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Ligand’s Electronegativity Controls Sense of Enantioselectivity in 
BIFOP-X Palladium-Catalyzed Allylic Alkylations 
Eric Brüllingen, Jörg-Martin Neudörfl‡ and Bernd Goldfuss*

Palladium-catalyzed allylic alkylations of sodium dimethyl malonate with 1,3-diphenylallyl acetate, employing BIFOP-H 
(biphenylbisfencholphosphite) and analogue (i.e. BIFOP-X, X = D, Cl, CN, N3) ligands, all yield (S)-enantiomeric products, 
while alkylations to cyclohexenyl acetate yield the (R)-enantiomeric C-C coupling product (up to 91% yield, 70% ee). The 
fluoro derivative BIFOP-F however, “switches” the sense of enantioselectivity yielding the (R)-enantiomer for 1,3-
diphenylallyl acetate and the (S)-enantiomer for the cyclohexenyl acetate (up tp 92% yield, 67% ee). Computational 
analyzes of transition structures (M06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP) for these Pd-catalyzed allylic alkylations, 
reproduce the experimental preference of BIFOP-H (and analogue BIFOP-X ligands) for (R)- or (S)-enantiomeric products of 
1,3-diphenylallyl or cyclohexenyl acetate, respectively. The “F-switch” of the sense of enantioselectivity from BIFOP-H to 
BIFOP-F is also apparent computationally and is found (NBO-analyzes) to originate from lp(Pd) → σ*(P-O) or lp(Pd) → σ*(P-
F) hyperconjugations. The higher electronegativity of F vs. H in BIFOP-X hence controls the sense of enantioselectivity of 
this Pd-catalyzed allylic alkylations.

Introduction
Palladium-catalyzed enantioselective allylic substitutions are an 
powerful tools for the formation of C-C bonds1. Enantioselective ligands 
(i.e. fenchol-based: arylfenchyl phosphites, FENOPs and biphenyl-2,2’-
bisfenchol phosphites, BIFOPs or non-fencol-based ligands like Trost1c 
or Pfaltz-Helmchen-Williams2) are successfully employed for 
enantioselective metal-mediated-catalyzed reactions3,4. The difference 
of the ligands is presented in their different binding mode (P,P-ligands 
like Trost4, P,N-ligands like Pfaltz-Helmchen-Williams5 and monodentate 
P-ligands like the fenchol-based3,4, Figure 1). Fenchols are the basis for 
entiopure, mixed anionic organo-lithium aggregates5 as well as 
hydrogen-bonding Si-OH catalysts (i.e. BIFOSi(OH)2)5s. FENOP and BIFOP 
ligands are used in Cu-catalyzed 1,4-additions4,6a,7. Despite its inherently 
reactive P-Hal function, BIFOP-Hal (Hal = F, Cl, Br) ligands prove to be 
suitable in palladium catalysts6b,7. In BIFOP-Hal (Hal= F, Cl, Br) Pd-
catalysts, halide’s electronegativity controls enantioselectivity in Pd-
catalyzed cross-couplings7. Besides this BIFOP-H/F phenomenon, 
steering effects of fluorine-substituents on the stereochemical outcome 
have been observed8,9. 
In this work we present Pd-catalyzed C-C-coupling reactions, i.e. 
enantioselective allylic alkylations (Scheme 1), which show a surprising 
stereochemical-steering of the catalyst’s fluorine substituent, stabilizing 
reversed Pd-allyl exo-endo-conformations2a-f.
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Scheme 1. Enantioselective Pd-catalyzed allylic alkylations and examples of fenchyl-
based ligands (i.e. (O-)BIFOPs 6-16) and established ligands like Trost’s or Pfaltz-
Helmchen-Williams.

Results and discussion
The Pd-BIFOP-H-catalyzed allylic alkylation of Na(CH(CO2CH3)2 
with (rac,E)-1,3-diphenyl allyl acetate (rac-1) yields (S,E)-
dimethyl-2-(1,3-diphenylallyl)malonate (S)-2 in up to 81% with 
65% ee (Scheme 1, Table 1). The Pd-catalyzed allylic 
substitution is performed with three common methods to 
generate the nucleophile: The BSA method10 (Table 1, entry 
16), the in situ generation of the malonate (CH(CO2CH3)2) with 
sodium carbonate (Na2CO3) analogue to ref.11 (Table 1, entry 
17) and the pre-formed sodium enolate (Na(CH(CO2CH3)2)2, 
Table 1, entry 13). All three methods yield the desired product 
with nearly equal results (cf. Table 1, entry 13, 16, 17). The 
highest yield and selectivity is obtained with pre-formed 
Na(CH(CO2CH3)2 (Table 1, entry 13). At low temperatures (e.g. -
30°C) the Pd-BIFOP-H-catalyzed allylic alkylation of 
Na(CH(CO2CH3)2) with 1,3-diphenyl acetate (rac-1) yields 
malonate (S)-2 with loss of conversion but retaining 
stereocontrol (e.g. Table 1, 20°C, entry 13: 81% yield, 65% ee 
vs. -30°C, entry 14: 42% yield, 64% ee).

Figure 1. The active catalyst ratio of Pd-BIFOP-X (X = H 6, Cl 7, F 9, cf. Scheme 2, Table 
2).

