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ABSTRACT: Proteins in the RAS family are important regulators of cellular signaling and, when mutated, can drive cancer patho-

genesis. Despite considerable effort over the last thirty years, RAS proteins have proven to be recalcitrant therapeutic targets. One 

approach for modulating RAS signaling is to target proteins that interact with RAS, such as the guanine nucleotide exchange factor 

(GEF) son of sevenless homologue 1 (SOS1). Here, we report hit-to-lead studies on quinazoline-containing compounds that bind to 

SOS1 and activate nucleotide exchange on RAS. Using structure-based design, we refined the substituents attached to the quinazo-

line nucleus and built in additional interactions not present in the initial HTS hit. Optimized compounds activate nucleotide ex-

change at single-digit micromolar concentrations in vitro. In HeLa cells, these quinazolines increase the levels of RAS-GTP and 

cause signaling changes in the mitogen-activated protein kinase/extracellular regulated kinase (MAPK/ERK) pathway. 

The three RAS genes—HRAS, KRAS, and NRAS—constitute 

the most frequently mutated gene family in human cancers.
1
 

With RAS mutations found in approximately one third of all 

human tumors, these oncogenes represent important targets in 

the field of drug discovery.
2-3

 RAS genes encode small GTP-

binding proteins that function as molecular switches, transmit-

ting extracellular stimuli to intracellular signaling pathways. 

Canonically, RAS proteins exist in two states: the guanosine 

diphosphate (GDP)-bound “off” state and the guanosine tri-

phosphate (GTP)-bound “on” state.
4-5

 RAS activity is tightly 

governed by GTPase-activating proteins (GAPs) and guanine 

nucleotide exchange factors (GEFs).
6
 Mutations in RAS genes 

can render the proteins that they encode constitutively active, 

and cells harboring mutated RAS proteins often display the 

hallmarks of cancer.
7-9

 To date, multiple strategies for target-

ing RAS have been developed, but each has met with limited 

success.
3,10-13

 

Our group has reported an approach for modulating RAS 

signaling that entails binding to and activating the protein son 

of sevenless homologue 1 (SOS1), a GEF that interacts direct-

ly with RAS and catalyzes the exchange of GDP for GTP.
14-16

 

In these studies, we described compounds from an indole se-

ries that bind to the CDC25 domain of SOS1 in the 

RAS:SOS1:RAS complex, activate nucleotide exchange at 

sub-micromolar concentrations in vitro, increase the levels of 

RAS-GTP in cancer cells, and cause biphasic signaling chang-

es in the mitogen-activated protein kinase/extracellular regu-

lated kinase (MAPK/ERK) pathway. Here, we describe the 

discovery of a second series of compounds, based on a 

quinazoline scaffold, that bind to the same pocket on SOS1, 

but in a different manner, which is characterized by the rota-

tion of a Phe residue inside the binding pocket. Importantly, 

compounds exhibiting this alternative binding mode elicit 

similar effects in vitro and in cells as the previously reported 

indoles. 

From a high throughput nucleotide exchange assay used to 

screen the Vanderbilt library of >160,000 compounds, 2,880 

small molecules were identified that increased the rate of 

SOS1-mediated nucleotide exchange on RAS (1.8% initial hit 

rate).
17

 Among the hit molecules in the screen, the 2,4-

diaminoquinazoline, 1, was identified for its ability to activate 

nucleotide exchange with similar efficacy as the positive con-

trol (Rel. Act. = 96%) and with good potency (EC50 = 9.7 µM) 

(Figure 1). An advantage of the quinazoline scaffold was the 

potential for rapid diversification. Indeed, the amine substitu-

ents at positions 2 and 4 could each be readily exchanged, and 

the carbon atoms of the quinazoline arene ring offered addi-

tional vectors into distinct areas of chemical space. 

To guide the first round of compound synthesis, the binding 

mode of the HTS hit, 1, was identified by X-ray crystallog-

raphy. As shown in the X-ray co-crystal structure depicted in 

Figure 1, compound 1 binds to a hydrophobic pocket on SOS1 

in the RAS:SOS1:RAS complex. While this is the same bind-

ing site occupied by compounds in the indole series, the aro-

matic ring of Phe890 is flipped approximately 90 degrees rela-

tive to its position in the co-crystal structures obtained with the 

indole compounds.
14,16

 A similar rotation of this residue was 

also observed during a fragment screening campaign conduct-

ed by a group from AstraZeneca.
18

 This rotation unveiled a 

new hydrophobic shelf inside of the binding pocket that is 
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partially occupied by the 3′-chloroaniline substituent on com-

pound 1. This region of chemical space, which was unex-

plored by the compounds in the indole series, provided an 

excellent starting point for structure-based design. 

