 h; (c) TFA/CH₂Cl₂ (1:2), 25 °C, 3 h, 92% (2 steps); (d1) **6a** (5 equiv.), AcOH/TFA (1:4), 25 °C, 4 h; (d2) **6b**' (5 equiv.), AcOH/TFA (1:4), 25 °C, 4 h; (d3) **6c'** (10 equiv.), TFA, 25 °C, 6.5 h; (e1 & f1 for **13a**) (COCl)₂, DMSO, CH₂Cl₂, -78 °C, 4 h, TEA, -78 °C, 30 min, 25 °C, 4 h; and then KCN/H₂O, AcOH/THF, 25 °C, 3.5 h; (e2 & f2 for **13b**) (COCl)₂, DMSO, CH₂Cl₂, -78 °C, 4 h, and then KCN/H₂O, AcOH/THF, 25 °C, 6 h; (e3 & f3 for **13c**) (COCl)₂, DMSO, CH₂Cl₂, -78 °C, 2 h, TEA, -78 °C, 30 min, 0 °C, 5 h, and then TMSCN, ZnCl₂, THF/CH₂Cl₂, 25 °C, 2 h.

overall yield. Decarboxylation with inorganic salts by using the method of Krapcho [24] afforded only polar polymeric material. Furthermore, a variety of hydrolysis attempts under acidic or basic conditions were unsuccessful, giving a complex mixture.

As we sought to induce the transformation of **14** into **15** via enolate **17** under mild conditions with palladium (0) catalyst, the Pictet-Spengler cyclization of **12** with 5 equivalents of diallyl oxomalonate **6b'** [25] in AcOH/TFA (1:4) at 25 °C for 4 h gave **13b** in 72% yield. The Swern oxidation of **13b**, followed by KCN treatment, gave pentacycle **14b** in 65% yield. Cleavage of both allyl groups of **14b** unde the standard condition with Pd(0) in the presence of morpholine, however, gave a only highly polar material.

Then, we prepared allyl ethyl oxomalonate ester **14c**, which was prepared from **12** and **6c'** [26] in the same manner in 64% overall yield. Product **14c** was a 1:1 mixture of C-1 diastereomers, and treating **14c** with Pd(PPh₃)₄ and morpholine in THF at 25 °C for 5

yields, respectively (Table 1). Then, we investigated whether a base accelerated the decarboxylation step, and whether isomerization at C-1 position via enolate **17** would generate **15** and **16**. Treating **14c** with Pd(PPh₃)₄ and dimedone in THF at 25 °C for 30 min, followed by heating of the reaction mixture in chloroform at 80 °C for 2 h, gave only **15** in 56% overall yield. After extensive investigation of the reaction conditions, the following procedure was considered best in terms of product yield and reproducibility of the reaction. Stirring **14c** with Pd(PPh₃)₄ and sodium *p*-toluenesulfinate [27,28] at 25 °C for 3 h afforded **15** in 83% overall yield. The stereochemistry of **15** and **16** was determined by nuclear

days generated desired carboxylic acids 15 and 16 in 41% and 22%

Overhauser enhancement (NOE) experiments. It indicated that the C-1 and C-3 diaxial protons of **15** has a syn relationship (Fig. 2).

With desired ester **15** in hand, we focused on the total synthesis of saframycin A (**1a**) using a modification of our original procedure

Table 1

Attempts to perform removal of allyl group followed by decarboxylation process.

Entry	Method	Additive	Conditions	Products (%)*	
				15	16
1	A-1	morpholine	Pd(PPh ₃) ₄ , THF, 25 °C, 30 min		
	A-2		CHCl3, 25 °C, 5 days	41	22
2	B-1	dimedone	Pd(PPh3)4, THF, 25 °C, 3 h		
	B-2		CHCl3, 80 °C, 2 h	59	0
3	С	sodium p-toluenesulfinate	Pd(PPh3)4, THF, 25 °C, 3 h	83	0

S. Kimura, N. Saito / Tetrahedron xxx (2018) 1–11

Fig. 2. Selected NOE data of compound 15 and its C-1 epimer 16.

(Scheme 4) [13,29]. Reduction of 15 with LiBH₄ in THF at 25 °C for 2 h gave alcohol 18 in 66% yield. Treatment of 18 with diethyl azodicarboxylate (DEAD), PPh₃, and phthalimide (PhtNH) in THF at 25 °C for 6 h afforded imide **19** in 73% yield. The phthaloyl group of **19** was removed with hydrazine hydrate in EtOH to generate the crude amine, and this in turn was acylated with pyruvic acid to give **20** in 83% overall yield [30]. The final step in the total synthesis of saframycin A (1) was considered best in terms of product yield and reproducibility. Treatment of 20 with 4 equivalents of BBr₃ in CH_2Cl_2 at -78 °C for 2 h and then at -20 °C for 17 h gave a mixture of phenol derivatives that were oxidized with ceric ammonium nitrate (CAN) to afford 1 in 20% overall yield. Synthetic saframycin A was identical with the natural one on comparison of their spectroscopic data [19,31] and TLC behavior. Then, the cytotoxicity of synthetic saframycin A (\pm) -1 and its synthetic precursor 20 as well as natural product (-)-1 toward DU145 and HCT116 cancer cell lines was evaluated (Table 2). The in vitro IC₅₀ cytotoxicity toward HCT116 of (\pm) -1 was very similar to that of natural product (-)-1, but the IC₅₀ value of (\pm) -1 toward DU145 was two-fold lower than that of (-)-1.

3. Conclusion

We have succeeded in a thirteen-step total synthesis of (\pm) -saframycin A from tricyclic lactam intermediate **2**. The key steps of this route are the modified Pictet-Spengler cyclization with oxomalonic acid ester derivative and the decarboxylation via a

Table 2

Cytotoxicity of synthetic saframycin A, its polymethoxyarene **20**, and (–)-**1** toward DU145 prostate cancer and HCT116 colon cancer cell lines.

Compound	$IC50 \pm SE (nM)$	
	DU145	HCT116
Synthetic saframycin A (±)-1 Natural saframycin A (-)-1 20	$\begin{array}{c} 12.6 \pm 0.6 \\ 6.8 \pm 1.3 \\ 399.5 \pm 5.8 \end{array}$	34.5 ± 4.3 35.6 ± 2.4 243.1 ± 27.4

monocarboxylic acid derivative, stereoselectively. Ways of utilizing this approach for other members of both saframycin and renieramycin families are under investigation in our laboratory.

4. Experimental section [32]

4.1. General

IR spectra were obtained with a Shimadzu Prestige 21/IRAffinity-1 FT-IR spectrometer. ¹H and ¹³C NMR spectra were recorded on a JEOL JNM-ECA 500 FT NMR spectrometer at 500 MHz for ¹H and 125 MHz for ¹³C; a JEOL JNM-AL 400 NMR spectrometer at 400 MHz for ¹H and 100 MHz for ¹³C (ppm, J in Hz with TMS as internal standard). All proton and carbon signals were assigned by extensive NMR measurements using COSY, HMBC, and HMQC techniques. Mass spectra were recorded on a JEOL JMS 700 instrument with a direct inlet system operating at 70 eV.

Scheme 4. (a) LiBH₄, THF/MeOH, 25 °C, 2 h, 66%; (b) PhtNH, DEAD, PPh₃, THF, 25 °C, 6 h, 73%; (c) NH₂NH₂–H₂O, EtOH, 80 °C, 1.5 h; (d) MeCOCO₂H, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDCl), N,N-dimethylaniline, 1-hydroxybenzotriazole (HOBt), THF, 25 °C, 4 h, 83% (2 steps); (e) BBr₃ (4 equiv.), CH₂Cl₂, -78 °C, 2 h, and then –20 °C, 17 h; (f) CAN (5 equiv.), THF/H₂O (3:1), 0 °C, 2 h, 20% (2 steps).

4.2. (1R*,2S*,5S*)-tert-Butyl 7,9,10-trimethoxy-8,11-dimethyl-4oxo-2-(2,4,5-trimethoxy-3-methylbenzyl)- 1,2,5,6-tetrahydro-1,5epiminobenzo[d]azocine-3(4H)-carboxylate (10)

Boc₂O (9.2 mL, 40 eq, 40 mmol) and DMAP (488.6 mg, 4 eq, 4 mmol) were successively added to a stirred solution of 2 (500.6 mg, 1 mmol) in MeCN (10 mL), and the mixture was refluxed at 110 °C for 46 h. The reaction mixture was diluted with H₂O (25 mL) and extracted with CHCl₃ (30 mL x 3). The combined extracts were washed with brine (25 mL), dried, and concentrated in vacuo to give a residue, which was subjected to column chromatography on SiO₂ (17 g) with hexane-EtOAc (3:7) to furnish 10 (492.7 mg, 82%) as a pale brown amorphous powder. IR (KBr) 2978, 2938, 1767, 1740, 1717, 1684, 1489, 1464, 1408, 1393, 1369, 1339, 1283, 1240, 1152, 1115, 1086, 1009 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 6.34 (1H, s, 6'-H), 5.09 (1H, ddd, J = 8.8, 6.9, 3.7 Hz, 2-H), 4.50 (1H, dd, J = 6.9, 1.4 Hz, 1-H), 3.78 (1H, overlapped, 5-H), 3.77 (3H, s, 5'-OCH₃), 3.76 (3H, s, 10-OCH₃), 3.73 (3H, s, 4'-OCH₃), 3.723 (3H, s, 7-OCH₃), 3.717 (3H, s, 9-OCH₃), 3.66 (3H, s, 2'-OCH₃), 3.30 (1H, dd, J = 15.2, 3.7 Hz, 2a-H α), 3.11 (1H, dd, J = 18.4, 7.9 Hz, 6-H α), 2.98 $(1H, dd, J = 18.4, 1.4 Hz, 6-H\beta)$, 2.50 $(3H, s, NCH_3)$, 2.20 $(3H, s, 8-H\beta)$ CH₃), 2.19 (3H, s, 3'-CH₃), 2.01(1H, dd, J = 15.2, 8.8 Hz, 2a-H β), 1.18 (9H, s, C(CH₃)₃); ¹³C NMR (CDCl₃, 100 MHz) δ 173.5 (C-4), 152.4 (C-7), 151.6 (CO), 150.9 (C-2'), 149.9 (C-9), 148.7 (C-5'), 147.3 (C-10), 146.3 (C-4'), 126.5 (C-1'), 124.92 (C-8 or C-3'), 124.87 (C-8 or C-3'), 123.9 (C-10a), 121.5 (C-6a), 111.2 (C-6'), 83.2 (C(CH₃)₃), 60.14 (OCH₃), 60.10 (OCH₃), 60.0 (OCH₃), 59.92 (OCH₃), 59.89 (OCH₃), 59.7 (C-5), 57.6 (C-2), 55.9 (5'-OCH₃), 54.2 (C-1), 40.2 (NCH₃), 33.2 (C-2a), 27.4 (C(CH₃)₃), 22.7 (C-6), 9.5 (8 or 3'-CH₃), 9.4 (8 or 3'-CH₃); EIMS *m*/*z* (%): 600 (M⁺, 1), 500 (15), 249 (30), 248 (100), 218 (10): HREIMS *m*/*z* 600.3048 (M⁺, calcd for C₃₂H₄₄N₂O₉, 600.3047).