At higher temperatures (e.g. 40°C) full conversions are 
achieved but with loss of stereocontrol (cf. Table 1, entry 15: 
82% yield, 26% ee). Screening of the ether solvents (THF, 
dioxane, Et2O, MTBE) reveals for THF forming moderate yield 

and entantioselectivity (52%, 55% ee, Table 1, entry 2). 
Dioxane improves yield but decreases the enantioselectivity 
(75%, 26% ee, Table 1, entry 3) while Et2O provides nearly a 
complete loss of enantioselectivity (54%, 5% ee, Table 1, entry 
4). MTBE is ordered between Et2O and dioxane in yield and 
enantioselectivity (cf. Table 1, entry 5, 26%, 21% ee). 
Switiching to polar solvents (MeCN, DMSO, DMF) shows that 
MeCN exceeds THF in yield while retaining enantioselectivity 
(cf. Table 1, entry 7, 87% yield, 56% ee), while DMSO 
decreases enantioselectivity (cf. Table 1, entry 10, 77% yield, 
23% ee), nd DMF shows a complete loss of sterecontrol (cf. 
Table 1, entry 11, 46% yield, rac). Nucleophilic solvents like 
DMSO and DMF mights coordinate to Pd, affecting negatively 
the outcome of enantioselectivity. Apolar solvents (e.g. 
toluene, n-hexane) show a different behavior. While n-hexane 
generates decent yield and moderate enantioselecitivty (cf. 
Table 1, entry 9, 69% yield, 34% ee,), toluene is capable to 
form π-interactions with the Pd-center and thus hinders the 
catalysis to occur12.

Figure 2. X-ray crystal structure (17, CCDC: 1886562) of (C3H5)PdCl • BIFOP-F with 
dislocation of the (C3H5)-allyl unit. The hydrogens are omitted for clarity. The P-F 
distance of the blank BIFOP-F-ligand (8) in its X-ray crystal structure is 1.594 Å7.

Finally, chlorinated solvents (e.g. DCM, 1,2-DCE) improve yield 
and enantioselectivity in comparison to THF (e.g. Table 1, entry 
12, DCM, 72% yield, 62% ee). 1,2-DCE exceeds even DCM in 
the same catalysis (cf. Table 1, entry 13, 81% yield, 65% ee) 
delivering the best results of all solvents.
Different catalyst ratios ([(C3H5)PdCl]2 : BIFOP-X, X = H 6, Cl 7, F 
9, in mol%) have been examined (Figure 1, Table 2). In the Pd-
BIFOP-X-catalyzed (X = H 6, Cl 7, F 9) allylic alkylation of 
Na(CH(CO2CH3)2) to (rac,E)-1,3-diphenyl allyl acetate (rac-1) 
yielding (S, or R, E)-dimethyl 2-(1,3-diphenylallyl)malonate (S-, 
or R-2). The yield and enantioselectivity of (S, or R)-2 increases 
with less amount of [(C3H5)PdCl]2 used (Scheme 2, Figure 1, 
Table 2, e.g. entries 1-3) to a maximum at the ratio 1:1 
(Scheme 2, Figure 1, Table 2, entries 3, 10, 17) and decreases 
with higher amounts of BIFOP-H (6) (Scheme 2, Figure 1, Table 
2, e.g. entries 4-7). Thus, the background reaction is favoured 
with higher amounts of [(C3H5)PdCl]2, catalyzing rac-2.
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Scheme 2. Pd-catalyzed enantioselective allylic alkylation (Scheme 1). For evaluation 
see Table 1; for active catalyst ratio see Table 2; for ligand variation see Table 3.

Table 1. Evaluation of Na(CH(CO2CH3)2) to (rac,E)-1,3-diphenylallyl acetate 
(1) in enantioselective Pd-catalyzed allylic alkylation (Scheme 1, Scheme 
2)a.

Entry Solvent Temp. [°C] Yield [%]b ee [%](S)c

1 THF 20 27 55
2 THF 20 52 55
3 dioxane 20 75 26
4 Et2O 20 54 5
5 MTBE 20 26 21
6 MeCN -30 34 31
7 MeCN 20 87 56
8 toluene 20 11 n.d.
9 n-hexane 20 69 34

10 DMSO 20 77 23
11 DMF 20 46 0
12 DCM 20 72 62
13 1,2-DCE 20 81 65
14 1,2-DCE -30 42 64
15d 1,2-DCE 40 82 26
16e 1,2-DCE 20 78 63
17f 1,2-DCE 20 73 60

a1mol% [(C3H5)PdCl]2, 1mol% BIFOP-H (6), 1.5 eq. of reagent Na(CH(CO2CH3)2), 
4 d. bIsolated yield after silica gel column chromatography (ethyl acetate : n-
hexane, 1:10). cEnantiomeric excess (ee) is determined via HPLC (Chiralpack® 
AD-H column, tR = 19.7-24.8 min (S), tR = 26.1-26.3 min (R)13b). dReaction 
finished after 1 d. eThe BSA method is used with CH2(CO2CH3)2 and KOAc 
instead of Na(CH(CO2CH3)2)10. fIn situ generation of Na(CH(CO2CH3)2) with 
Na2CO3 and CH2(CO2CH3)2 analogue to ref.11.