Figure 1. X-ray co-crystal structure of compound 1 (beige; PDB 

ID code 6CUO) bound to SOS1 in the RAS:SOS1:RAS ternary 

complex. SOS1 protein surface is shown in gray with key binding 

site residues displayed in pink. The alternative orientation of 

Phe890 is shown in cyan. 

In the X-ray co-crystal structure depicted in Figure 1, the 

space beneath Phe890—around the aniline ring of compound 

1—appeared to be mainly hydrophobic in nature. Thus, lipo-

philic groups seemed to be well suited for this area of the 

binding pocket. For reference, the unsubstituted phenyl deriva-

tive, 2, was prepared and proved to be inactive (Table 1). Re-

introduction of a lipophilic substituent at the 3′-position of the 

aniline ring restored activity, as in the 3′-methyl derivative, 3, 

and the 3′-bromo derivative, 4. On the other hand, less lipo-

philic groups, such as the 3′-methoxy group in compound 5 

and the 3′-(1-hydroxyethyl) group in compound 6 were not 

well tolerated. 

Table 1. SAR of the Aniline Ring
a
 

 
Compd R′ EC50 (µM)

b
 Rel. Act. (%)

c
 

1 3′-Cl 9.7 ± 1.16 96 ± 13.9 

2 H — 47 ± 13.6 

3 3′-Me 16.4 ± 0.35 96 ± 2.1 

4 3′-Br 7.1 ± 1.93 87 ± 12.5 

5 3′-OMe — 38 ± 8.5 

6 3′-(1-hydroxyethyl) — 10 ± 4.8 

7 4′-Me — 8 ± 1.4 

8 4′-Br — 16 ± 4.0 

9 4′-OMe — 19 ± 0.9 

10 3′,4′-diMe — 37 ± 11.3 

11 3′,5′-diMe — 44 ± 20.4 

12 3′,4′-diCl — 22 ± 5.6 

13 3′,5′-diCl — 41 ± 26.5 

14 3′-Cl-4′-F 13.1 ± 1.20 96 ± 10.6 

aEach value represents the mean ± SD of at least two separate 

experiments. 
b “—” denotes an EC50 value of >100 µM, or an EC50 value that 

was not calculated due to low efficacy in vitro.  
cActivation values represent the percentage activation for each 

compound relative to the activation of a positive control com-

pound.14,16-17 

Having explored the 3′-position of the aniline ring, we next 

investigated alternative substitution patterns. Moving the sub-

stituent from the 3′-position to the 4′-position compromised 

both potency and efficacy in vitro—compare, for example, the 

4′-methyl analogue, 7, and the 4′-bromo analogue, 8, with their 

respective 3′-regioisomers 3 and 4—suggesting that the 3′-

substituent was important for compound activity. With this 

consideration in mind, several quinazolines featuring disubsti-

tuted aniline rings were then prepared. Appending a second 

substituent to either C-4′ or C-5′ of the aniline ring was detri-

mental to activity when this substituent was either methyl (10 

and 11) or chloro (12 and 13). However, smaller atoms such as 

fluorine were well tolerated, as illustrated by compound 14, 

which was of similar potency and efficacy to 1. Being among 

the most potent and efficacious analogues in Table 1, com-

pound 14 was identified as the scaffold upon which to build 

further SAR. 

With adequate SAR established at the 2-position of the 

quinazoline scaffold, our focus shifted to filling the unoccu-

pied space near the (aminomethyl)furan of the HTS hit, 1. The 

exocyclic nitrogen atom at the 4-position of the quinazoline 

appeared to offer a vector into this area of the binding pocket; 

however, in the X-ray co-crystal structure depicted in Figure 

1, this nitrogen atom is solvent exposed, and engaged in a 

water-mediated interaction with Glu902. It was not clear, a 

priori, whether substituents on this nitrogen atom would be 

tolerated. Thus, the N-ethyl analogue, 15, and the N-acetyl 

analogue, 16, were prepared (Table 2). Unfortunately, both of 

these analogues displayed low efficacy in the nucleotide ex-

change assay, which suggested that substituting this nitrogen 

atom would not be a viable design strategy. 