4.3. ((1*R**,3*S**)-1-((*S**)-1-*A*mino-2-(2,4,5-trimethoxy-3methylphenyl)ethyl)-5,7,8-trimethoxy-2,6-dimethyl-1,2,3,4tetrahydroisoquinolin-3-yl)methanol (12)

NaBH₄ (1.075 g, 20 eq, 28.42 mmol) was added to a stirred solution of 10 (853.7 mg, 1.421 mmol) in EtOH (14 mL) at 0 °C, and the mixture was stirred at 25 °C for 2.5 h. The reaction mixture was diluted with saturated aqueous NH₄Cl (10 mL) and H₂O (80 mL) at 0 °C and then extracted with CHCl₃ (120 mL x 3). The combined extracts were washed with brine (80 mL), dried, concentrated in vacuo. The residue (11, 826.8 mg) was used in the next step without purification. TFA (6 mL) was added to a stirred solution of crude 11 in CH₂Cl₂ (12 mL) at 0 °C, and the mixture was stirred at 25 °C for 3 h. The reaction mixture was diluted with H_2O (80 mL) at 0 °C, made pH 9 with concentrated NH₄OH (10 mL), and extracted with CHCl₃ (100 mL x 3). The combined extracts were washed with brine (80 mL), dried, concentrated in vacuo to give a residue (722.1 mg), which was subjected to column chromatography on SiO_2 (17 g) with CHCl₃-MeOH (2:23) to furnish **12** (663.0 mg, 92%, 2 steps) as a pale brown amorphous powder. IR (KBr) 3354, 2938, 2862, 2832, 1487, 1466, 1410, 1339, 1238, 1119, 1086, 1065, 1013, 993, 966 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 6.69 (1H, s, 6^{*m*}-H), 3.94 (1H, dd, *J* = 11.1, 3.0 Hz, 1-H), 3.86 (3H, s, 8'-OCH₃), 3.83 (3H, s, 7'-OCH₃), 3.80 (3H, s, 5^{'''}-OCH₃), 3.77 (1H, d, J = 9.3 Hz, 1'-H), 3.76 (3H, s, 4^{'''}-OCH₃), 3.68 (3H, s, 2^{*m*}-OCH₃), 3.65 (3H, s, 5^{*i*}-OCH₃), 3.50 (1H, dd, *J* = 12.9, 2.0 Hz, 2"-H), 3.49 (1H, dd, J = 11.1, 1.8 Hz, 1-H), 2.88 (1H, dd, J = 15.3, 4.2 Hz, 4'-H α), 2.86 (1H, td, J = 9.3, 2.0 Hz, 1"-H), 2.68 (1H, dd, J = 15.3, 12.3, 4'-H β), 2.56 (3H, s, NCH₃), 2.34 (1H, br d, J = 12.3 Hz, 3'-H), 2.27 (1H, dd, J = 12.9, 9.3 Hz, 2"-H), 2.20 (6H, s, 6'-CH₃ and 3'''-CH₃); 13 C NMR (CDCl₃, 100 MHz) δ 151.3 (C-5'), 150.6 (C-2"'), 149.6 (C-7'), 149.0 (C-5"'), 147.2 (C-8'), 146.4 (C-4"'), 128.1 (C-1""), 127.6 (C-9' or C-10'), 125.6 (C-3""), 125.2 (C-9' or C-10'), 123.8 (C-6'), 111.7 (C-6'''), 65.4 (C-1'), 63.4 (C-1), 63.2 (C-3'), 61.0 (5'-OCH₃), 60.8 (8' or 2'''-OCH₃), 60.7 (8' or 2'''-OCH₃), 60.2 (7' or 4'''-OCH₃), 60.1 (7' or 4'''-OCH₃), 58.1 (C-1''), 56.0 (5'''-OCH₃), 46.1 (NCH₃), 35.9 (C-2''), 24.6 (C-4'), 9.7 (6'-CH₃ or 3'''-OCH₃), 9.4 (6'-CH₃ or 3'''-CH₃); FABMS m/z 505 [M+H]⁺; HRFABMS m/z 505.2921 ([M+H]⁺, calcd for C₂₇H₄₁N₂O₇, 505.2914).

An analytical sample of **11** (*tert*-Butyl((S*)-1-((1R*,3S*)-3-(hydroxymethyl)-5,7,8-trimethoxy-2,6-dimethyl-1234tetrahydroisoquinolin-1-yl)-2-(2,4,5-trimethoxy-3-methylphenyl) ethyl)carbamate) was obtained as a pale yellow amorphous powder by column chromatography with CHCl₃-AcOEt (3:2). IR (KBr) 3424, 2938, 1713, 1692, 1489, 1466, 1412, 1238, 1171, 1117, 1088, 1065, 1013 cm $^{-1};\,^{1}\text{H}$ NMR (CDCl_3, 400 MHz) δ 6.62 (1H, s, 6″-H), 4.61 (1H, d, *J* = 9.6 Hz, NH), 3.89–3.82 (3H, overlapped, 1-H, 1'–H, 3'a-H), 3.86 (3H, s, 8'-OCH₃ or 5"-OCH₃), 3.83 (3H, s, 7'-OCH₃), 3.79 (3H, s, 8'-OCH3 or 5"-OCH3), 3.74 (3H, s, 4"-OCH3), 3.69 (3H, s, 2"-OCH₃), 3.62 (3H, s, 5'-OCH₃), 3.49 (1H, dd, *J* = 11.0, 2.5 Hz, 3'a-H), 3.28 (1H, dd, J = 13.9, 2.4 Hz, 2-H), 2.90 (1H, dd, J = 15.4, 4.9 Hz, 4'-Hα), 2.83 (1H, dd, *J* = 15.4, 12.4 Hz, 4'-Hβ), 2.56 (1H, overlapped, 2-H), 2.52 (3H, s, NCH₃), 2.42 (1H, m, 3'-H), 2.20 (3H, s, 3"-CH₃), 2.18 (3H, s, 6'-CH₃), 1.12 (9H, s, C(CH₃)₃); ¹³C NMR (CDCl₃, 100 MHz) δ 155.1 (CO), 151.2 (C-5'), 150.6 (C-2"), 149.1 (C-7'), 148.9 (C-8' or C-5"), 146.5 (C-8' or C-5"), 146.3 (C-4"), 126.94 (C-9' or C-10' or C-1"), 126.90 (C-9' or C-10' or C-1"), 125.7 (C-9' or C-10'), 125.0 (C-3"), 123.6 (C-6'), 111.0 (C-6"), 78.2 (C(CH₃)₃), 63.8 (C-3'a), 63.6 (C-1'), 62.8 (C-3'), 60.7 (5'-OCH₃), 60.6 (2"-OCH₃), 60.6 (8' or 5"-OCH₃), 60.2 (7'-OCH₃), 60.1 (4"-OCH₃), 56.0 (C-1), 55.9 (8' or 5"-OCH₃), 46.1 (NCH₃), 32.5 (C-2), 28.1 (C(CH₃)₃), 24.4 (C-4'), 9.6 (3"-CH₃), 9.2 $(6'-CH_3)$; FABMS m/z 605 $[M+H]^+$; HRFABMS m/z 605.3439 $([M+H]^+, calcd for C_{32}H_{49}N_2O_9, 605.3438).$

4.4. (3S*,3'S*)-Diethyl 3-(hydroxymethyl)-5,5',7,7',8,8'hexamethoxy-2,6,6'-trimethyl-1,2,3,3',4,4'-hexahydro- [1,3'biisoquinoline]-1',1'(2'H)-dicarboxylate (13a)

A solution of $CO(CO_2Et)_2$ (214 µL, 5 eq, 1.32 mmol) in AcOH (1.8 mL) and TFA (7.2 mL) was added to 12 (133.1 mg, 0.264 mmol), and the mixture was stirred at 25 °C for 4 h. The reaction mixture was diluted with H₂O (40 mL) at 0 °C, made pH 9 with concentrated NH₄OH (13 mL), and then extracted with CHCl₃ (50 mL x 3). The combined extracts were washed with brine (40 mL), dried, and concentrated in vacuo to give a residue, which was subjected to column chromatography on $SiO_2(30 g)$ with hexane-EtOAc (3:2) to give **13a** (130.7 mg, 75%) as a yellow amorphous powder. IR (KBr) 3435, 2982, 2941, 1738, 1464, 1408, 1342, 1250, 1229, 1115, 1074, 1026, 1009 cm^{-1} ; ¹H NMR (CDCl₃ 400 MHz) δ 4.34–4.11 (4H, overlapped, 1-H, OCH₂CH₃), 3.96 (1H, m, OCH₂CH₃), 3.85 (3H, s, 8-OCH₃), 3.84 (1H, dd, *J* = 11.0, 3.9 Hz, 3a-H), 3.80 (3H, s, 7-OCH₃), 3.77 (3H, s, 8'-OCH₃), 3.71 (3H, s, 7'-OCH₃), 3.69 (3H, s, 5-OCH₃), 3.68 (3H, s, 5'-OCH₃), 3.45 (1H, dd, *J* = 11.0, 2.3 Hz, 3a-H), 3.07 (1H, dd, *I* = 16.3, 3.2 Hz, 4'-H), 2.92 (1H, dd, *I* = 15.3, 4.1 Hz, 4-H), 2.72 (1H, ddd, 11.1, 7.8, 3.2 Hz, 3'-H), 2.64-2.57 (2H, overlapped, 4-H, 4'-H), 2.57 (3H, s, 2-CH₃), 2.35 (1H, br d, J = 12.4, 2.3 Hz, 3-H), 2.22 (3H, s, 6-CH₃), 2.18 (3H, s, 6'-CH₃), 1.21 (3H, t, J = 7.1 Hz, OCH₂CH₃), 1.11 $(3H, t, J = 7.1 \text{ Hz}, \text{OCH}_2\text{CH}_3); {}^{13}\text{C} \text{ NMR} (\text{CDCl}_3, 100 \text{ MHz}) \delta 170.5 (CO),$ 170.3 (CO), 151.5 (C-5'), 151.4 (C-5), 149.6 (C-7), 149.0 (C-7'), 147.3 (C-8'), 147.0 (C-8), 126.5 (C-9 or 10), 125.5 (C-6' or 9 or 10), 125.4 (C-6' or 9 or 10), 124.9 (C-9' or 10'), 124.2 (C-6 or 9' or C-10'), 124.1 (C-6 or 9' or C-10'), 70.2 (C-1'), 63.9 (C-1), 63.8 (C-3a), 62.3 (C-3), 61.8 (OCH₂CH₃), 61.7 (OCH₂CH₃), 60.8 (5-OCH₃), 60.7 (8-OCH₃), 59.9 (7-OCH₃), 59.8 (8'-OCH₃), 59.8 (5' or 7'-OCH₃), 59.6 (5' or 7'-OCH₃), 56.3 (C-3'), 45.9 (2-CH₃), 26.9 (C-4'), 25.2 (C-4), 14.0 (OCH₂CH₃), 13.9 (OCH₂CH₃), 9.4 (6 and 6'-CH₃); EIMS *m*/*z* (%): 660 (M⁺, 0.3), 380 (32), 306 (10), 281 (18), 280 (100); HREIMS m/z 660.3256 (M⁺, calcd for C₃₄H₄₈N₂O₁₁, 660.3258).

