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Rhodium-catalyzed arylative cyclization of alkynyl malonates by 
1,4-rhodium(I) migration† 
Luke O’Brien,ab Somnath Narayan Karad,ab William Lewis,b and Hon Wai Lam*ab 

 

The synthesis of functionalized 1-tetralones by the rhodium(I)-
catalyzed reaction of alkynyl malonates with arylboronic acids is 
described. These arylative cyclizations proceed via an alkenyl-to-
aryl 1,4-Rh(I) migration as a key step. Preliminary results of an 
enantioselective variant of these reactions are also presented.

Domino reactions that consist of a metal-catalyzed addition of an 
aryl nucleophile to an alkyne, followed by an intramolecular 
nucleophilic addition of the resulting alkenylmetal species onto a 
tethered electrophile, are versatile transformations for the 
preparation of hetero- and carbocyclic products.1 A variation of these 
arylative cyclizations involves the 1,4-migration of the metal2 from 
the initially formed alkenylmetal species A onto an aryl site, 
followed by cyclization of the resulting arylmetal species B onto the 
electrophile (Scheme 1A). This through-space transmission of 
reactivity further increases the synthetic capabilities of arylative 
cyclizations, and to date, reactions based upon alkenyl-to-aryl 1,4- 
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Fig 1 Natural products containing a 1-tetralone with an all-carbon 
quaternary stereocenter at C2 

migrations of rhodium,3 iridium,4 and cobalt5 have been 
described.6,7,8,9,10,11 The use of esters as the electrophiles in these 
reactions leads to the formation of aromatic ketones. In this context, 
the Murakami3a and Yoshikai5 groups have shown that alkyne-
tethered esters react with arylboron and arylzinc reagents in arylative 
cyclizations under rhodium and cobalt catalysis, respectively. 
However, only symmetrical alkynes were employed in these 
studies.3a,5 Although this feature eliminates the challenge of 
controlling regioselectivity in the initial arylmetalation, it does limit 
synthetic utility. Here, we describe the rhodium-catalyzed reaction of 
arylboronic acids with alkynyl malonates 1, in which the alkyne is 
unsymmetrically substituted (Scheme 1B). These arylative 
cyclizations produce 1-tetralones containing an all-carbon quaternary 
stereocenter at C2, a structural motif that appears in several natural 
products such as (±)-nidemone,12 aspewentin B,13 and 
diomuscinone14 (Figure 1). Preliminary results of an enantioselective 
variant are also  described.

It is known that carbometalation of alkynes substituted with one 
alkyl and one aryl group are often highly regioselective.15 
Accordingly, bis(2,2,2-trifluoroethyl)malonate 1a, which contains 
such an alkyne, was selected for our initial experiments in the hope 
that a highly regioselective synthesis of 1-tetralones by arylative 
cyclization could be achieved. First, a mixture of 1a and PhB(OH)2 
(1.5 equiv) was heated at 70 °C for 20 h in the presence of 5 mol% 
of [Rh(cod)Cl]2 and various bases (1.5 equiv) (Table 1).16 We were 
pleased to observe that arylative cyclization was successful and the 
best results were obtained using KF as the base in 1,4-dioxane/H2O 
(9:1) as the solvent, which gave 1-tetralone 2aa in 75% yield as 
determined by 1H NMR analysis of the crude mixture using 1,4-
dimethoxybenzene as an internal standard (entry 1). This experiment 
also gave alkyne hydroarylation product 3ab in 14% yield. Changing 
the quantity of H2O in the reaction medium by using anhydrous 
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Table 1 Evaluation of reaction conditionsa

Bn
Ph

O

CF3CH2O

O

OCH2CF3 PhB(OH)2 (1.5 equiv)