Table 2. SAR of the Quinazoline 4-Position
a 

 
Compd R EC50 (µM)

b
 Rel. Act. (%)

c
 

15 
 

— 25 ± 4.4 

16 
 

— 16 ± 2.3 

17 
 

21.9 ± 1.33 67 ± 1.1 

18 
 

— 55 ± 3.1 

19 
 

16.3 ± 3.50 111 ± 25.8 

20 
 

44.2 ± 19.35 69 ± 4.9 

21 
 

— 58 ± 4.1 

22 
 

6.4 ± 0.89 122 ± 77.7 

Hydrophobic 

shelf 
Phe890 
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23 
 

— 67 ± 5.9 

24 
 

6.2 ± 2.49 144 ± 7.0 

25 
 

— 48 ± 0.1 

26 

 

2.5 ± 0.79 74 ± 10.1 

27 

 

— — 

28 
 

— 43 ± 7.5 

29 
 

— 41 ± 3.0 

aEach value represents the mean ± SD of at least two separate 

experiments. 
b “—” denotes an EC50 value of >100 µM, or an EC50 value that 

was not calculated due to low efficacy in vitro. 
cActivation values represent the percentage activation for each 

compound relative to the activation of a positive control com-

pound.14,16-17 

A more productive approach for increasing the occupancy 

of the binding pocket involved branching from the carbon 

atoms of the amine substituent. This strategy allowed us to 

introduce more sp
3
 character into these quinazoline com-

pounds,
19

 and provided an opportunity to move away from the 

furan moiety, a known metabolic liability.
20-21

 As illustrated in 

Table 2, promising results were obtained with α-branched 

amines, such as the pentan-3-amine featured in compound 17, 

and smaller cycloalkyl rings, such as the cyclopropyl group 

featured in compound 19. Further potency improvements were 

realized when these two design elements were combined, as in 

the (R)-1-cyclopropylethan-1-amine featured in compound 22, 

which activated the nucleotide exchange process at 122% rela-

tive to control, with an EC50 value of 6.4 µM. Remarkably, the 

(S)-enantiomer matched pair 23 demonstrated a large drop-off 

in exchange activity. To clarify the binding mode of the new 

lead compound 22, and to further guide structure-based de-

sign, the X-ray co-crystal structure of this compound bound to 

the RAS:SOS1:RAS complex was obtained. 

As shown in Figure 2, the cyclopropyl substituent of com-

pound 22 sits behind His905 of SOS1, while the methyl 

branch partially fills the hydrophobic space near Leu901 (Fig-

ure 2, yellow circle). This arrangement is enforced by the (R)-

configuration of the stereogenic carbon. Our analysis of this 

co-crystal structure further suggested that additional pocket 

occupancy could be achieved by extending the alkyl branch 

into the hydrophobic area near Leu901. Thus, several com-

pounds were prepared to explore this region of chemical 

space. The preference for the (R)-enantiomer was confirmed 

with the ethyl derivatives, 24 and 25, but no marked improve-

ment in activity was realized. While the propyl derivative, 26, 

was more potent than the methyl comparator, 22, a noticeable 

decrease in efficacy was observed, and further increasing the 

size of the alkyl branch, as with the isobutyl analogue, 27, 

ablated nucleotide exchange activity altogether. Decreases in 

activity were also observed as the size of the cycloalkyl sub-

stituent extended beyond cyclopropyl. This general trend is 

exemplified by the cyclobutyl analogues, 28 and 29, both of 

which were inactive. 

Figure 2. X-ray co-crystal structure of compound 22 (green; PDB 

ID code 6CUP) bound to SOS1 in the RAS:SOS1:RAS ternary 

complex. SOS1 protein surface is shown in gray with key binding 

site residues displayed in pink. Yellow circle indicates hydropho-

bic space near Leu901. 

The X-ray co-crystal structure of compound 22 presented an 

additional avenue for further compound design. As shown in 

Figure 2, the exocyclic nitrogen at the 2-position of the 

quinazoline scaffold and the endocyclic N-1 ring nitrogen 

engage the carboxylate group of Asp887 through a molecule 

of water. During the AstraZeneca fragment screening cam-

paign (vide supra), several ligands were also shown to interact 

directly with this Asp residue.
18

 Furthermore, whereas muta-

tion of Asp887 did not affect the activity of our previously 

reported indole compounds,
14

 several of the HTS hits lost the 

ability to activate nucleotide exchange when tested with the 

Asp887Ala and Asp887His mutant forms of SOS1.
22

 Thus, we 

speculated that this residue could be leveraged to improve the 

activity of the compounds in this quinazoline series. 

To this end, several 8-substituted quinazolines intended to 

directly engage Asp887 via a charge–charge interaction or a 

hydrogen bond were designed. For these studies, the (R)-1-

cyclopropylethan-1-amine was retained at the 4-position of the 

quinazoline scaffold. The data for compounds 22 and 24 re-

ported in Table 2, as well as data for other matched pairs (not 

shown) suggested that the methyl branch (e.g. 22) and the 

ethyl branch (e.g. 24) could be used to similar effect, and the 

commercial availability of the (R)-1-cyclopropylethan-1-

amine made it a more attractive choice for subsequent rounds 

of compound synthesis. 