6

ARTICLE IN PRESS

S. Kimura, N. Saito / Tetrahedron xxx (2018) 1-11

4.5. (65*,7R*,14aS*,15R*)-Diethyl 7-cyano-1,2,4,10,11,13hexamethoxy-3,12,16-trimethyl-6,7,14a,15- tetrahydro-5H-6,15iminobenzo[4,5]azocino[1,2-b]isoquinoline-9,9(14H)-dicarboxylate (14a)

(COCl)₂ (106 µL, 5 eq, 1.25 mmol) was added to a stirred solution of DMSO (178 μ L, 10 eq, 2.5 mmol) in CH₂Cl₂ (1 mL) at -78 °C, and the mixture was stirred at -78 °C for 10 min. A solution of **13a** $(165.2 \,\mu\text{L}, 0.25 \,\text{mmol})$ in CH₂Cl₂ $(1 \,\text{mL})$ was added dropwise to the above solution at -78 °C for 20 min, and the mixture was stirred at $-78 \degree$ C for 4 h. Then, TEA (697 µL, 20 eq, 5 mmol) was added to the reaction mixture at -78 °C for 10 min, and it was stirred at -78 °C for 30 min. The reaction mixture was warmed to 25 °C over a period of 3.5 h, and stirred was continued at 25 °C for 30 min. The reaction mixture was diluted with saturated aqueous NaHCO₃ (5 mL) at 0 °C and extracted with CHCl₃ (10 mL x 3). The combined extracts were washed with brine (5 mL), dried, concentrated in vacuo. The residue (195.9 mg) was used in the next step without purification. A solution of KCN (132.9 mg, 8 eq, 2 mmol) in H₂O (4 mL) and AcOH (1.6 mL, 110 eq, 27.5 mmol) was added to a stirred solution of the above product in THF (4.2 mL) at 0 °C, and the stirring was continued at 25 °C for 3.5 h. The reaction mixture was diluted with saturated aqueous NaHCO₃ (40 mL) at 0 °C, and extracted with CHCl₃ (40 mL x 3). The combined extracts were washed with saturated aqueous NaHCO3 (20 mL), dried, concentrated in vacuo to give a residue (145.3 mg), which was subjected to column chromatography on SiO_2 (6 g) with CHCl₃: MeOH (49:1) to afford **14a** (127.2 mg, 76%, 2 steps) as a orange amorphous powder. IR (KBr) 2982, 2940, 2361, 1759, 1740, 1464, 1410, 1344, 1267, 1248. 1221, 1113, 1076, 1057, 1009, 962 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 4.65 (1H, d, *J* = 3.0 Hz, 7-H), 4.36 (1H, m, OCH₂CH₃), 4.24 (1H, m, OCH₂CH₃), 4.11 (1H, dd, *J* = 3.1, 1.3 Hz, 15-H), 4.04 (1H, m, OCH₂CH₃), 3.93 (1H, m, OCH₂CH₃), 3.83 (3H, s, 1-OCH₃), 3.75 (3H, s, 2-OCH₃), 3.69 (3H, s, 4-OCH₃), 3.68 (3H, s, 10-OCH₃), 3.68 (3H, s, 11-OCH₃), 3.68 (1H, overlapped, 14a-H), 3.61 (3H, s, 13-OCH₃), 3.36 (1H, br d, J = 7.3 Hz, 6-H), 3.23 (1H, dd, J = 16.1, 3.9 Hz, 14H- α), 2.93 (1H, dd, J = 18.4, 7.3 Hz, 5-H α), 2.67 (1H, d, J = 18.4 Hz, 5-H β), 2.29 (3H, s, 16-CH₃), 2.18 (3H, s, 12-CH₃), 2.15 (3H, s, 3-CH₃), 1.89 (1H, dd, *J* = 16.1, 11.7 Hz, 14-H β), 1.18 (3H, t, J = 7.2 Hz, OCH₂CH₃), 1.03 (3H, t, J = 7.2 Hz, OCH₂CH₃); ¹³C NMR (CDCl₃, 100 MHz) δ 168.8(CO), 167.3 (CO), 151.3 (C-4), 150.1 (C-13), 149.0 (C-2), 148.6 (C-11), 147.7 (C-1), 146.4 (C-10), 125.2 (C-12), 124.5 (C-9a or 13a), 123.6 (C-3), 123.5 (C-4a), 123.1 (C-15a), 122.7 (C-9a or 13a), 118.4 (CN), 68.8 (C-9), 61.4 (OCH₂CH₃), 60.2 (1 or 13-OCH₃), 60.1 (1 or 13-OCH₃), 59.8 (2-OCH₃), 59.6 (4 -, 10-, or 11-OCH₃), 59.5 (4-, 10-, or 11-OCH₃), 59.5 (4 -, 10-, or 11-OCH3), 57.4 (C-15), 56.8 (C-6), 56.5 (C-7), 53.9 (C-14a), 42.0 (16-CH₃), 24.9 (C-14), 20.2 (C-5), 13.7 (OCH₂CH₃), 13.7 (OCH₂CH₃), 9.3 (3- or 12-CH₃), 9.2 (3- or 12-CH₃); EIMS m/z (%): 667 (M⁺, 16), 594 (11), 288 (47), 277 (24), 250 (16), 249 (100), 248 (85), 218(12); HREIMS *m*/*z* 667.3108 (M⁺, calcd for C₃₅H₄₅N₃O₁₀, 667.3105).

4.6. (3S*,3'S*)-Diallyl 3-(hydroxymethyl)-5,5',7,7',8,8'hexamethoxy-2,6,6'-trimethyl-1,2,3,3',4,4'-hexahydro- [1,3'biisoquinoline]-1',1'(2'H)-dicarboxylate (13b)

A solution of **6b'** (197.9 mg, 5 eq, 1.00 mmol) in AcOH (1.3 mL) and TFA (5.3 mL) was added to **12** (100.8 mg, 0.2 mmol), the mixture was stirred at 25 °C for 4 h. The reaction mixture was diluted with H₂O (30 mL) at 0 °C, made pH 9 with concentrated NH₄OH (8 mL), and extracted with CHCl₃ (40 mL x 3). The combined extracts were washed with brine (30 mL), dried, and concentrated in vacuo to give a residue, which was subjected to column chromatography on SiO₂ (6 g) with hexane-EtOAc (11:9) to give **13b** (97.8 mg, 72%) as a yellow amorphous powder. IR (CHCl₃) 2941, 1736, 1464, 1408, 1342, 1271, 1236, 1196, 1115, 1076, 1065, 1009,

993 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 5.85 (1H, ddt, I = 17.2, 10.9,5.7 Hz, OCH₂CH=CH₂), 5.73 (1H, ddt, J = 17.2, 10.9, 5.7 Hz, OCH₂CH=CH₂), 5.24 (1H, dd, *J* = 17.2, 1.3 Hz, OCH₂CH=CH₂), 5.23 (1H, dd, J = 17.2, 1.3 Hz, OCH₂CH=CH₂), 5.15 (1H, dd, J = 10.9, 1.3 Hz, OCH₂CH=CH₂), 5.13 (1H, dd, J = 10.9, 1.3 Hz, OCH₂-CH=CH₂), 4.66 (1H, ddt, J = 13.3, 5.7, 1.3 Hz, OCH₂CH=CH₂), 4.63-4.56 (2H, overlapped, OCH₂CH=CH₂), 4.38 (1H, ddt, J = 13.3, 5.7, 1.3 Hz, OCH₂CH=CH₂), 4.11 (1H, d, *J* = 7.7 Hz, 1-H), 3.84 (1H, overlapped, 3a-H), 3.83 (3H, s, 8-OCH₃), 3.79 (3H, s, 7- or 7'-OCH₃), 3.75 (3H, s, 8'-OCH₃), 3.70 (3H, s, 7- or 7'-OCH₃), 3.69 (3H, s, 5- or 5'-OCH₃), 3.68 (3H, s, 5- or 5'-OCH₃), 3.44 (1H, dd, *J* = 11.0, 2.3 Hz, 3a-H), 3.08 (1H, dd, *J* = 16.4, 3.2 Hz, 4'-H), 2.91 (1H, dd, *J* = 15.2, 4.1 Hz, 4-H), 2.75 (1H, dd, J = 7.7, 3.2 Hz, 3'-H), 2.63–2.56 (2H, overlapped, 4-H, 4'-H), 2.56 (3H, s, 2-CH₃), 2.35 (1H, br d, *J* = 15.2 Hz, 3-H), 2.22 (3H, s, 6- or 6'-CH₃), 2.18 (3H, s, 6- or 6'-CH₃); ¹³C NMR (CDCl₃, 100 MHz) § 170.1 (CO), 170.0 (CO), 151.5 (C-5 or 5'), 151.4 (C-5 or 5'), 149.6 (C-7 or 7'), 149.0 (C-7 or 7'), 147.2 (C-8'), 146.9 (C-8), 131.74 (OCH₂CH=CH₂), 131.73 (OCH₂CH=CH₂), 126.4 (C-9 or 10), 125.5 (C-9 or 10), 125.4 (C-6, 6', 9 or 10), 124.9 (C-9' or 10'), 124.2 (C-6 or C-6'), 123.8 (C-9' or 10'), 118.2 (OCH₂CH=CH₂), 118.2 (OCH₂CH=CH₂), 70.1 (C-1'), 66.3 (OCH₂CH=CH₂), 66.3 (OCH₂CH=CH₂), 63.8 (C-1), 63.7 (C-3a), 62.3 (C-3), 60.8 (OCH₃), 60.7 (OCH₃), 59.9 (OCH₃), 59.8 (OCH₃), 59.8 (OCH₃), 59.6 (OCH₃), 56.3 (C-3'), 45.9 (2-CH₃), 26.9 (C-4′), 25.2 (C-4), 9.4 (6 and 6′–CH₃); EIMS *m*/*z* (%): 684 (M⁺, 0.5), 404 (16), 281 (18), 280 (100); HREIMS m/z 684.3255 (M⁺, calcd for C36H48N2O11, 684.3258).

4.7. (6S*,7R*,14aS*,15R*)-Diallyl 7-cyano-1,2,4,10,11,13hexamethoxy-3,12,16-trimethyl-6,7,14a,15- tetrahydro- 5H-6,15iminobenzo[4,5]azocino[1,2-b]isoquinoline-9,9(14H)-dicarboxylate (14b)