Mixing [(C3H5)PdCl]2 and BIFOP-F (9) in 1,2-DCE and n-heptane, 
colorless prisms of Pd-BIFOP-F (17, Figure 2) can be obtained. 
The X-ray crystal structure shows the dislocation of the allylic-
unit (C3H5) due to the equilibrium of the exo-endo-
conformers9. The catalytic performance of different BIFOP 
ligands (6-16, except 8, Scheme 2, Table 3) is examined in the 
[(C3H5)PdCl]2-catalyzed allylic alkylation of Na(CH(CO2CH3)2) to 
(rac,E)-1,3-diphenyl allyl acetate (rac-1) yielding (S, or R,E)-
dimethyl 2-(1,3-diphenylallyl)malonate (S)-2 (or (R)-2, Scheme 
2, Table 3). BIFOP-H (6) yields (S)-2 in up to 81% with 67% ee 
(Table 3, entry 1), while the 2H-isotopic BIFOP-D (10) yields (S)-
2 in up to 84% with 66% ee (Table 3, entry 2). No isotopic 
effect is observed. BIFOP-Cl (7) yields (S)-2 in up to 73% with 
41% ee (Table 3, entry 3), while BIFOP-F (9) yields (R)-2 in up to 
92% with 66% ee (Table 3, entry 4). BIFOP-Cl (7) loses yield and 
enantioselectivity relative to BIFOP-X (X = H 6, D 10, F 9). This 
means that BIFOP-X (X = H 6, D 10, F 9) form more stable 
complexes with [(C3H5)PdCl]2 than BIFOP-Cl (7).

BIFOP-N3 (11) yields (S)-2 in up to 83% with 12% ee (Table 3, 
entry 5) while BIFOP-CN (12) yields (S)-2 in up to 78% with 11% 
ee (Table 3, entry 6). Pseudohalogenic substitutions at the 
BIFOP-moiety (e.g. N3, CN) seem to have a detrimental effect 
to the enantioselectivities. This means, analogue to BIFOP-Cl 
(7), that BIFOP-N3 (11) and BIFOP-CN (12) do not form stable 
complexes with [(C3H5)PdCl]2.

Table 2. Selection of catalyst ratios of [(C3H5)PdCl]2 • BIFOP-X (X = H 6, Cl 
7, F 9, Scheme 2, Figure 1)a.

Entry BIFOP-X Ratio: [(C3H5)PdCl]2 • 
BIFOP-X

Yield 
[%]b

ee 
[%]c

1 X = H (6) 2:1 74 11 (S)
2 X = H (6) 1.5:1 76 24 (S)
3 X = H (6) 1:1 81 64 (S)
4 X = H (6) 1:1.5 76 65 (S)
5 X = H (6) 1:2 74 66 (S)
6 X = H (6) 1:2.5 54 63 (S)
7 X = H (6) 1:3 45 58 (S)
8 X = F (9) 2:1 77 24 (R)
9 X = F (9) 1.5:1 81 54 (R)

10 X = F (9) 1:1 92 62 (R)
11 X = F (9) 1:1.5 76 60 (R)
12 X = F (9) 1:2 76 57 (R)
13 X = F (9) 1:2.5 69 53 (R)
14 X = F (9) 1:3 61 48 (R)
15 X = Cl (7) 2:1 73 28 (S)
16 X = Cl (7) 1.5:1 75 32 (S)
17 X = Cl (7) 1:1 80 41 (S)
18 X = Cl (7) 1:1.5 71 40 (S)
19 X = Cl (7) 1:2 64 36 (S)
20 X = Cl (7) 1:2.5 59 33 (S)
21 X = Cl (7) 1:3 53 21 (S)

aRatio of x:y mol% [(C3H5)PdCl]2, y mol% BIFOP-X (H 6, Cl 7, F 9), 1.5 eq. of 
reagent Na(CH(CO2CH3)2), 4 d. bIsolated yield after silica gel column 
chromatography (ethyl acetate : n-hexane, 1:10). cEnantiomeric excess (ee) is 
determined via HPLC (Chiralpack® AD-H column, tR = 19.7-24.8 min (S), tR = 
26.1-26.3 min (R)10b).

In contrast to BIFOP-X (X = H 6, Cl 7, D 10, Scheme 1, Table 3, 
entry 1-3), O-BIFOP-X (X = H 14, Cl 15, D 16, Scheme 1, Table 3, 
entry 7-9) generate more yield but less enantioselectivity. O-
BIFOP-H (12) yields (S)-2 in up to 89% with 58% ee (Table 3, 
entry 7) while O-BIFOP-D (16) yields (S)-2 in up to 87% with 
60% ee (Table 3, entry 8) and O-BIFOP-Cl (15) yields (S)-2 in up 
to 81% with 40% ee (Table 3, entry 9). 
The synthesis of O-BIFOP-F is attempted, starting with O-
BIFOP-Cl (15), adding AgF, analogue to the synthesis of BIFOP-F 
(9)7. For this reaction the temperature of the reaction mixture 
is changed for each approach from 20°C to -78°C (20°C, 0°C, -
20°C, -40°C, -78°C). After each attempt, the rearranged tricyclic 
product 18 is achieved instead of the desired product O-BIFOP-
F (Scheme 4).

[(C3H5)PdCl]2, BIFOP-H (1:1),
Na(CH(CO2CH3)2),
temperature, 4 d

solvent

O

O
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Table 3. Performance of BIFOP-X ligands in enantioselective [(C3H5)PdCl]2-
catalyzed allylic alkylation to (rac, E)-1,3-diphenyl allyl acetate (1,Scheme 2, 
Figure 1)a.