1a

2aa

+

KF (1.5 equiv)
[Rh(cod)Cl]2 (5 mol%)
1,4-dioxane/H2O (9:1)
70 °C, 20 h

Bn

O

CF3CH2O

O

OCH2CF3

Ph
Ph

3aa

Bn

O

CF3CH2O

O

OCH2CF3

Ph

3abPh

+ +

O

Ph

CO2CH2CF3

Bn

Entry Deviation from 
standard conditions

Yield of 2aa 
(%)b

Yield of 3aa 
(%)b

Yield of 3ab 
(%)b

1 None 75 – 14
2 1,4-Dioxane as solvent 42 19 14
3 In 1,4-dioxane/H2O (4:1) 54 5 9
4 Toluene as solvent 28 28 14
5 Xylenes as solvent 33 42 14
6 Et3N instead of KF 47 19 14
7 Cs2CO3 instead of KF 56 – 9
a Reactions were conducted with 0.05 mmol of 1a. b Determined by 1H NMR 
analysis of the crude reactions using 1,4-dimethoxybenzene as an internal 
standard. 

1,4-dioxane or 1,4-dioxane/H2O (4:1) gave lower yields of 2aa along 
with significant quantities of alkyne hydroarylation products 3aa and 
3ab (entries 2 and 3). Other solvents such as toluene (entry 4) and 
xylenes (entry 5) also gave inferior results. Other bases such as Et3N 
(entry 6) and Cs2CO3 (entry 7) are also effective but the yields of 
2aa are appreciably lower compared with using KF (entry 1). The 
conditions shown in entry 1 were therefore selected for use in further 
experiments.

The scope of this reaction with respect to the alkynyl malonate 
was then examined in reactions with PhB(OH)2, which gave 1-
tetralones 2aa–2qa in 33–74% yield (Table 2). In some cases (2ha 
and 2pa), it proved beneficial to increase the loading of [Rh(cod)Cl]2 
to 10 mol% and the quantity of PhB(OH)2 to 2.0 equivalents. The 
reaction producing 2aa also gave a 1:1.25 mixture of inseparable 
alkyne hydroarylation products 3aa and 3ab (see Table 1 for the 
structures), respectively, in 19% combined yield. Alkyne 
hydroarylation products corresponding to 3aa and 3ab were not 
isolated in subsequent experiments using other substrates. The 
reaction is tolerant of a wide range of carbon-linked substituents at 
the 2-position of the substrate, including benzyl (2aa and 2ja–2ma), 
methyl (2ba and 2oa), 2-thienylmethyl (2ca), 2-oxo-2-phenylethyl 
(2da), 2-oxo-2-phenoxyethyl (2ea17 and 2na), phenyl (2fa), 2-
methoxyphenyl (2ga), 2-naphthyl (2ha), and 3-thienyl (2ia) groups. 
Heteroatom substituents at the 2-position are also accommodated, 
such as ethoxy (2pa) and 3-thienylmethoxy (2qa) groups. The 
alkynyl substituent can be changed from a phenyl group (2aa–2ia 
and 2na–2qa) to 4-methoxyphenyl (2ja), 3-methylphenyl (2ka), 1-
naphthyl (2la), and 2-thienyl (2ma) groups. A substrate with a 
methyl-substituted alkyne did undergo arylative cyclization in low 
yield but the product 2ra contained unidentified, inseparable 
impurities.18 In addition, a substrate containing a terminal alkyne 
gave only a complex mixture of unidentified products. Pleasingly, 
the reaction is not limited to bis(2,2,2-trifluoroethyl) malonates;

Table 2 Scope with respect to the alkynyl malonatea

R2

Ar

O

R1O

O

OR1

PhB(OH)2 (1.5 equiv)

1
2+

KF (1.5 equiv)
[Rh(cod)Cl]2 (5 mol%)