(COCl)₂ (35 µL, 5 eq, 418 µmol) was added to a stirred solution of a solution of DMSO (59 µL, 10 eq, 837 µmol) in CH₂Cl₂ (1 mL) at -78 °C, the mixture was stirred at -78 °C for 10 min. A solution of **13b** (57.3 mg, 83.7 μ mol) in CH₂Cl₂ (1 mL) was added dropwise to the above solution at -78 °C for 15 min, and the mixture was stirred at -78 °C for 4 h. Then, TEA (233 µL, 20 eq, 1.67 mmol) was added to the above solution at -78 °C for 5 min, and the stirring was continued at -78 °C for 30 min. The reaction mixture was warmed to 25 °C over a period of 4.5 h, and stirred for 1.5 h. The reaction mixture was diluted with saturated aqueous NaHCO3 (5 mL) at 0 °C and extracted with CHCl₃ (10 mL x 3). The combined extracts were washed with brine (5 mL), dried, concentrated in vacuo to give a residue (63.3 mg), and this crude product was used in the next step without purification. A solution of KCN (44.5 mg, 8 eq, 669 μmol) in H₂O (1.3 mL) and AcOH (532 μL, 110 eq, 920 μmol) was added to a stirred solution of the above product in THF (1.4 mL) at 0 °C, and the mixture was stirred at 25 °C for 6 h. The reaction mixture was diluted with saturated aqueous NaHCO₃ (10 mL) at 0 °C, and extracted with CHCl₃ (15 mL x 3). The combined extracts were washed with brine (10 mL), dried, concentrated in vacuo to give a residue (53.0 mg), which was subjected to column chromatography on SiO₂ (6 g) with hexane-EtOAc (13:7) to furnish 14b (37.9 mg, 65%, 2 steps) as a yellow amorphous powder. IR (KBr) 2940, 2359, 1763, 1746, 1464, 1410, 1344, 1271, 1248, 1217, 1113, 1076, 1057, 1038, 1001 cm-1; ¹H NMR (CDCl₃, 400 MHz) δ 5.85 (1H, ddt, $J = 16.6, 11.1, 5.5 \text{ Hz}, \text{ OCH}_2\text{CH}=\text{CH}_2$, 5.66 (1H, ddt, J = 16.6, 11.1, 1.5, 11.55.5 Hz, OCH₂CH=CH₂), 5.10–4.96 (4H, overlapped, OCH₂CH=CH₂), 4.83 (1H, dd, *J* = 13.4, 5.5 Hz, OCH₂CH=CH₂), 4.71 (1H, d, *J* = 3.0 Hz, 7-H), 4.65 (1H, dd, J = 13.4, 5.5 Hz, OCH₂CH=CH₂), 4.47 (1H, dd, J = 13.4, 5.5 Hz, OCH₂CH=CH₂), 4.36 (1H, dd, J = 13.4, 5.5 Hz, OCH₂CH=CH₂), 4.12 (1H, d, *J* = 3.0 Hz, 15-H), 3.81 (3H, s, 1-OCH₃), 3.75 (3H, s, 2-OCH₃), 3.68 (1H, overlapped, 14a-H), 3.67 (3H, s, 4-OCH₃), 3.66 (3H, s, 10-OCH₃), 3.65 (3H, s, 11-OCH₃), 3.60 (3H, s,

13-OCH₃), 3.36 (1H, br d, 8.2 Hz, 6-H), 3.24 (1H, dd, *J* = 16.1, 3.8 Hz, 14H-α), 2.92 (1H, dd, *J* = 18.5, 8.2 Hz, 5-Hα), 2.59 (1H, d, *J* = 18.5 Hz, 5-Hβ), 2.29 (3H, s, 16-CH₃), 2.16 (3H, s, 12-CH₃), 2.15 (3H, s, 3-CH₃), 1.94 (1H, dd, J = 16.1, 11.7 Hz, 14-H β); ¹³C NMR (CDCl₃, 100 MHz) δ 168.2 (CO), 166.7 (CO), 151.3 (C-4), 150.2 (C-13), 149.0 (C-2), 148.5 (C-11), 147.7 (C-1), 146.4 (C-10), 131.8 (OCH₂CH=CH₂), 131.5 (OCH₂CH=CH₂), 125.3 (C-12), 124.1 (C-3, 9a or 13a), 123.7 (C-3, 9a or 13a), 123.3 (C-4a), 123.1 (C-15a), 122.5 (C-9a or 13a), 118.4 (CN), 118.0 (OCH₂CH=CH₂), 117.6 (OCH₂CH=CH₂), 68.4 (C-9), 65.8 (OCH₂CH=CH₂), 65.7 (OCH₂CH=CH₂), 60.2 (1 or 13-OCH₃), 60.1 (1 or 13-OCH₃), 59.8 (2-OCH₃), 59.6 (4, 10 or 11-OCH₃), 59.6 (4, 10 or 11-OCH₃), 59.5 (4, 10 or 11-OCH₃), 57.4 (C-15), 56.7 (C-6), 56.3 (C-7), 53.6 (C-14a), 42.0 (16-CH₃), 24.8 (C-14), 20.2 (C-5), 9.2 (3 and 12-CH₃); EIMS *m*/*z* (%): 691 (M⁺, 16), 288 (45), 250 (16), 249 (100), 248 (86), 218 (12); HREIMS *m*/*z* 691.3106 (M⁺, calcd for C₃₇H₄₅N₃O₁₀, 691.3105).

4.8. (35*,3'S*)-1'-Allyl 1'-ethyl 3-(hydroxymethyl)-5,5',7,7',8,8'hexamethoxy-2,6,6'-trimethyl-1,2,3,3',4,4'- hexahydro-[1,3'biisoquinoline]-1',1'(2'H)-dicarboxylate (13c)

A solution of **6c'** (2.042 g, 10 eq, 10 mmol) in TFA (33 mL) was added to **12** (504.6 mg, 1 mmol), and the mixture was stirred at 25 °C for 6.5 h. The reaction mixture was diluted with H_2O (200 mL) at 0 °C, made pH 9 with concentrated NH₄OH (40 mL), and extracted with CHCl₃ (250 mL x 3). The combined extracts were dried, and concentrated in vacuo to give a residue, which was subjected to column chromatography on SiO₂ (17 g) with hexane-EtOAc (3:2–1:1) to furnish 1:1 diastereomerix mixture of **13c** (524.4 mg, 78%) as a yellow amorphous powder [33].

4.9. (65*,7R*,14aS*,15R*)-9-Allyl 9-ethyl 7-cyano-1,2,4,10,11,13hexamethoxy-3,12,16-trimethyl-6,7,14a,15- tetrahydro-5H-6,15iminobenzo[4,5]azocino[1,2-b]isoquinoline-9,9(14H)-dicarboxylate (14c)

 $(COCl)_2$ (127 µL, 2 eq, 1.5 mmol) in CH₂Cl₂ (30 mL) was added to a solution of DMSO (213 $\mu L,~4~eq,~3~mmol)$ in $CH_2Cl_2~(1~mL)$ at -78 °C for 10 min, and the mixture was stirred at -78 °C for 30 min. A solution of **13c** (504.6 mg, 0.75 mmol) in CH₂Cl₂ (3 mL) was added to the above solution at -78 °C for 15 min, and the mixture was stirred at -78 °C for 1.5 h. Then, TEA (843 µL, 8 eq, 6 mmol) was added to the above solution at $-78 \degree$ C for 10 min, and the stirrig was continued at -78 °C for 30 min. The reaction mixture was warmed to 0 °C over a period of 3 h, and further stirred for 2 h. The reaction mixture was diluted with saturated aqueous NaHCO₃ (15 mL) and H₂O (30 mL) at 0 °C and extracted with CHCl₃ (50 mL x 3). The combined extracts were washed with brine (30 mL), dried, concentrated in vacuo to give a residue (561.2 mg), and this was used in the next step without purification. TMSCN (291 µL, 3 eq, 2.25 mmol), 0.5 M solution of ZnCl₂ in THF (4.5 mL, 3 eq, 2.25 mmol) were successively added to a stirred solution of the above product in CH₂Cl₂ (7.5 mL) at 25 °C, and the mixture was stirred at 25 °C for 2 h. The reaction mixture was diluted with H₂O (30 mL) at 0 °C, and extracted with CHCl₃ (50 mL x 3). The combined extracts were washed with brine (30 mL), dried, concentrated in vacuo to give a residue (501.8 mg), which was subjected to column chromatography on SiO₂ (14 g) with hexane-EtOAc (7:3-13:7) to provide a 1:1 diastereomeric mixture of 14c (419.5 mg, 82%, 2 steps) as a yellow amorphous powder. An analytical sample of one diastereomer 14c was obtained as a yellow amorphous powder. IR (KBr) 2940, 2228, 1761, 1744, 1464, 1410, 1344, 1248, 1217, 1113, 1076, 1057, 1043, 1009 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 5.66 (1H, ddt, J = 16.9, 10.6, 5.3 Hz, OCH₂CH=CH₂), 5.02 (1H, dq, J = 10.6, 1.6 Hz, OCH₂CH=CH₂), 4.99 (1H, dq, J = 16.9,

1.6 Hz, OCH₂CH=CH₂), 4.66 (1H, d, J = 3.0 Hz, 7-H), 4.47 (1H, ddt, J = 13.5, 5.3, 1.6 Hz, OCH₂CH=CH₂), 4.36 (1H, dq, J = 10.7, 7.1 Hz, OCH₂CH₃), 4.33 (1H, overlapped, OCH₂CH=CH₂), 4.23 (1H, dq, *J* = 10.7, 7.1 Hz, OCH₂CH₃), 4.11 (1H, dd, *J* = 3.1, 1.5 Hz, 15-H), 3.82 (3H, s, 1- or 10-OCH₃), 3.75 (3H, s, 2- or 11-OCH₃), 3.68 (3H, s, 4-OCH₃), 3.67 (3H, s, 1- or 10-OCH₃), 3.67 (3H, s, 2 or 11-OCH₃), 3.63 (1H, overlapped, 14a-H), 3.60 (3H, s, 13-OCH₃), 3.35 (1H, br d, I = 8.0 Hz, 6-H), 3.24 (1H, dd, I = 16.1, 3.7 Hz, 14-H α), 2.91 (1H, dd, I = 18.4, 8.0 Hz, 5-H α), 2.64 (1H, d, I = 18.4 Hz, 5-H β), 2.29 (3H, s, 16-CH₃), 2.17 (3H, s, 12-CH₃), 2.15 (3H, s, 3-CH₃), 1.90 (1H, dd, *J* = 16.1, 11.7 Hz, 14-H β), 1.18 (3H, t, I = 7.1 Hz, OCH₂CH₃); ¹³C NMR (CDCl₃, 100 MHz) & 168.5 (CO), 167.2 (CO), 151.3 (C-4), 150.2 (C-13), 149.0 (C-11), 148.6 (C-2), 147.7 (C-1 or 10), 146.4 (C-1 or 10), 131.6 (OCH₂CH= CH₂), 125.3 (C-12), 124.4 (C-9a or 13a), 123.7 (C-3 or 4a), 123.5 (C-3 or 4a), 123.1 (C-15a), 122.7 (C-9a or 13a), 118.4 (CN), 117.6 (OCH₂CH=CH₂), 68.7 (C-9), 65.7 (OCH₂CH=CH₂), 61.5 (OCH₂CH₃), 60.3 (OCH₃), 60.1 (13-OCH₃), 59.8 (OCH₃), 59.6 (OCH₃), 59.6 (OCH₃), 59.5 (OCH₃), 57.5 (C-15), 56.8 (C-6), 56.4 (C-7), 53.8 (C-14a), 42.0 (16-CH₃), 24.9 (C-14), 20.2 (C-5), 13.7 (OCH₂CH₃), 9.3 (3- and 12-CH₃); EIMS *m*/*z* (%): 679 (M⁺, 18), 288 (46), 250 (16), 249 (100), 248 (87), 218 (13); HREIMS *m*/*z* 679.3099 (M⁺, calcd for C₃₆H₄₅N₃O₁₀, 679.3105).

4.10. Preparation of compound 15

4.10.1. Method A (additive: morpholine)

Morpholine (1.5 μ L, 2 eq, 0.02 mmol) and a solution of Pd(PPh₃)₄ (1.2 mg, 0.1 eq, 0.001 mmol) in THF (0.5 mL) was successively added to a solution of **14c** (6.8 mg, 0.01 mmol) in THF (1.0 mL) under Ar, and the mixture was stirred at 25 °C for 30 min. The reaction mixture was concentrated in vacuo to give a residue. A solution of obtained this residue in CHCl₃ (1 mL) was stirred at 25 °C for 5 days. The reaction mixture was concentrated in vacuo to give a residue, a residue, which was subjected to column chromatography on SiO₂ (6 g) with CH₂Cl₂-AcOEt (10:1) to furnish **15** (2.6 mg, 41%) and **16** (1.3 mg, 22%).