Entry Ligand Yield [%]b ee [%]c

1 BIFOP-H (6) 81 67 (S)
2 BIFOP- D (10) 84 66 (S)
3 X = Cl (7) 73 41 (S)

4 (“F-switch”) X = F (9) 92 66 (R)
5 X = N3 (11) 83 12 (S)
6 X = CN (12) 78 11 (S)
7 O-BIFOP-H (14) 89 58 (S)
8 O-BIFOP-D (16) 87 60 (S)
9 O-BIFOP-Cl (15) 81 40 (S)

10 (MeO)2-BIFOP-Cl (13) 90 70 (S)

a20°C, 1,2-DCE, 1 eq. [(C3H5)PdCl]2 and 1 eq. BIFOP-X (X = H 6, Cl 7, F 9, D 10, 
N3 11, CN 12), (MeO)2-BIFOP-Cl (13) or O-BIFOP-X (X = H 14, Cl 15 D 16) and 
1.5 eq. of Na(CH(CO2CH3)2) to (rac, E)-1,3-diphenyl allyl acetate (1) yielding (S, 
or R, E)-dimethyl-2-(1,3-diphenylallyl)malonate (S)-2 or (R)-2. bIsolated yield 
after silica gel column chromatography (ethyl acetate : n-hexane, 1:10). 
cEnantiomeric excess (ee) by HPLC (Chiralpack® AD-H column, tR = 19.7-24.8 
min (S), tR = 26.1-26.3 min (R)10b).

The reason why O-BIFOP-X (X = H 14, Cl 15, D 16) generate 
more yield but less enantioselectivity during catalysis, in 
contrast to BIFOP-X (X = H 6, Cl 7, D 10), can be explained by 
the higher reactivity of O-BIFOPs in general, because of a 
larger bite-angle at the phosphor moiety7, forming more stable 
complexes with [(C3H5)PdCl]2. The loss of stereocontrol is 
caused by this angle. Relative to BIFOP-Cl (7) (cf. Table 3, entry 
3, 73% yield, 41% ee), two MeO-groups increase the reactivity 
of the Pd-(MeO)2-BIFOP-Cl catalyst by lp(O)-conjugation (cf. 
Table 3, entry 10, 90% yield, 70% ee).

Figure 3. X-ray crystal structures of BIFOP-CN (12, CCDC: 1886565), and a backbone 
modified BIFOL p-NO2-BIFOL (21, CCDC: 1886559). The hydrogens are omitted for 
clarity.

The mechanism for these rearrangements with formation of a 
carbo-cation at the fenchyl moiety and elimination of 
phosphonic acid (H3PO3), forming the tricyclic products, are 
discussed previously16. With (MeO)2-BIFOP-Cl (13) an 
attempted variation of the BIFOP-X substituent (i.e. hydride, 
fluoride) was not successful.

Scheme 3. Enantioselective [(C3H5)PdCl]2-catalyzed allylic alkylation with (rac)-
cyclohexenyl acetate (3, Scheme 1, Table 4).

Table 4. Performance of BIFOP-X ligands in enantioselective [(C3H5)PdCl]2-
catalyzed allylic alkylation to cyclohexenyl acetate 3 (Scheme 1, Scheme 
3)a.

Entry BIFOP-X Yield [%]b ee [%]c

1 BIFOP-H (6) 83 64 (R)
2 BIFOP- D (10) 88 66 (R)
3 X = Cl (7) 71 54 (R)

4 (“F-switch”) X = F (9) 82 67 (S)
5 X = N3 (11) 82 13 (R)
6 X = CN (12) 81 13 (R)
7 O-BIFOP-H (14) 84 64 (R)
8 O-BIFOP-D (16) 82 64 (R)
9 O-BIFOP-Cl (15) 80 56 (R)

10 (MeO)2-BIFOP-Cl (13) 91 67 (R)

a20°C, 1,2-DCE, 1 eq. [(C3H5)PdCl]2, 1 eq. BIFOP-X (X = H 6, Cl 7, F 9, D 10, N3 
11, CN 12), (MeO)2-BIFOP-Cl (13) or O-BIFOP-X (X = H 14, Cl, 15 D 16) and 1.5 
eq. of Na(CH(CO2CH3)2) to (rac)-cyclohexenyl acetate (3) yielding (R, or S)-
dimethyl-2-(cyclohexenyl) malonate (R)-4 or (S)-4. bIsolated yield after silica 
gel column chromatography (ethyl acetate : n-hexane, 1:10). cEnantiomeric 
excess (ee) by chiral GC device with a CP-Chiralsil®-DEX-CB (25 m x 0.25 mm, 
0.25 mm thickness, tR = 22.4-22.8 min (S), tR = 23.1-23.9 min (R)14) column.