Table 3. SAR of the Quinazoline 8-Position
a
 

 
Compd R EC50 (µM)

b
 Rel. Act. (%)

c
 

30 
 

2.5 ± 0.16 54 ± 8.8 

31 
 

3.0 ± 0.01 160 ± 4.5 

32 
 

2.7 ± 0.18 203 ± 1.9 

33  2.0 ± 0.58 148 ± 31.5 

34 
 

1.8 ± 0.05 201 ± 14.7 

His905 

Leu901 

Asp887 

Tyr884 

Glu902 
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35 
 

1.1 ± 0.37 132 ± 31.5 

36 
 

4.2 ± 0.29 204 ± 7.4 

37 

 

6.6 ± 0.02 140 ± 14.7 

38 

 

7.7 ± 0.18 106 ± 8.5 

39 

 

— 36 ± 1.9 

40 
 

— 83 ± 17.6 

41 
 

— 87 ± 11.4 

42 
 

— 76 ± 11.8 

aEach value represents the mean ± SD of at least two separate 

experiments. 
b “—” denotes an EC50 value of >100 µM, or an EC50 value that 

was not calculated due to low efficacy in vitro. 
cActivation values represent the percentage activation for each 

compound relative to the activation of a positive control com-

pound.14,16-17 

As the data in Table 3 illustrate, many of the 8-substituted 

quinazolines demonstrated improved potency and efficacy 

relative to the parent 8H-quinazoline, 22. In particular, ana-

logues containing a substituent bearing an amino group per-

formed especially well in the assay. The length of the tether 

connecting the amine to the quinazoline had a noticeable ef-

fect on compound activity. For example, 8-

(aminomethyl)quinazoline 30 exhibited good potency, but was 

less efficacious than the homologous 8-

(aminoethyl)quinazoline 32. Cyclic amines were well tolerated 

(e.g. 34–36) as were acyclic amines (e.g. 32, 37, and 38). On 

the other hand, compounds featuring amino alcohols (e.g. 39) 

and ethers (e.g. 40–42) were essentially inactive, establishing 

a clear preference for amine-containing substituents that pre-

sumably engage in a charge–charge interaction with the car-

boxylate side chain of Asp887. To test this hypothesis, the X-

ray co-crystal structure of compound 34 bound to SOS1 in the 

RAS:SOS1:RAS ternary complex was obtained (Figure 3). In 

the crystallized binding pose, the exocyclic nitrogen atom at 

the 4-position of the quinazoline nucleus interacts with Glu902 

via a molecule of water. A second molecule of water bridges 

the exocylic amine at the 2-position and the endocylic N-1 

nitrogen atom to Asp887. As designed, the secondary amine of 

the tetrahydropyridine moiety at the 8-position of the quinazo-

line interacts directly with the carboxylate side chain of 

Asp887 via a charge-assisted hydrogen bond.
23-25

 This addi-

tional interaction appears to improve both potency and effica-

cy in vitro, as evidenced by comparing the nucleotide ex-

change activity of compound 34 with that of the parent 8H-

quinazoline, 22, and the dihydropyran analogue, 41. 

Having improved the biochemical activity of these quinazo-

line compounds using structure-based design, we sought to 

assess compound-mediated effects in HeLa cells. We have 

previously suggested that rapid and robust activation of RAS 

signaling to an intolerably high threshold may elicit anti-

cancer effects.
14-17

 In our proposed biological mechanism, 

SOS1 agonist compounds induce (1) an increase in the levels 

of RAS-GTP and (2) biphasic modulation of ERK1/2 phos-

phorylation, where increased levels of phosphorylated ERK1/2 

(pERK1/2
T202/Y204

) are observed at lower compound concentra-

tions and decreased levels of pERK1/2
T202/Y204

 are observed at 

higher concentrations. Mechanistically, inhibition of ERK1/2 

phosphorylation is achieved at higher treatment concentrations 

through negative feedback on SOS1 by pERK1/2
T202/Y204

.
15-17

 

Figure 3. X-ray co-crystal structure of compound 34 (magenta; 

PDB ID code 6CUR) bound to SOS1 in the RAS:SOS1:RAS 

ternary complex. SOS1 protein surface is shown in gray with key 

binding site residues displayed in pink. 