4.10.2. Method B (additive: dimedone)

A solution of Pd(PPh₃)₄ (1.2 mg, 0.1 eq, 0.001 mmol) in THF (0.5 mL) was added to a solution of **14c** (6.8 mg, 0.01 mmol) and dimedone (2.8 mg, 2 eq, 0.02 mmol) in THF (1.0 mL) under Ar, and the mixture was stirred at 25 °C for 30 min. The reaction mixture was concentrated in vacuo to give a residue. As ¹H NMR spectral data of this residue indicated that only diastereomeric mixture of deallylated carboxylic acid was detected in this stage, a solution of this residue in CHCl₃ (1.5 mL) was refluxed at 80 °C for 2 h. The reaction mixture was concentrated in vacuo to give a residue, which was subjected to column chromatography on SiO₂ (6 g) with CHCl₃-AcOEt (9:1) to furnish the desired **15** (3.4 mg, 56%).

4.10.3. Method C (additive: sodium p-toluenesulfinate)

A solution of Pd(PPh₃)₄ (71.5 mg, 10 mol%, 0.06 mmol) in THF (5 mL) was added to a solution of **14c** (407.9 mg, 0.6 mmol) and sodium *p*-toluenesulfinate (130.9 mg, 1.2 eq, 0.72 mmol) in THF (10 mL) under Ar, and the mixture was stirred at 25 °C for 3 h. The reaction mixture was concentrated in vacuo to give a residue, which was subjected to column chromatography on SiO₂ (14 g) with CHCl₃-AcOEt (19:1) to furnish **15** (296.0 mg, 83%).

4.10.4. (6S*,7R*,9R*,14aS*,15R*)-Ethyl 7-cyano-1,2,4,10,11,13hexamethoxy-3,12,16-trimethyl-6,7,9,14,14a,15-hexahydro-5H-6,15iminobenzo[4,5]azocino[1,2-b]isoquinoline-9-carboxylate (15)

IR (KBr) 2938, 2226, 1744, 1728, 1466, 1410, 1344, 1250, 1115, 1092, 1074, 1032, 1011 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 4.52 (1H, s, 9-H), 4.34 (1H, d, J = 2.8 Hz, 7-H), 4.08 (1H, d, J = 2.6 Hz, 15-H),

8

4.04 (1H, dq, J = 10.5, 7.0 Hz, OCH₂CH₃), 3.92 (1H, dq, J = 10.5, 7.0 Hz, OCH₂CH₃), 3.84 (3H, s, 1-OCH₃), 3.77 (3H, s, 2 or 11-OCH₃), 3.76 (3H, s, 10-OCH₃), 3.74 (3H, s, 2 or 11-OCH₃), 3.65 (3H, s, 4-OCH₃), 3.62 (3H, s, 13-OCH₃), 3.39 (1H, br d, J = 8.4 Hz, 6-H), 3.21 $(1H, dt, J = 11.7, 2.6 Hz, 14a-H), 3.14 (1H, dd, J = 15.6, 2.6 Hz, 14H-\alpha),$ 3.01 (1H, dd, J = 18.3, 8.4 Hz, 5-H α), 2.39 (1H, d, J = 18.3 Hz, 5-H β), 2.31 (3H, s, 16-CH₃), 2.17 (6H, s, 3 and 12-CH₃), 1.93 (1H, dd, *J* = 15.6, 11.7 Hz, 14-H β), 1.04 (3H, t, J = 7.0 Hz, OCH₂CH₃); ¹³C NMR (CDCl₃, 125 MHz) δ 171.1 (CO), 151.2 (C-4), 151.0 (C-13), 149.1 (C-2 and 11), 147.6 (C-10), 145.9 (C-1), 124.6 (C-3 or 12), 124.1 (C-9a or 13a), 123.6 (C-3 or 12), 123.3 (C-4a), 123.1 (C-15a), 122.4 (C-9a or 13a), 117.7 (CN), 61.0 (C-7), 60.9 (C-9, OCH₂CH₃), 60.33 (1 or 13-OCH₃), 60.29 (1 or 13-OCH₃), 60.0 (2-, 10-, or 11-OCH₃), 59.9 (2-, 10-, or 11-OCH₃), 59.8 (2-, 10-. or 11-OCH₃), 59.5 (4-OCH₃), 56.9 (C-15), 56.3 (C-14a), 54.9 (C-6), 41.8 (16-CH₃), 25.7 (C-14), 21.3 (C-5), 13.9 (OCH₂CH₃), 9.3 (3 or 12-CH₃), 9.2 (3 or 12-CH₃); EIMS *m*/*z* (%): 595 (M⁺, 15), 522 (18), 289 (13), 288 (73), 249 (34), 248 (100), 218 (13); HREIMS m/z 595.2892 (M⁺, calcd for C₃₂H₄₁N₃O₈, 595.2894).

4.10.5. (6S*,7R*,9S*,14aS*,15R*)-Ethyl 7-cyano-1,2,4,10,11,13hexamethoxy-3,12,16-trimethyl- 6,7,9,14,14a,15-hexahydro-5H-6,15-iminobenzo[4,5]azocino[1,2-b]isoquinoline-9-carboxylate (16)

IR (CHCl₃) 3439, 3022, 2938, 2359, 1717, 1628, 1466, 1410, 1225, 1113, 1074 $cm^{-1};\,^{1}\text{H}$ NMR (CDCl_3, 400 MHz) δ 4.60 (1H, s, 9-H), 4.24 (2H, q, J = 7.2 Hz, OCH₂CH₃), 4.13 (1H, d, J = 3.4 Hz, 15-H), 4.05 (1H, d, J = 3.0 Hz, 7-H), 4.05 (1H, overlapped, 14a-H), 3.82 (3H, s, 1-OCH₃), 3.74 (3H, s, 2-OCH₃), 3.73 (3H, s, 10-OCH₃), 3.69 (3H, s, 11-OCH₃), 3.61 (3H, s, 4-OCH₃), 3.59 (3H, s, 13-OCH₃), 3.36 (1H, br d, I = 8.5 Hz, 6-H), 3.04 (1H, dd, I = 17.9, 7.2 Hz, 14H- α), 2.99 (1H, dd, $I = 18.7, 8.5 \text{ Hz}, 5 \text{-H}\alpha$, 2.78 (1H, dd, $I = 17.9, 7.3 \text{ Hz}, 14 \text{-H}\beta$), 2.35 (1H, d, J = 18.7 Hz, 5-Hβ), 2.25 (3H, s, 16-CH₃), 2.10 (3H, s, 3-CH₃), 2.07 $(3H, s, 12-CH_3), 1.28 (3H, t, J = 7.2 Hz, OCH_2CH_3);$ ¹³C NMR (100 MHz. CDCl₃) δ 170.7 (CO) 151.7 (C-13), 151.2 (C-4), 149.2 (C-2), 148.5 (C-11), 147.9 (C-1), 144.8 (C-10), 124.4 (C-12), 123.7 (C-9a or 13a), 123.6 (C-3), 123.5 (C-15a), 123.1 (C-4a), 123.0 (C-9a or 13a), 117.7 (CN), 60.9 (OCH₂CH₃), 60.7 (C-9), 60.2 (1-OCH₃), 60.1 (2 or 10-OCH₃), 59.8 (2 or 10-OCH₃), 59.8 (11-OCH₃), 59.6 (14-OCH₃), 59.5 (13-OCH₃), 57.1 (C-15), 56.0 (C-6), 52.0 (C-7 and 14a), 42.3 (16-CH₃), 23.5 (C-14), 21.3 (C-5), 13.9 (OCH₂CH₃), 9.3 (3-CH₃), 9.2 (12-CH₃); EIMS m/z (%):595 (M⁺, 14), 522 (27), 289 (12), 288 (65), 249 (37), 248 (100), 218 (13); HREIMS m/z 595.2892 (M⁺, calcd for C₃₂H₄₁N₃O₈, 595.2894).

4.11. (6S*,7R*,9R*,14aS*,15R*)-9-(Hydroxymethyl)-1,2,4,10,11,13hexamethoxy-3,12,16-trimethyl-6,7,9,14,14a,15-hexahydro-5H-6,15-iminobenzo[4,5]azocino[1,2-b]isoquinoline-7-carbonitrile (18)

LiBH₄ (103.2 mg, 10 eq, 4.5 mmol) and MeOH (182.1 mg, 10 eq, 4.5 mmol) were successively added to a stirred solution of 15 (268.1 mg, 0.45 mmol) in THF (4.5 mL), and the mixture was stirred at 25 °C for 2 h. The reaction mixture was carefully diluted with H₂O (15 mL) at 0 °C and extracted with CHCl₃ (30 mL x 3). The combined extracts were washed with brine (20 mL), dried, and concentrated in vacuo to give a residue (283.9 mg), which was subjected to column chromatography on SiO_2 (14 g) with CHCl₃-EtOAc (4:1-3:2) to furnish 18 (163.5 mg, 66%) as a colorless amorphous powder. IR (KBr) 3501, 2938, 2832, 2361, 1464, 1408, 1342, 1252, 1150, 1113, 1098, 1074, 1030, 1011, 962 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 4.12 (1H, d, J = 2.7 Hz, 15-H), 4.07–4.05 (2H, overlapped, 7 and 9-H), 3.85 (3H, s, 1-OCH₃), 3.84 (3H, s, 10-OCH₃), 3.77 (3H, s, 2 or 11-OCH₃), 3.76 (3H, s, 2 or 11-OCH₃), 3.72 (3H, s, 4-OCH₃), 3.62 (3H, s, 13-OCH₃), 3.57 (1H, dd, *J* = 11.0, 4.1 Hz, CH₂OH), 3.41 (1H, br d, *J* = 7.7 Hz, 6-H), 3.26 (1H, dt, *J* = 12.1, 2.7 Hz, 14a-H), 3.24–3.21 (1H, overlapped, CH₂OH), 3.16 (1H, dd, *J* = 15.6, 2.7 Hz, 14H-α), 3.09 (1H, dd, J = 18.5, 7.7 Hz, 5-H α), 2.51 (1H, d, J = 18.5 Hz, 5-H β), 2.36 (3H, s,

16-CH₃), 2.19 (3H, s, 3-CH₃), 2.16 (3H, s, 12-CH₃), 1.78 (1H, dd, J = 15.6, 12.1 Hz, 14-Hβ); ¹³C NMR (CDCl₃, 100 MHz) δ 151.4 (C-4), 151.1 (C-13), 149.7 (C-11), 149.6 (C-2), 147.6 (C-1), 145.6 (C-10), 125.4 (C-9a), 124.5 (C-13a), 124.1 (C-3 or C-12), 124.0 (C-3 or C-12), 123.3 (C-15a), 122.7 (C-4a), 117.8 (CN), 65.7 (CH₂OH), 60.8 (C-7), 60.4 (1-, 10-, and 13-OCH₃), 60.1 (2 or 11-OCH₃), 60.0 (2 or 11-OCH₃), 59.9 (4-OCH₃), 58.4 (C-9), 56.9 (C-15), 56.6 (C-14a), 55.0 (C-6), 41.8 (16-CH₃), 25.8 (C-14), 21.6 (C-5), 9.3 (3-CH₃), 9.3 (12-CH₃); EIMS *m*/*z* (%): 553 (M⁺, 1), 526 (18), 523 (11), 522 (36), 288 (17), 278 (60), 250 (19), 249 (30), 248 (100), 234 (10), 218 (14); HREIMS *m*/*z* 553.2789 (M⁺, calcd for C₃₀H₃₉N₃O₇, 553.2788).