The “F-switch” is found for the [(C3H5)PdCl]2-catalyzed allylic 
alkylation of Na(CH(CO2CH3)2) with rac-cyclohexenyl acetate 
(rac-3) yielding (S)-dimethyl-2-(cyclohexenyl) malonate (S)-4, in 
case of BIFOP-F (8), or (R)-dimethyl-2-(cyclohexenyl) malonate 
(R)-4 for the other BIFOP-X (X = H 6, Cl 7, F 9, D 10, N3 11, CN 
12), (MeO)2-BIFOP-Cl (13) or O-BIFOP-X (X = H 14, Cl 15, D 16), 
too. BIFOP-H (6) yields (R)-4 in up to 83% with 64% ee (Table 4, 
entry 1), while BIFOP-D (10) yields (R)-4 in up to 88% with 66% 
ee (Table 4, entry 2). BIFOP-Cl (7) yields (R)-4 in up to 71% with 
54% ee (Table 4, entry 3), while BIFOP-F (9) yields (S)-4 in up to 
82% with 67% ee (Table 4, entry 4). BIFOP-N3 (11) yields (R)-4 
in up to 82% with 13% ee (Table 4, entry 5) while BIFOP-CN 
(12) yields (R)-4 in up to 81% with 13% ee (Table 4, entry 6). O-
BIFOP-H (14) yields (R)-4 in up to 84% with 64% ee (Table 4, 
entry 7) as well as O-BIFOP-D (16) which yields (R)-4 in up to 
82% with 64% ee (Table 4, entry 8). O-BIFOP-Cl (15) yields (R)-4 
in up to 80% with 56% ee (Table 4, entry 9). (MeO)2-BIFOP-Cl 
(13) yields (R)-4 in up to 91% with 69% ee (Table 3, entry 10) 
and appears to be the superior ligand in the [(C3H5)PdCl]2-
catalyzed allylic alkylation (cf. Table 3, Table 4).
Comparing the monodentate BIFOPs with the established P,N-
ligands of Pfaltz-Helmchen-Williams, BIFOP-ligands are more 
bulky than the PHOX ligands but lack in transfer of 
stereoinformation forming lesser ee’s.

[(C3H5)PdCl]2, Ligand (1:1) (6-16),
Na(CH(CO2CH3)2),
20°C, 4 d

1,2-DCE

O

O O

O

O

O

(R)-4 (or (S)-4)rac-3
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Scheme 4. Decomposition of O-BIFOP-Cl (15) to tricycle 18 and decomposition of 
(MeO)2-BIFOP-Cl (13) to spiro[fenchyl-9-fluorene] 19 are analogue to the described 
decomposition in literature (cf. ref.13).

Figure 4. X-ray crystal structures of (MeO)2-BIFOL (pre-13, CCDC: 1886561) and the 
decomposed product 19 (CCDC: 1886560). The hydrogen atoms attached to carbon 
atoms are omitted for clarity. The decomposition of 15 to 18 is described13.

Figure 5. X-ray crystal structures of DIME-BIFOL (22, CCDC:1886564), it’s decomposed 
product (23, CCDC: 1886558) and an intramolecular rearranged product of a biphenyl-
2,2’-bisfenchol phosphoramidite (24, CCDC: 1886563). The hydrogen atoms attached to 
carbon atoms are omitted for clarity. The decomposition of diol 22 to tricyclic 23 is 
similar to the one described in literature13.

Computational results

Scheme 5. Scheme of transition structures (R = Ph, -(CH2)3-) referring to the DFT-
computations (H, F: TS-1 to TS-8), to explain the origins of enantioselectivities (Table 5, 
Figure 6, Table 6, Figure 7).

MeO)2-BIFOP-Cl (13) is easily synthesized by deprotonation of 
(MeO)2-BIFOL (pre-13, Figure 4) and addition of PCl3. (MeO)2-
BIFOL (pre-13, Figure 4) however cannot be obtained by 
lithiation with BuLi and TMEDA4,5,6 of 3,3’-diemthoxy biphenyl, 
because DIME-BIFOL (22, Figure 5) is isolated instead. For a 
synthesis route of (MeO)2-BIFOL (pre-13, Figure 4) please see 

O

O

O

18

19

O

O
P

Cl

O

O

O

O

P
Cl

O

5.0 eq. AgF
MeCN

- PX(OH)2
X = Cl, F

15

13

O

O
P

X
= P

X

[Pd0]

R R

R R R R

endo exo
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H

NH3
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the SI. A reaction of 22 with PCl3 leads to the carbo-cationic 
rearranged tricyclic product 23 (Figure 5), similar to the 
rearrangement of O-BIFOL (15) to the tricyclic product 18 
(Scheme 3, Figure 4) or the rearrangement of (MeO)2BIFOP-Cl 
(13) to spiro[fenchyl-9-fluorenyl] product 19 (Figure 4)13.
The origins of enantioselectivity are considered by eight 
different conformations (Scheme 5). These catalyst-
conformations differ with the Pd-core close to a Ph-group of 
the biaryl backbone or close to a Me-group of the fenchyl 
moiety (Scheme 2). The allyl cation can be orientated in an 
exo-conformation (exo means, the H of the C2 of the 
allylic(C3H5)-group is pointing upwards), or an endo-
conformation (endo means, the H of the C2 of the allylic(C3H5)-
group is pointing downwards, Scheme 5). The nucleophilic 
attack can occur on the C1 (trans-attack compared to 
phosphor, Scheme 1) or C3 (cis-attack compared to phosphor, 
which is mostly unfavoured, cf. Scheme 1) of the allyl(C3H5)-
unit9, leading to eight different possibilities for either BIFOP-H 
(6) or BIFOP-F (9) (Scheme 5).

Table 5. Computed transition structures (TS) of attached (E)-1,3-diphenyl 
allyl acetate (1) for BIFOP-X (X = H 6; F 9, Scheme 1, Scheme 5, Figure 6)a.