1,4-dioxane/H2O (9:1)
70 °C, 20 h

2aa R = Ph
2ba R = H
2ca R = 2-thienyl
2da R = COPh
2ea R = CO2Ph

67%b

58%
50%
36%c

55%

2fa Ar = Ph
2ga Ar = 2-MeOC6H4
2ha Ar = 2-naphthyl
2ia Ar = 3-thienyl

62%
54%
56%d

57%

2ja Ar = 4-MeOC6H4
2ka Ar = 3-MeC6H4
2la Ar = 1-naphthyl
2ma Ar = 2-thienyl

64%
74%
68%
66%

2na 72%

2oa 55%

2pa 36%d

2qa 33%c

O

Ar

CO2R1
R2

O

Ph

CO2CH2CF3

R

O

Ph

CO2CH2CF3

Ar

O

Ar

CO2CH2CF3

Bn

O

Ph

CO2Me

O

Ph

CO2Ph
Me

O

Ph

CO2CH2CF3

OEt

O

Ph

CO2CH2CF3

O

CO2Ph

S

a Reactions were conducted with 0.30 mmol of 1a–1q in 3 mL of 1,4-
dioxane/H2O (9:1). Yields are of isolated products. b This experiment also 
gave a 1:1.25 inseparable mixture of 3aa and 3ab, respectively, in 19% 
combined yield. c The reaction time was 24 h. d Conducted using 10 mol% of 
[Rh(cod)Cl]2 and 2.0 equiv of PhB(OH)2.

substrates containing dimethyl or diphenyl malonates gave 1-
tetralones 2na and 2oa in 55% and 72% yield, respectively.

Table 3 presents the results of the reactions of representative 
substrates 1a, 1i, 1m, and 1n with various arylboronic acids, which 
gave 1-tetralones 2ab–2nj in 45–79% yield. The arylboronic acid 
scope includes a range of para- (2ab, 2ac, 2nh, and 2ni), meta-  
(2mg), and disubstituted phenylboronic acids (2ie and 2mf) 
containing methyl (2ab), halide (2ac, 2mf, and 2ni), carboethoxy 
(2mg), or alkoxy groups (2ge and 2nh). 2-Naphthylboronic acid 
(2ad) is also tolerated. In the case of 2-naphthylboronic acid and 3-
ethoxycarbonylphenylboronic acid, 1,4-Rh(I) migration occurred to 
the sterically more accessible position (2ad and 2mg, respectively). 
3-Thienylboronic acid also reacted successfully with 1a; however, 
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Table 3 Scope with respect to the boronic acida

R2

Ar1

O

R1O

O

OR1

Ar2B(OH)2 (1.5 equiv)

1a, 1i, 1m or 1n
2+

2nh R = OMe
2ni R = Cl

51%
45%

2ab R = Me
2ac R = F

79%
68%

2ad 56%

2ie 50%

2mf 51%

2mg 56%

O

Ar1

CO2R1
R2

Ar

O

Ph

CO2CH2CF3

Bn

O

Ph

CO2CH2CF3

Bn

O

Ph

CO2CH2CF3

O

Ph

CO2Me

S

MeO

MeO

O

CO2CH2CF3

BnCl

Cl

O

CO2CH2CF3

Bn

CO2Ph

S

S

KF (1.5 equiv)
[Rh(cod)Cl]2 (5 mol%)

1,4-dioxane/H2O (9:1)
70 °C, 20 h

R

O

EtO

R

a Reactions were conducted with 0.30 mmol of 1a, 1g, 1m or 1n in 3 mL of 
1,4-dioxane/H2O (9:1). Yields are of isolated products.

Bn
Ph

O

CF3CH2O

O

OCH2CF3

(1.5 equiv)

1a

2aj' 42%

+

KF (1.5 equiv)
[Rh(cod)Cl]2 (5 mol%)

1,4-dioxane/H2O (9:1)
70 °C, 20 h

O

Ph

CO2CH2CF3

Bn

S
B(OH)2

S

(1)

O

Ph

CO2CH2CF3

Bn
S

2aj 21%

+

two products 2aj and 2aj' were obtained in 21% and 42% yield, 
respectively, resulting from 1,4-Rh(I) migration to different sites of 
the thiophene prior to cyclization (eqn (1)).