4.12. (6S*,7R*,9R*,14aS*,15R*)-9-((1,3-Dioxoisoindolin-2-yl) methyl)-1,2,4,10,11,13-hexamethoxy-3,12,16-trimethyl-6,7,9,14,14a,15-hexahydro-5H-6,15-iminobenzo[4,5]azocino[1,2-b] isoquinoline-7-carbonitrile (19)

A 40% solution of DEAD in toluene (645 µL, 4 eq, 1.2 mmol) was added to a stirred solution of 18 (166.1 mg, 0.30 mmol), phthalimide (180.2 mg, 4 eq, 1.2 mmol), and PPh₃ (331.3 mg, 4 eq, 1.2 mmol) in THF (7.5 mL) at 0 °C, and the mixture was stirred at 25 °C for 6 h. The reaction mixture was concentrated in vacuo to give a residue, which was subjected to column chromatography on SiO_2 (14g) with CH₂Cl₂-EtOAc (17:3-4:1) to a pale yellow solid. This solid was washed with MeOH to furnish 19 (149.0 mg, 73%) as a colorless solid. IR (KBr) 3246, 2359, 1751, 1722, 1699, 1533, 1466, 1412, 1395, 1385, 1342, 1254, 1113, 1070, 1009, 961 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.70–7.62 (4H, m, 4' and 5' and 6' and 7'-H), 4.32 (1H, dd, *J* = 9.8, 4.0 Hz, 9-H), 4.22 (1H, d, *J* = 2.1 Hz, 7-H), 4.05 (1H, d, *J* = 2.5 Hz, 15-H), 3.85 (3H, s, 1-OCH₃), 3.79 (3H, s, 2-OCH₃), 3.71 (3H, s, 4-OCH₃), 3.63 (3H, s, 13-OCH₃), 3.53 (3H, s, 10-OCH₃), 3.47 (1H, dd, *J* = 13.6, 4.0 Hz, CH₂NPht), 3.41 (1H, br d, *J* = 7.8 Hz, 6-H), 3.32 (1H, dd, *J* = 13.6, 9.8 Hz, CH₂NPht), 3.23 (3H, s, 11-OCH₃), 3.20 (1H, dd, J = 15.3, 2.5 Hz, 14H- α), 3.12 (1H, dt, J = 11.7, 2.5 Hz, 14a-H), 3.07 (1H, dd, J = 18.3, 7.8 Hz, 5-H α), 2.60 (1H, d, J = 18.3 Hz, 5-Hβ), 2.32 (3H, s, 16-CH₃), 2.22 (3H, s, 3-CH₃), 2.10 (3H, s, 12-CH₃), 1.79 (1H, dd, J = 15.3, 11.7 Hz, 14-H β); ¹³C NMR (100 MHz, CDCl₃) δ 168.0 (C-1' and 3'), 151.7 (C-13), 151.1 (C-4), 149.6 (C-11), 149.1 (C-2), 147.4 (C-1), 145.9 (C-10), 133.5 (C-5' and 6'), 132.3 (C-3'a and 7'a), 125.5 (C-9a), 124.9 (C-13a), 124.0 (C-12), 123.5 (C-3 or C-4a), 123.4 (C-3 or C-4a), 123.2 (C-15a), 122.7 (C-4' and 7'), 118.2 (CN), 61.2 (C-7), 60.7 (13-OCH₃), 60.3 (1 and 10-OCH₃), 59.9 (2-OCH₃), 59.7 (4-OCH₃), 59.5 (11-OCH₃), 57.4 (C-14a), 56.8 (C-15), 55.0 (C-6), 54.9 (C-9), 43.4 (CH2-NPht), 41.8 (16-CH3), 26.1 (C-14), 21.6 (C-5), 9.4 (3-CH₃), 9.3 (12-CH₃); EIMS *m*/*z* (%): 682 (M⁺, 1), 523 (33), 522 (100), 497 (21), 496 (11), 495 (38), 288 (47), 249 (25), 248 (96), 234 (11), 218 (16); HREIMS *m*/*z* 682.2997 (M⁺, calcd for C₃₈H₄₂N₄O₈, 682.3003).

4.13. N-(((6S*,7R*,9R*,14aS*,15R*)-7-Cyano-1,2,4,10,11,13hexamethoxy-3,12,16-trimethyl-6,7,9,14,14a,15- hexahydro-5H-6,15-iminobenzo[4,5]azocino[1,2-b]isoquinolin-9-yl)methyl)-2oxopropanamide (20)

NH₂NH₂-H₂O (842 μ L, 100 eq, 17 mmol) was added to a stirred solution of **19** (116.1 mg, 0.17 mmol) in EtOH (8.5 mL), and the mixture was heated at 80 °C for 1.5 h. After half volume of the solvent was removed in vacuo, the resulting mixture was diluted with benzene (30 mL) and then extracted with 1 M HCl (30 mL x 4). The combined extracts were made pH 9 with concentrated NH₄OH (30 mL) and extracted with CHCl₃-MeOH (19:1, 200 mL x 4), dried, and concentrated in vacuo to give a residue (121.5 mg), and the residue was used in the next step without further purification. *N*,*N*-Diethylaniline (61 μ L, 2.2 eq, 0.374 mmol) was added to a stirred solution of the crude primary amine [34] in THF (8.5 mL), and the

mixture was stirred at 0 °C for 5 min. Pyruvic acid (32 µL, 2.6 eq, 0.442 mmol), EDCI (84.7 mg, 2.6 eq, 0.442 mol), and HOBt (56.8 mg, 2.4 eq, 0.408 mmol) were successively added to the above solution, and the mixture was stirred at 25 °C for 4 h. The reaction mixture was diluted with saturated aqueous NaHCO₃ (10 mL) and extracted with CHCl₃ (30 mL x 3). The combined extracts were washed with brine (30 mL), dried, concentrated in vacuo to give a residue (182.8 mg), which was subjected to column chromatography on SiO₂ (14 g) with hexane-EtOAc (1:1) to furnish 20 (87.8 mg, 83%, 2 steps) as a colorless amorphous powder. IR (KBr) 3385, 2359, 1721, 1690, 1520, 1464, 1410, 1344, 1252, 1227, 1113, 1074, 1011 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 6.45 (1H, br t, J = 5.5 Hz, NH), 4.17 (1H, dd, J = 5.5, 2.5 Hz, 9'-H), 4.05 (1H, d, J = 2.3 Hz, 15'-H), 3.99 (1H, d, J = 2.5 Hz, 7'-H), 3.87 (3H, s, 10'-OCH₃), 3.840 (3H, s, 1'-OCH₃), 3.836 (3H, s, 2'-OCH₃), 3.76 (3H, s, 11'-OCH₃), 3.68 (3H, s, 4'-OCH₃), 3.59 (3H, s, 13'-OCH₃), 3.46–3.41 (1H, overlapped, CH₂NH), 3.41 (1H, br d, *J* = 7.3 Hz, 6'-H), 3.24 (1H, dt, *J* = 13.4, 5.5 Hz, CH₂NH), 3.18–3.13 (2H, overlapped, 14'a-H, 14'H-α), 3.04 (1H, dd, *J* = 18.5, 7.3 Hz, 5'-Hα), 2.49 (1H, d, $J = 18.5 \text{ Hz}, 5'-\text{H}\beta$), 2.32 (3H, s, 16-CH₃), 2.20 (3H, s, 3'-CH₃), 2.18 (3H, s, COCH₃), 2.15 (3H, s, 12'-CH₃), 1.78 (1H, dd, *J* = 16.1, 12.0 Hz, 14'-Hβ); ¹³C NMR (CDCl₃, 100 MHz) δ 196.1 (COCH₃), 159.8 (NHCO), 151.2 (C-13'), 151.0 (C-4'), 149.8 (C-11'), 149.4 (C-2'), 147.6 (C-1'), 145.7 (C-10'), 124.7 (C-13'a), 124.4 (C-9'a or 12'), 124.3 (C-9'a or 12'), 123.9 (C-3'), 122.9 (C-15'a), 122.9 (C-4'a), 117.9 (CN), 60.3 (C-7', 10' and 13'-OCH₃), 60.3 (1'- or 2'-OCH₃), 60.1 (11'-OCH₃), 59.8 (1'- or 2'-OCH₃), 59.6 (4'-OCH₃), 56.8 (C-9' or 15'), 56.7 (C-9' or 15'), 56.2 (C-14'a), 54.9 (C-6'), 43.1 (CH₂NH), 41.8 (16'-CH₃), 26.0 (C-14'), 24.3 (COCH₃), 21.3 (C-5'), 9.4 (3'-CH₃), 9.2 (12'-CH₃); FABMS m/z 623 $[M+H]^+$; HRFABMS m/z 623.3079 ($[M+H]^+$, calcd for C₃₃H₄₃N₄O₈, 623.3081).

4.14. (±)-Saframycin A (1)

A solution of BBr₃ in CH₂Cl₂ (1 M, 160 μ L, 4 eq, 0.16 mmol) was added to a stirred solution of **20** (24.9 mg, 0.04 mmol) in CH₂Cl₂ (2.5 mL) at -78 °C, and the mixture was stirred at same temperature for 2 h. The reaction mixture was warmed to -20 °C over a period of 2 h, and stirring was continued for 17 h. The reaction mixture was diluted with CHCl₃ (10 mL) and H₂O (10 mL), made pH 7 with saturated aqueous NaHCO₃ (10 drops) at 0 °C, and extracted with CHCl₃–MeOH (9:1, 30 mL x 3). The combined extracts were washed with brine (25 mL), dried, concentrated in vacuo to give a residue (29.9 mg), which was used in the next step without purification.

A solution of CAN (115.4 mg, 5 eq, 0.2 mmol) in $H_2O\left(2\,mL\right)$ was added to a solution of the above product in THF (6 mL) at 0 °C, and the mixture was stirred at 0 °C for 2 h. After a half volume of the solvent was removed in vacuo, the residue was diluted with H₂O (20 mL), and extracted with EtOAc (25 mL x 3). The combined extracts were washed with brine (20 mL), dried, concentrated in vacuo to give a residue (16.8 mg), which was subjected to column chromatography on SiO₂ (6g) with benzene-EtOAc (5:1-7:3) to furnish saframycin A (1) (4.5 mg, 20%, 2 steps) as a dark brown solid. IR (KBr) 2361, 1686, 1655, 1618, 1373, 1362, 1312, 1300, 1236, 1152 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 6.67 (1H, br dd, J = 8.6, 4.2 Hz, NH), 4.07 (1H, br d, J = 2.8 Hz, 15'-H), 4.03 (3H, s, 11'-OCH₃), 4.02 (3H, s, 2'-OCH₃), 3.99 (1H, d, J = 2.2 Hz, 7'-H), 3.98 (1H, m, 9'-H), 3.73 (1H, ddd, J = 14.3, 8.6, 1.6 Hz, CH₂NH), 3.43 (1H, br d J = 7.5 Hz, 6'-H), 3.26 (1H, dt, J = 14.3, 4.2 Hz, CH₂NH), 3.14 (1H, dt, J = 11.5, 2.8 Hz, 14'a-H), 2.88 (1H, dd, J = 17.7, 2.8 Hz, 14'H- α), 2.83 (1H, dd, J = 20.9, 7.6 Hz, 5'-H α), 2.32 (3H, s, 16-CH₃), 2.26 (3H, s, COCH₃), 2.24 (1H, d, *J* = 20.9 Hz, 5'-Hβ), 1.99 (3H, s, 3'-CH₃), 1.92 (3H, s, 12'–CH₃), 1.29 (1H, ddd, J = 17.7, 11.5, 2.8 Hz, 14'-H β), ¹³C NMR (CDCl₃, 125 MHz) & 196.7 (COCH₃), 186.6 (C-4'), 185.3 (C-13'), 182.4 (C-1'), 180.8 (C-10'), 160.1 (NHCO), 155.9 (C-11'), 155.6 (C-2'), 141.5 (C-4'a), 141.2 (C-13'a), 135.5 (C-9'a and 15'a), 129.2 (C-3'), 128.3 (C-12'), 116.6 (CN), 61.1 (11'–OCH₃), 61.0 (2'–OCH₃), 58.2 (C-7'), 56.2 (C-9'), 54.4 (C-6'), 54.1 (C-15'), 53.9 (C-14'a), 41.6 (16-CH₃), 40.6 (CH₂NHCO), 25.0 (C-14'), 24.3 (COCH₃), 21.5 (C-5'), 8.7 (3' and 12'–CH₃); EIMS m/z (%): 562 (M⁺, 6), 492 (12), 464 (15), 463 (11), 462 (22), 243 (14), 221 (18), 220 (100), 219 (13), 218 (26), 204 (13); HREIMS m/z 562.2063 (M⁺, calcd for C₂₉H₃₀N₄O₈, 562.2064).