To test whether these quinazolines, which bind to SOS1 

with Phe890 in a different conformation than was observed 

previously,
14,16

 elicit the same signaling changes in cells as our 

indole compounds, the effects of four exemplar compounds—

22, 30, 32 and 34—were assessed by western blotting. The 

levels of endogenous cellular RAS-GTP were measured in 

response to compound treatment, along with the associated 

levels of pERK1/2
T202/Y204

 and the total ERK1/2 protein levels.  

As shown in Figure 4, an increase in the levels of RAS-GTP 

was observed after treatment with compounds 32 and 34. 

Compound 30 elicited a small increase in RAS-GTP levels 

only at higher concentrations, consistent with its lower relative 

percent activation. All three of these compounds elicited the 

expected biphasic modulation of ERK1/2 phosphorylation. 

The cellular activity of quinazolines 30, 32, and 34 is thus 

consistent with that of the previously reported indoles,
14-16

 and 

exemplifies the characteristic activity of our SOS1 agonist 

compounds. Together, these data suggest that the compounds 

from these two distinct chemical series, which demonstrate 

different binding modes to SOS1, likely act via the same bio-

logical mechanism. In contrast, compound 22 did not induce a 

marked increase in the levels of RAS-GTP at the concentra-

tions tested. Despite this lack of RAS-GTP induction, a sub-

stantial increase in the levels of pERK1/2
T202/Y204

 was noted. 

The anticipated decrease in ERK1/2 phosphorylation however, 

was not observed. The effects on pERK1/2
T202/Y204

 signaling 

elicited by five less active compounds—13, 25, 27, 28, and 

29—were also measured and resemble the effects elicited by 

compound 22, namely, an increase in ERK1/2 phosphorylation 

at higher compound concentrations (Figure S1). 

At present, the discrepancy between RAS-GTP and 

pERK1/2
T202/Y204

 induction after treatment with compound 22 

is not fully understood, but may be indicative of either insuffi-

cient cellular potency or off-target effects resulting in 

pERK1/2
T202/Y204

 activation independent of RAS-GTP induc-

tion. It is notable that, although compound 22 was found to 

weakly inhibit ERK1/2 kinase activity (Table S3), this com-

pound elicits enhanced pERK1/2
T202/Y204

 levels in cells.

Glu902 

Asp887 
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Figure 4. RAS-GTP and corresponding pERK1/2T202/Y204 levels from HeLa cells that were treated for 30 min with up to 100 µM of com-

pound 22, 30, 32, or 34. EGF treatment (50 ng/mL for 5 min) was used as a positive control for pathway activation. Quantification values 

for RAS-GTP and pERK1/2T202/Y204 levels are displayed under the respective blots for each compound and are also provided in Table S1. 

Data are representative of three independent experiments. 

In this paper, an SAR study involving the structure-guided 

design and synthesis of a series of quinazolines is described. 

These molecules bind to SOS1 in the same pocket as the pre-

viously reported indoles, but in a distinctive manner, which is 

characterized by the rotation of Phe890. This rotation revealed 

a new area of chemical space and provided a starting point for 

the structure-based design of improved compounds. By ex-

ploring different substituents on the aniline ring at the 2-

position of the quinazoline nucleus, optimizing the branched 

alkyl amine at the 4-position, and tethering an amino group to 

the 8-position, the overall nucleotide exchange activity of the 

initial HTS hit, 1, was improved. Lead compounds identified 

in the biochemical assay, 32 and 34, were tested in HeLa cells 

where they elicited an increase in the levels of RAS-GTP and 

caused biphasic changes in ERK1/2 phosphorylation. These 

new findings suggest that the preferred profile for a SOS1 

agonist from this quinazoline series should include both a high 

Rel. Act. (approximately ≥50%) and a low EC50 (approximate-

ly ≤2.5 µM) to elicit potent activation of RAS and biphasic 

modulation of ERK1/2 phosphorylation in HeLa cells. 

SOS1 agonist compounds from two distinct chemical se-

ries—indole and quinazoline—elicit the same biochemical and 

cellular effects that we propose are characteristic of SOS1 

activation. In particular, the biphasic modulation of ERK1/2 

phosphorylation elicited by compounds from these two chemi-

cally unrelated series further illustrates and supports our re-

cently proposed biological mechanism.
15-17

 Importantly, these 

studies show that compounds that bind to SOS1 with the 

Phe890 residue in the alternative conformation described here 

also activate nucleotide exchange. Based on our hypothesis 

that rapid and robust activation of RAS signaling may elicit 

anti-cancer effects, current efforts in this series are focused on 

improving compound potency in the biochemical and cellular 

assays, and on identifying potential sources of off-target activ-

ity. The goal of these future studies is to identify a tool com-

pound that can be used to explore the in vivo consequences of 

modulating RAS signaling through SOS1 in cancer cells. 
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