A possible catalytic cycle for these reactions is depicted in 
Scheme 2, using substrate 1a and PhB(OH)2 as example reaction 
partners. Heating a mixture of [Rh(cod)Cl]2, KF, and H2O may 

generate rhodium hydroxide 4 (R = H), which can undergo 
transmetalation with PhB(OH)2 to give arylrhodium species 5. 
Phenylrhodation of the alkyne of 1a gives alkenylrhodium species 6, 
which then undergoes alkenyl-to-aryl 1,4-Rh(I) migration to give 
arylrhodium species 7. Cyclization of 7 by 1,2-addition onto one of 
the esters produces rhodium alkoxide 8, which collapses to release 
the product 2aa and regenerate the active rhodium complex 4 (which 
could have a either a trifluoroethoxide or hydroxide counterion).

 

0.5 [Rh(cod)Cl]2
KF, H2O

LnRh OR

LnRh Ph

4

R = H or CH2CF3

KCl + HF

PhB(OH)2

ROB(OH)2

Bn
Ph

O

CF3CH2O

O

OCH2CF3

Bn

O
CF3CH2O O

OCH2CF3
Ph

LnRh
H

Bn

O
CF3CH2O O

OCH2CF3
Ph

H
LnRh

O

Ph

CO2CH2CF3

Bn

1,4-migration

Ph

CO2CH2CF3

Bn
CF3CH2O ORhLn

+ ROH

H2O

5

1a

6

7

8

2aa

Scheme 2 Possible catalytic cycle 

Finally, preliminary efforts at developing an enantioselective 
variant of this reaction were conducted. After some 
experimentation,19 heating 1a with PhB(OH)2 (1.5 equiv) in the 
presence of [Rh(C2H4)2Cl]2 (5 mol%), (R)-MeO-BIHEP (L1, 10 
mol%), and KF (1.5 equiv) in 1,4-dioxane/H2O (9:1) at 70 °C gave 
(+)-2aa in 85% yield and 76% ee, along with an inseparable mixture 
of 3aa and 3ab in 13% yield (eqn (2)).

Bn
Ph

O

CF3CH2O

O

OCH2CF3

PhB(OH)2 (1.5 equiv)

1a

(+)-2aa 85%, 76% ee

+

L1 (10 mol%)
[Rh(C2H4)2Cl]2 (5 mol%)
KF (1.5 equiv)
1,4-dioxane/H2O (9:1)
70 °C, 20 h

Bn

O

CF3CH2O

O

OCH2CF3

Ph
Ph

3aa

Bn

O

CF3CH2O

O

OCH2CF3

Ph

3abPh

+ +

O

Ph

CO2CH2CF3

Bn

PPh2

PPh2MeO
MeO

*

(3aa + 3ab) 13%
3aa:3ab = 1:20

(2)

In summary, we have developed the rhodium(I)-catalyzed 
reaction of alkynyl malonates with arylboronic acids to give diverse 
1-tetralones. A key step in these arylative cyclizations is an alkenyl-
to-aryl 1,4-Rh(I) migration. Use of a chiral bisphosphine-ligated 
rhodium complex as the precatalyst gives promising 
enantioselectivity (76% ee). Our investigations into development of 
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new domino reactions involving 1,4-metal migration are ongoing 
and will be reported in due course.20
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via:

+

O

CO2CH2CF3

Bn

KF (1.5 equiv)
[Rh(cod)Cl]2 (5 mol%)

1,4-dioxane/H2O (9:1)
70 °C, 20 h

Bn

O

CF3CH2O

O

OCH2CF3

PhB(OH)2 (1.5 equiv) 66%

Bn

O

CF3CH2O

O

OCH2CF3

H[Rh]
swap

S

S27 examples
S

The synthesis of functionalized 1-tetralones by the rhodium(I)-catalyzed reaction of alkynyl malonates with arylboronic acids 
is described.
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