4.15. Preparation of dialkyl oxomalonate

4.15.1. Preparation of diallyl 2,2-dihydroxymalonate (6b')

p-TsOH·H₂O (115.3 mg, 0.06 eq, 0.6 mmol) was added to a stirred solution of malonic acid (21; 1.06 g, 10 mmol) and allyl alcohol (3.0 mL, 4.4 eq, 44 mmol) in benzene (50 mL), and the mixture was refluxed at 105 °C with Dean-Stark apparatus for 6 h. The reaction mixture was diluted with Et₂O (50 mL), washed with saturated aqueous NaHCO₃ (15 mL x 2) and brine (15 mL), dried, concentrated in vacuo to give a residue (1.91 g), which was subjected to column chromatography on SiO₂ (30 g) with AcOEt: n-hexane (1:10) to give diallyl malonate (22 [35]: 97.8 mg, 72%) as a colorless syrup. IR (CHCl₃) 3022, 1751, 1732, 1412, 1368, 1329, 1277, 1227, 1215, 1182, 1150, 991, 937 cm $^{-1};~^1\text{H}$ NMR (CDCl_3, 400 MHz) δ 5.92 (2H, m, OCH₂CH=CH₂), 5.35 (2H, dq, J = 5.7, 1.4 Hz, OCH₂CH=CH₂), 5.26 (2H, dq, J = 10.5, 1.4 Hz, OCH₂CH=CH₂), 4.65 (4H, dt, J = 5.7, 1.5 Hz, OCH₂CH=CH₂), 3.44 (2H, s, 2-H₂); ¹³C NMR (CDCl₃, 100 MHz) δ 166.1 (CO), 131.5 (OCH₂CH=CH₂), 118.8 (OCH₂CH=CH₂), 66.1(OCH₂CH=CH₂), 41.4 (C-2).

AcOH (183 µL, 0.74 eq, 3.18 mmol) was added dropwise to a stirred solution of NaClO₂ (1.08 g, 2.2 eq, 9.46 mmol) in H₂O (2.6 mL) at 0 °C, 22 (792.0 mg, 4.3 mmol) was then added carefully into the above solution [36], and the mixture was stirred at 25 °C for 20 h. The reaction mixture was diluted with H₂O (5 mL) and extracted with CHCl₃ (20 mL x 3). The combined extracts were washed with brine (20 mL), dried, concentrated in vacuo to give a residue (888.9 mg), which was subjected to column chromatography on SiO₂ (30 g) with hexane-EtOAc (13:7) to furnish diallyl 2,2-dihydroxymalonate (6b': 604.1 mg, 71%) as a colorless syrup. IR (CHCl₃) 3501, 3021, 1748, 1300, 1271, 1227, 1206, 1132, 989, 939 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 5.90 (2H, ddt, *J* = 17.2, 10.5, 5.8 Hz, OCH₂CH=CH₂), 5.36 (2H, dq, J = 17.2, 1.3 Hz, OCH₂CH= CH₂), 5.30 (2H, dq, J = 10.5, 1.3 Hz, OCH₂CH=CH₂), 4.87 (2H, br s, OH), 4.76 (4H, dt, J = 5.8, 1.3 Hz, OCH₂CH=CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 168.0 (CO), 130.4 (OCH₂CH=CH₂), 119.8 (OCH₂CH=CH₂), 90.2 ((HO)₂C), 67.7 (OCH₂CH=CH₂); FABMS *m*/*z* 239 [M+Na]⁺; HRFABMS *m*/*z* 239.0539 ([M+Na]⁺, calcd for C₉H₁₂O₆Na, 239.0532).

4.15.2. Preparation of allyl ethyl 2,2-dihydroxymalonate (6c')

A solution of KOH (7.92 g, 1.2 eq, 120 mmol) in H₂O (48 mL) was added to a stirred solution of diethyl malonate (**23**: 15.3 mL, 100 mmol) in EtOH (20 mL), and the mixture was stirred at 25 °C for 1 h. The reaction mixture was diluted with H₂O (20 mL) at 0 °C, washed with CH₂Cl₂ (40 mL x 3), made pH 2 with concentrated HCl, and extracted with CH₂Cl₂ (60 mL x 3). The combined extracts were dried, concentrated in vacuo to give ethyl malonate (**24** [37]: 12.4 g, 94%) as colorless syrup. IR (CHCl₃) 3447, 3024, 2986, 1744, 1734, 1371, 1327, 1227, 1196, 1157 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 9.46 (1H, br s, CO₂H), 4.24 (2H, q, *J* = 7.2 Hz, OCH₂CH₃), 3.44 (2H, s, 2-H₂), 1.30 (3H, t, *J* = 7.2 Hz, OCH₂CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 171.4 (CO), 166.9 (CO), 61.9 (CH₂CH₃), 40.9 (C-2), 13.9 (OCH₂CH₃) [38].

Allyl alcohol (9.7 mL, 3 eq, 140.5 mmol) and DCC (11.60 g, 1.2 eq, 56.2 mmol) was added to a stirred solution of **24** (6.19 g, 46.8 mmol) in CH_2Cl_2 (200 mL), and the mixture was stirred at 25 °C for 5 h. The reaction mixture was filtrated, and the combined filtrates were

S. Kimura, N. Saito / Tetrahedron xxx (2018) 1–11

concentrated in vacuo, and purified by vacuum distillation to give allyl ethyl malonate (**25** [38]: 6.95 g, 86%, bp 77–78 °C (3 mmHg)) as colorless syrup. IR (CHCl₃) 1748, 1732, 1371, 1329, 1275, 1227, 1188, 1152, 1032 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 5.92 (1H, ddt, *J* = 17.2, 10.4, 5.7 Hz, OCH₂CH=CH₂), 5.35 (1H, dq, *J* = 17.2, 1.4 Hz, OCH₂CH=CH₂), 5.26 (1H, dq, *J* = 10.4, 1.4 Hz, OCH₂CH=CH₂), 4.65 (2H, dt, *J* = 5.7, 1.4 Hz, OCH₂CH=CH₂), 4.21 (2H, q, *J* = 7.1 Hz, OCH₂CH₃), 3.40 (2H, s, 2-H₂), 1.28 (3H, t, *J* = 7.1 Hz, OCH₂CH₃); ¹³C NMR (CDCl₃, 100 MHz) δ 166.4 (CO), 166.2 (CO), 131.5 (OCH₂-CH=CH₂), 41.5 (C-2), 14.0 (OCH₂CH₃).

AcOH (424 µL, 0.74 eq, 7.4 mmol) was added to a stirred solution of NaClO₂ (2.519 g, 2.2 eq, 22 mmol) in H₂O (6 mL) at 0 °C, 25 (1.72 g, 10 mmol) was added carefully into the above solution [36], and the mixture was stirred at 0 °C for 1.5 h, then 25 °C for 27 h. The reaction mixture was diluted with H₂O (20 mL) and extracted with EtOAc (20 mL x 3). The combined extracts were washed with brine (20 mL), dried, concentrated in vacuo to give a residue (1.666 g), which was subjected to column chromatography on SiO_2 (30g) with hexane-EtOAc (3:2) to furnish 6c' (1.451 g, 71%) as a colorless syrup. IR (CHCl₃) 3503, 3028, 1748, 1304, 1269, 1229, 1206, 1132 cm^{-1} ; ¹H NMR (CDCl₃, 400 MHz) δ 5.91 (1H, ddt, J = 17.1, 10.4,5.8 Hz, OCH₂CH=CH₂), 5.37 (1H, dq, J = 17.1, 1.3 Hz, OCH₂CH=CH₂), 5.30 (1H, dq, J = 10.4, 1.3 Hz, OCH₂CH=CH₂), 4.84 (2H, br s, C(OH)₂), 4.76 (2H, dt, *J* = 5.8, 1.3 Hz, OCH₂CH=CH₂), 4.34 (2H, q, *J* = 7.2 Hz, OCH₂CH₃), 1.32 (3H, t, J = 7.2 Hz, OCH₂CH₃); ¹³C NMR (CDCl₃, 100 MHz) δ 168.2 (CO), 168.1 (CO), 130.4 (OCH₂CH=CH₂), 119.6 (OCH₂CH=CH₂), 90.1 (C-2), 67.6 (OCH₂CH=CH₂), 63.6 (OCH₂CH₃), 13.9 (OCH₂CH₃); FABMS *m*/*z* 205 [M+H]⁺; HRFABMS *m*/*z* 205.0721 $([M+H]^+, calcd for C_8H_{13}O_6, 205.0712).$

4.16. Cytotoxicity assay

The assay was performed using a cell counting Kit-8 (CCK-8) following the manufacturer's instruction. A single-cell suspension $(2 \times 10^3 \text{ cells/well})$ was added to the serially diluted test compounds in a 96-well microplate and cultured for 4 days. After incubation with 10 μ L of CCK-8 solution/well for 2 h, the absorbance of formazan products was measured at 450 nm using a microplate reader. The percentage of cell viability was calculated with respect to nontreated control cells. The IC₅₀ value of each experiment was determined using GraphPad Prism software. The mean IC₅₀ values \pm standard error (SE) were obtained from three independent experiments.

4.17. Cell culture

DU145 prostate cancer and HCT116 colon cancer cells were cultured in PPMI-1640 and DMEM (high glucose) media, respectively, supplemented with 10% FBS with 100U/mL penicillin, and 100 μ g/mL streptomycin in humidified incubation with 5% CO₂.

Acknowledgements

This work was supported by Grants-in-Aid (numbers. 15K07873 and 18K06561) for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. We would like to thank Dr. Natchanun Sirimangkalakitti (2017–2018 Post-Doctoral Fellow at MPU) for the cytotoxicity assay.

References

- [1] J.D. Scott, R.M. Williams, Chem. Rev. 102 (2002) 1669–1730.
- [2] A. Kubo, N. Saito, Studies in Natural Product Chemistry, vol. 10, Elsevier, New

York, 1992, pp. 77–145.