TS 
(pro(R/S))b

Conformer (Ar- or 
Me-orientated)

Imag. 
Freq. 
[cm-1]

ΔGrel 
[kcal/m

ol]

Boltzmann 
distribution 

[%]
H: TS-2 (S) (Ar)-trans-exo -301.94 0.0 56.00

TS-1 (R) (Ar)- trans-endo -282.73 1.0 19.07
TS-3 (S) (Ar)-cis-endo -311.86 1.3 13.80
TS-4 (R) (Ar)- trans-exo -294.38 1.5 11.12
TS-6 (R) (Me)-trans-endo -301.94 11.0 <0.01
TS-7 (S) (Me)-cis-endo -311.86 11.1 <0.01
TS-5 (R) (Me)-trans-exo -282.73 11.5 <0.01
TS-8 (S) (Me)-cis-exo -294.38 12.5 <0.01

F: TS-1 (R) (Ar)-trans-endo -291.93 0.0 53.33
TS-2 (S) (Ar)-trans-exo -302.23 0.9 20.22
TS-4 (R) (Ar)-cis-exo -289.62 1.2 14.64
TS-3 (S) (Ar)-cis-endo -311.86 1.4 11.80
TS-6 (R) (Me)-trans-exo -302.23 10.2 <0.01
TS-7 (R) (Me)-cis-endo -320.94 10.6 <0.01
TS-5 (S) (Me)-trans-endo -291.93 10.7 <0.01
TS-8 (S) (Me)-cis-exo -289.62 11.2 <0.01

aM06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP, 293.15 K, p = 1 bar, gas 
phase. bThe change of stereochemistry resulting from the NH3-nucleophile is 
switched to match the C-nucleophile dimethylmalonate for the 1,3-
diphenylallyl acetate (1, Figure 6). 

The bent structure of the ligand attached to the Pd-core 
results from a strong π-backdonation15. The transition 
structures (H: TS-1, TS-2 and F: TS-1, TS-2, Scheme 5, Table 5, 
Figure 6 and Table 6) are the crucial (energetically favoured) 
transition structures of BIFOP-H (6) and BIFOP-F (9), which are 
responsible for the enantioselectivity (cf. experimental data 
Table 3, Table 4). Comparing the conformers (Table 5), H: TS-2; 
F: TS-1 and H: TS-1b; F: TS-2b (Table 6), there has to be a 
reason of the change in stereochemistry (cf. H: TS-1 > TS-2; F: 
TS-1 < TS-2, Scheme 5, Table 5, Figure 6 and H: TS-1b < TS-2b; 
F: TS-1b > TS-2b, Scheme 5, Table 6, Figure 7). The same 

results of favourizing the crucial transition structures are found 
by switching the nucleophile of NH3 to the C-nucleophile 
diphenylmalonate (H: TS-1c < TS-2c; F: TS-1c > TS-2c and H: TS-
1d < TS-2d; F: TS-1d < TS-2d, Table 7). An explanation is the 
higher electronegativity of F vs. H in the P-X (X = H, F) moiety, 
such governance of electronegativity has been studied3,7. 
Strong negative hyperconjugation is known for fluorine 
substituents, stabilizing normally less favoured conformations 
and thus altering the stereochemistry in organo- and metal-
mediated catalyzes8.

Figure 6. Computed crucial transition structures of (E)-1,3-diphenylallyl acetate (1) • Pd 
• BIFOP-X (X = H 6, or F 9, cf. Table 5).

Table 6. Computed transition structures (TS) of attached cyclohexenyl 
acetate (3) for BIFOP-X (X = H 6; F 9, Scheme 1, Scheme 5, Figure 7)a.

TS (pro(R/S)) Conformer (Ph- 
or Me-

orientated)

Imag. 
Freq. 
[cm-1]

ΔGrel 
[kcal/m

ol]

Boltzmann 
distribution 

[%]
H: TS-1b (R) (Ar)-trans-endo -307.38 0.0 55.37

TS-4b (R) (Ar)-cis-exo -322.47 0.5 32.31
TS-2b (S) (Ar)-trans-exo -308.51 1.6 9.88
TS-3b (S) (Ar)-cis-endo -322.44 2.9 2.43

F: TS-2b (S) (Ar)-trans-exo -307.33 0.0 59.46
TS-1b (R) (Ar)-trans-endo -308.72 0.8 25.11
TS-3b (S) (Ar)-cis-endo -324.23 1.5 11.82
TS-4b (R) (Ar)-cis-exo -321.17 2.6 3.62

aM06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP, 293.15 K, p = 1 bar, gas 

TS-2 pro (S)
Grel = 0.0 kcal/mol

TS-1 pro (R)
Grel = 0.0 kcal/mol

TS-1 pro (R)
Grel = 1.0 kcal/mol

TS-2 pro (S)
Grel = 0.9 kcal/mol

vs.

vs.

trans-exo trans-endo

H

F
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phase in kcal/mol.

A computational scan (B3LYP-D3(BJ)/def2-SVP) of a simpler 
model system 20-X (X = H, F, Cl) reveals electronically 
preferred conformations (Figure 8, Table 8). For 20-(H, Cl), two 
exo-minima as well as two endo-maxima (Figure 8) are 
computed. 

Figure 7. Computed crucial transition structures of cyclohexenyl acetate (3) • Pd • 
BIFOP-X (X = H 6, or F 9, cf. Table 5).

Figure 8. Computation (B3LYP-D3(BJ)/def2-SVP) of rotational (dihedral, (H,F,Cl)-P-Pd-
allyl) scan of complex 20-(H, F, Cl), representing the energy profiles (cf. Table 5).

Table 7. Computed transition structures (TS) of attached cyclohexenyl 
acetate (3, TS-1c,2c) or diphenylallyl acetate (1, TS-1d,2d) for BIFOP-X (X 
= H 6; F 9, Scheme 1, Scheme 5, Figure 9)a.

TS (pro(R/S)) Conformer (Ph- 
or Me-

orientated)

Imag. Freq. 
[cm-1]

ΔGrel [kcal/mol]

H: TS-1c (R) (Ar)-trans-endo -173.12 0.0
TS-2c (S) (Ar)-trans-exo -218.71 0.5

F: TS-2c (S) (Ar)-trans-exo -291.04 0.0
TS-1c (R) (Ar)-trans-endo -195.76 0.7

H: TS-2d (S) (Ar)-trans-exo -239.20 0.0
TS-1d (R) (Ar)-trans-endo -235.93 0.7

F: TS-1d (R) (Ar)-trans-endo -241.76 0.0
TS-2d (S) (Ar)-trans-exo -230.67 0.7

aM06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP, 293.15 K, p = 1 bar, gas 
phase in kcal/mol.

Negative hyperconjugation from the Pd-lp donor is favoured 
with the stronger σ*(P-O) acceptor rather than the σ*(P-X, X = 
H, Cl) unit (Table 8). The fluoro substituent in 20-F gives rise to 
only one (global) endo-minimum and one exo-maximum, 
because of the stronger acceptor behavior of σ*(P-F) over 
σ*(P-O, Figure 8). The electronical difference between the 
oxygen in σ*(P-O) and fluorine in σ*(P-F) gives rise to the 
stereochemical switch in the experiments, because fluorine 
exceeds the influence of the σ*(P-O) changing the 
stereochemistry by stabilizing the generally less favoured 
complex, instead. Thus the sense of enantioselectivity is 
changed. This hypothesis is further approved by a rotatory 
scan of the (allyl)Pd-P-X (X = H, Cl, F) dihedral showing for 20-
(H, Cl) nearly the same graphical behavior, while 20-F is 
showing a different one (Figure 8). The only difference 
between 20-Cl and 20-F is the higher electronegativity of 
fluorine over chlorine. This evidence explains the experimental 
results (cf. experimental: Table 3, Table 4, entry 4 with 
theoretical: Figure 8). NBO-analyzes reveal that this F-switch 
arises from hyperconjugation lp(Pd)→σ*(P-O) influenced by 
the high electronegativity of fluorine (Figure 8, Table 8).

TS-1b pro (R)
Grel = 0.0 kcal/mol

TS-2b pro (S)
Grel = 0.0 kcal/mol

TS-2b pro (S)
Grel = 1.6 kcal/mol

TS-1b pro (R)
Grel = 0.8 kcal/mol

vs.

vs.

trans-exo trans-endo

H

F
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Figure 9. Computed crucial transition structures of acetate (1 and 3) • Pd• BIFOP-X (X = 
H 6, or F 9, with diphenylmalonate as nucleophile cf. Table 7).

Table 8. NBO-analyzes: stabilizing hyperconjugation of the model- (20-H, F, 
Cl) and “real”-(TS-1,2; TS-1b,2b;TS-1c,2c; TS-1d,2d) complex (Figure 8, 
Table 5, Table 6, Table 7)a.

Conformer
(model vs 

“real”)

NBO
lp(Pd) → σ*(P-O)

 [kcal/mol]b

Dihedral angle
(allyl)Pd-P-(H, Cl, F) 

[°]

ΔGrel

[kcal/mol
]

20-H 
(exo-trans)

8.4c 187.5 0.0

20-H 
(endo-trans)

8.5 15.5 0.1

20-Cl 
(exo-trans)

8.3c 168.6 0.0

20-Cl 
(endo-trans)

8.3 24.3 0.3

20-F 
(endo-trans)

7.5 22.9 (“F-switch”) 0.0

20-F
(exo-trans)

7.2 202.3 0.7

H: TS-2 
(exo-trans)

7.6 110.3 0.0

TS-1 
(endo-trans)

3.2 1.6 1.0

F: TS-1 
(endo-trans)

8.0 1.9 (“F-switch”) 0.0

TS-2 
(exo-trans)

6.6 110.5 0.9

H: TS-1b 
(endo-trans)

7.9 107.7 0.0

TS-2b
 (exo-trans)

7.1 20.0 1.6

F: TS-2b 
(exo-trans)

7.3 14.3 (“F-switch”) 0.0

TS-1b 
(endo-trans)

4.5 122.6 0.8

H: TS-1c 
(endo-trans)

10.1 179.8 0.0

TS-2c 
(exo-trans)

8.8 168.1 0.5

F: TS-2c 
(exo-trans)

9.2 24.3 (“F-switch”) 0.0

TS-1c 
(endo-trans)

4.9 19.1 0.7

H: TS-2d 
(exo-trans)

13.3 95.6 0.0

TS-1d 
(endo-trans)

10.7 40.3 0.7

F: TS-1d 
(endo-trans)

9.2 19.7 (“F-switch”) 0.0

TS-2d 
(exo-trans)

8.0 20.4 0.7

aM06-2X-D3/def2-TZVP//B3LYP-D3(BJ)/def2-SVP, T = 293.15 K, p = 1 bar, gas 
phase in kcal/mol. bHyperconjugation: lp(Pd)->σ*(P-O) is mainly responsible for 
the stabilizing effect. For a comparison of the different hyperconjugations 
please see the SI. cThe hyperconjugation lp(Pd)→σ*(allyl) exceeds the 
lp(Pd)→σ*(P-O) in this specific case. For a comparison of the different 
hyperconjugations please see the SI.