- [3] K.L. Rinehart, Med. Res. Rev. 20 (2000) 1–27.
- [4] C. Avendaño, E. de la Cuesta, Curr. Org. Synth. 6 (2009) 143–168.
- [5] C. Cuevas, A. Francesch, Nat. Prod. Rep. 26 (2009) 322-337.
- [6] V.H. Le, M. Inai, R.M. Williams, T. Kan, Nat. Prod. Rep. 32 (2015) 328–347.
- [7] M. D'Incalci, C.M. Galmarini, Mol. Canc. Therapeut. 9 (2010) 2157–2163.
- [8] T. Fukuyama, L. Yang, K.L. Ajeck, R.A. Sachleben, J. Am. Chem. Soc. 112 (1990) 3712–3713.
- [9] E.J. Martinez, E. Corey, J. Org. Lett. 1 (1999) 75–77.
- [10] A.G. Myers, D.W. Kung, J. Am. Chem. Soc. 121 (1999) 10828–10829.
- [11] A.G. Myers, B.A. Lanman, J. Am. Chem. Soc. 124 (2002) 12969-12971.
- [12] W. Dong, W. Liu, X. Liao, B. Guan, S. Chen, Z. Liu, J. Org. Chem. 76 (2011) 5363–5368.
- [13] A. Kubo, N. Saito, H. Yamato, K. Masubuchi, M. Nakamura, J. Org. Chem. 53 (1988) 4295-4310.
- [14] N. Saito, Y. Ohira, N. Wada, A. Kubo, Tetrahedron 46 (1990) 7711-7728.
- [15] M. Yokoya, K. Shinada-Fujino, N. Saito, Tetrahedron Lett. 52 (2011) 2446–2449.
- [16] M. Yokoya, K. Shinada-Fujino, S. Yoshida, M. Mimura, H. Takada, N. Saito, Tetrahedron 68 (2012) 4166–4181.
- [17] K. Yokoya, K. Kobayashi, M. Sato, N. Saito, Mar. Drugs 13 (2015) 4915-4933.
- [18] M. Yokoya, H. Ito, N. Saito, Tetrahedron 67 (2011) 9185–9192.
- [19] N. Saito, S. Harada, M. Nishida, I. Inouye, A. Kubo, Chem. Pharm. Bull. 43 (1995) 777-782.
- [20] N. Saito, C. Tanaka, Y. Koizumi, K. Suwanborirux, S. Amnuoypol, S. Pummangura, A. Kubo, Tetrahedron 60 (2004) 3873–3881.
- [21] N. Saito, R. Yamauchi, H. Nishioka, S. Ida, A. Kubo, J. Org. Chem. 54 (1989) 5391–5395.
- [22] S. Kimura, S. Kawai, M. Azuma, Y. Umehara, Y. Koizumi, M. Yokoya, N. Saito, Heterocycles 90 (2015) 327–343.
- [23] The Pictet-Spengler cyclization of phenethylamine with diethyl oxomalonate to afford the corresponding isoquinoline was reported M. Bois-Chussy, S. Cadet, M.D. Paolis, J. Zhu, Tetrahedron Lett. 42 (2001) 4503–4506.
- [24] A.P. Krapcho, E. Ciganek, Org. React. 81 (2013) 1–536.
- [25] Oxomalonate 6b was obtained in its hydrate form 6b' by oxidation⁴⁰ of the activated methylene group of known malonate 21³⁵ with aqueous sodium chlorite in acetic acid in 71% yield (see Experimental section).
 [26] Compound 6c³⁷ was also obtained in its hydrate form 6c' by oxidation in the
- [26] Compound 6c³⁷ was also obtained in its hydrate form 6c⁷ by oxidation in the same manner in 71% yield.
- [27] M. Honda, H. Morita, I. Nagakura, J. Org. Chem. 62 (1997) 8932-8936.
- [28] A. Stapon, R. Li, C.A. Townsend, J. Am. Chem. Soc. 125 (2003) 15746–15747.
- [29] N. Saito, S. Harada, I. Inouye, K. Yamaguchi, A. Kubo, Tetrahedron 51 (1995) 8231–8246.
- [30] Myers, A.; Plowright, A. T. Patent WO2002040477/A2. 2002; also see: Myers, A. G.; Plowright, A. T. J. Am. Chem. Soc. 2001, 123, 5114-5115.
- [31] T. Arai, K. Takahashi, S. Nakahara, A. Kubo, Experientia 36 (1980) 1025–1027.
 [32] For simplicity, all numbering was used in this manuscript as shown in Fig. 1,
- but, IUPAC names and numbering are used in the Experimental section. [33] An analytical a few ammount of one diastereomer **13c** was obtained as a
- yellow amorphous powder, but, we cannot detect its stereochemistry at C-1' position. IR (KBr) 3435, 2982, 2941, 1740, 1464, 1408, 1342, 1248, 1198, 1115, 1074, 1026, 1011, 962 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 5.85 (1H, ddt, J = 17.3, 10.4, 5.6 Hz, OCH₂CH=CH₂), 5.25 (1H, dq, J = 17.3, 1.4 Hz, OCH₂CH= CH₂), 5.15 (1H, dq, J = 10.4, 1.4 Hz, OCH₂CH=CH₂), 4.66 (1H, ddt, J = 13.3, 5.6, 1.4 Hz, OCH₂CH=CH₂), 4.59 (1H, ddt, J = 13.3, 5.6, 1.4 Hz, OCH₂CH=CH₂), 4.13 $(1H, dq, J = 10.8, 7.1 Hz, OCH_2CH_3), 4.11 (1H, d, J = 7.8 Hz, 1-H), 3.96 (1H, dq, J = 10.8, 7.1 Hz, OCH_2CH_3), 4.11 (1H, d, J = 10.8 Hz, 1-H), 3.96 (1H, dq, J =$ J = 10.8, 7.1 Hz, OCH₂CH₃), 3.84 (3H, s, 8-OCH₃), 3.84 (1H, overlapped, 3a-H), 3.80 (3H, s, 7-OCH₃), 3.76 (3H, s, 8'-OCH₃), 3.71 (3H, s, 7'-OCH₃), 3.69 (3H, s, 5 or 5'-OCH₃), 3.68 (3H, s, 5 or 5'-OCH₃), 3.45 (1H, dd, J = 11.0, 2.3 Hz, 3a-H), 3.08 (1H, dd, J = 16.3, 3.2 Hz, 4'-H), 2.92 (1H, dd, J = 15.5, 4.2 Hz, 4-H), 2.72 (1H, ddd, J = 11.1, 7.8, 3.2 Hz, 3'-H), 2.64-2.59 (2H, overlapped, 4-H, 4'-H), 2.56 (3H, s, 2-CH₃), 2.35 (1H, m, 3-H), 2.22 (3H, s, 6-CH₃), 2.18 (3H, s, 6'-CH₃), 1.10 (3H, t, J = 7.1 Hz, OCH₂CH₃); ¹³C NMR (CDCl₃, 100 MHz) δ 170.2 (CO x 2), 151.5 (C-5'), 151.3 (C-5), 149.6 (C-7), 149.0 (C-7'), 147.2 (C-8'), 147.0 (C-8), 131.8 (OCH₂CH=CH₂), 126.4 (C-9), 125.5 (C-10 and 6'), 124.9 (C-10'), 124.2 (C-6), 124.0 (C-9'), 118.1 (OCH₂CH=CH₂), 70.1 (C-1'), 66.3 (OCH₂CH=CH₂), 63.8 (C-1), 63.7 (C-3a), 62.3 (C-3), 61.7 (OCH₂CH₃), 60.8 (5 or 5'-OCH₃), 60.7 (8-OCH₃), 59.9 (7-OCH₃), 59.8 (8'-OCH₃), 59.7 (7'-OCH₃), 59.6 (5 or 5'-OCH₃), 56.3 (C-3'), 45.9 (2-CH₃), 26.9 (C-4'), 25.2 (C-4), 13.8 (OCH₂CH₃), 9.4 (6 and 6'-CH₃); EIMS m/z (%): 672 (M⁺, 0.3), 392 (6), 281 (17), 280 (100); HREIMS *m*/*z* 672.3255 (M⁺, calcd C₃₅H₄₈N₂O₁₁, 672.3258).
- [34] An analytical sample of $(65^{\circ}, 7R^{\circ}, 9R^{\circ}, 14aS^{\circ}, 15R^{\circ})$ -9-(Aminomethyl)-1,2,4,10,11,13-hexamethoxy-3,12,16- trimethyl-6,7,9,14,14a,15-hexahydro-5H-6,15-iminobenzo[4,5]azocino[1,2-*b*]isoquinoline-7-carbonitrile was obtained as a pale yellow syrup by SiO₂ chlumn chromatography with CHCl₃-MeOH (97: 3). IR (CHCl₃) 2938, 2386, 1738, 1601, 1464, 1410, 1342, 1213, 1113, 1074 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 4.09 (1H, d, J = 2.3 Hz, 15-H), 4.04 (1H, d, J = 2.5 Hz, 7-H), 3.99 (1H, br t, J = 3.6 Hz, 9-H), 3.86 (3H, s, 1-OCH₃), 3.82 (3H, s, 10-OCH₃), 3.78 (3H, s, 2 or 11-OCH₃), 3.77 (3H, s, 2 or 11-OCH₃), 3.71 (3H, s, 4-OCH₃), 3.63 (3H, s, 13-OCH₃), 3.40 (1H, br d, J = 8.0 Hz, 6-H), 3.20 (1H, dt, J = 12.0, 2.3 Hz, 14a-H), 3.13 (1H, dd, J = 15.9, 2.3 Hz, 14-Hα), 3.08 (1H, dd, J = 18.4, 8.0 Hz, 5-Hα), 2.67 (1H, dd, J = 13.4, 3.6 Hz, CH₂NH₂), 2.58 (1H, dd, J = 13.4, 3.6 Hz, CH₂NH₂), 2.48 (1H, d, J = 18.4 Hz, 5-H\beta), 2.35 (3H, s, 16-CH₃), 2.19 (3H, s, 3-CH₃), 2.17 (3H, s, 12-CH₃), 1.77 (1H, dd, J = 15.9, 12.0 Hz, 14-H)): ¹³C NMR (100 MHz, CDCl₃) δ 151.2 (C-4), 151.0 (C-13), 149.8

S. Kimura, N. Saito / Tetrahedron xxx (2018) 1-11

(C-11), 149.3 (C-2), 147.6 (C-1), 145.6 (C-10), 125.8 (C-9a), 124.9 (C-13a), 123.8 (C-3 and 12), 123.5 (C-15a), 123.2 (C-4a), 118.2 (CN), 60.8 (C-7), 60.4 (13-OCH₃), 60.4 (1-OCH₃), 60.3 (10-OCH₃), 60.1 (2 or 11-OCH₃), 60.0 (2 or 11-OCH₃), 59.8 (4-OCH₃), 59.3 (C-9), 56.9 (C-15), 56.4 (C-14a), 55.0 (C-6), 46.9 (CH₂NH₂), 41.8 (16-CH₃), 26.2 (C-14), 21.6 (C-5), 9.3 (3 and 12-CH₃); FABMS m/z 553 [M+H]⁺; HRFABMS m/z 553.3033 ([M+H]⁺, calcd for C₃₀H₄₁N₄O₆, 553.3026).

- [35] D. Imao, A. Itoi, A. Yamazaki, M. Shirakura, R. Ohtoshi, K. Ogata, Y. Ohmori, T. Ohta, Y. Ito, J. Org. Chem. 72 (2007) 1652–1658.
- [36] Caution: This is a tremenmendous exothermic reaction, and be careful temperatue controlled during the reaction.
- [37] T. Bixa, H. Hunter, A. Andrijevic, W. Petersen, H. Su, F. Dhoro, J. Org. Chem. 80 (2015) 762–769.
- [38] M.E. Hediger, Bioorg. Med. Chem. 12 (2004) 4995–5010.