TS-2d pro (S)
Grel = 0.0 kcal/mol

TS-1d pro (R)
Grel = 0.0 kcal/mol

TS-1d pro (R)
Grel = 0.7 kcal/mol

TS-2d pro (S)
Grel = 0.7 kcal/mol

vs.

vs.

H

F

TS-2c pro (S)
Grel = 0.5 kcal/mol

TS-1c pro (R)
Grel = 0.7 kcal/mol

TS-1c pro (R)
Grel = 0.0 kcal/mol

TS-2c pro (S)
Grel = 0.0 kcal/mol

vs.

vs.

trans-exo trans-endo

H

F
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Conclusions
Palladium-catalyzed allylic alkylations of sodium dimethyl 
malonate with (rac,E)-1,3-diphenylallyl acetate (1), employing 
BIFOP-X ligands (i.e. X = H 5, Cl 7, D 10, N3 11, CN 12) yield 
(S,E)-dimethyl-2-(1,3-diphenylallyl) malonate (S)-2 (up to 92%, 
70% ee, cf. Scheme 2, Table 3), while alkylations with 
cyclohexenyl acetate yield (R)-dimethyl-2-(cyclohexenyl) 
malonate (R)-4 (up to 91%, 67% ee, cf. Scheme 3, Table 4). 
Employed ligands for these Palladium-catalyzed allylic 
alkylations are BIFOP-X (X = H 5, Cl 7, F 9), O-BIFOP-X (X = H 14, 
Cl 15) and newly synthesized ligands BIFOP-X (X = D 10, N3 11, 
CN 12), (MeO)2-BIFOP-Cl (13) and O-BIFOP-D (16). During the 
syntheses of new (MeO)2-BIFOP-X (X = H) ligands, carbo-
cationic rearrangements are found at the fenchyl moieties  
(spiro[fenchyl-9-fluorene] 19 and tricyclic product 23, cf. ref. 
13). Evaluation of catalyst ratios is achieved by variation of 
[(C3H5)PdCl]2 and BIFOP-X (X = H 6, Cl 7, F 9) in different 
amounts (3:1 to 1:3) and employing these amounts in the Pd-
catalyzed allylic alkylation of Na(CH(CO2Me)2) with 1,3-
diphenylallyl acetate (1) yielding malonate (S)-2 (or (R)-2, cf. 
Figure 1, Scheme 2, Table 2). This evaluation reveals a 1:1 ratio 
as optimized condition (Figure 1). This 1:1 ratio can also be 
seen at the isolated X-ray crystal structure of (C3H5)PdCl • 
BIFOP-F (17, Figure 2). (MeO)2-BIFOP-Cl (13) affords the best 
results of all tested ligands (90% yield, 70% ee, cf.Tables 3, 4 
entries 10). O-BIFOP-D (16) affords similar results as O-BIFOP-H 
(14, cf. Tables 3, 4, entries 7, 8). BIFOP-CN (12) affords similar 
results as BIFOP-N3 (11, cf. Tables 3, 4, entries 5, 6). BIFOP-F (9) 
originates the stereochemical “F-switch” which is achieved for 
both substrates, yielding either (R,E)-dimethyl 2-(1,3-
diphenylallyl)malonate (R)-2 (92% with 66% ee, cf. Figure 1, 
Scheme 2, Table 3, entry 4) or (S)-dimethyl 2-
(cyclohexenyl)malonate (S)-4 (82% with 67 ee, cf. Figure 1, 
Scheme 3, Table 4, entry 4). NBO-analyzes reveals that the 
explanation of this “F-swtich” is a hyperconjugation effect 
(lp)Pd → σ*(P-O) or (lp)Pd → σ*(P-F) influenced by the high 
electronegativity of fluorine (Figure 8, Table 8). This gives rise 
to a switch in the transition structures of the favoured 
enantiomer by stabilizing hyperconjugation energy (e.g. less 
favoured F: TS-2 ΔGrel = 3.2 kcal/mol, to favoured F: TS-1 ΔGrel 
= 7.6 kcal/mol, Figure 8, Table 8; cf. experimental Scheme 2, 
Table 3, Scheme 3, Table 4). This “F-switch” demonstrates how 
electronegativity can be employed in ligand and catalyst 
design to control enantioselectivity in Pd-catalyzed allylic 
alkylations.

Computational section
All computations are performed with GAUSSIAN 16 Revision 
B.0118. Transition state structures are localized using the 
B3LYP functional19 with the def2-SVP basis set20. Energies are 
refined using either the M06-2X functional21 with the def2-
TZVP basis set20 or TPSS functional22 with def2-TZVP basis 
set20. Grimme’s dispersion (D3) with Becke-Johnson damping 
(BJ)23 is added. The ZPE scale factor is for B3LYP/def2-SVP 
0.9912, M06-2X/def2-TZVP 0.9754 and TPSS/def2-TZVP 

1.002024. The computed pictures are generated with 
CYLview25. The NBO-analyzes are done with NBO6. All 
functions are implemented in the GAUSSIAN 16 program 
package.
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