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A Pd(II)-catalyzed oxidative direct C(sp2)-H/C(sp3)-H cross 
coupling of anilides with -dicarbonyl compounds with 
Mn(OAc)3·2H2O as oxidant is reported and this protocol 
provides a facile access to -aryl malonates and -keto esters 
in good yields and regioselectivity.  10 

Transition metal-catalyzed oxidative cross coupling reactions 
for C-C bond formation via twofold direct C-H activation 
(termed cross dehydrogenative coupling, CDC) are attracting 
extensive investigation.1 With the coupling of 
unfunctionalized hydrocarbons, the CDC reaction is a 15 

promising approach for the design of highly atom-economical 
transformations. In this regard, palladium has been the 
catalyst of choice for many investigations. Since the 
pioneering works by Fujiwara and co-workers on the Pd-
catalyzed oxidative aromatic C-H alkenylation,2 remarkable 20 

advances have been made by many research groups on 
dehydrogenative C(sp2)-H/C(sp2)-H cross-coupling of 
(hetero)arenes with alkenes3 or arenes4 via Pd(II)/Pd(0) 
catalysis. However, the analogous examples of structurally 
different hydrocarbons involving C(sp2)-H/C(sp3)-H bond 25 

cross coupling are sparse in the literature.5  
 Recently, we6 and others7 reported the Pd-catalyzed 
oxidative arene acylations based on cross coupling of arenes 
with aldehydes with tert-butyl hydroperoxide (TBHP) as 
oxidant. The acylation reactions should involve two distinct 30 

C-H activation processes: (1) arene C-H palladation to form 
arylpalladium(II) complexes, and (2) oxyradical-mediated 
hydrogen atom abstraction of the aldehyde C-H bond to form 
acyl radicals. The subsequent coupling of the acyl radicals 
with the arylpalladium complexes should bring about the C-C 35 

bond formation. Inspired by these results, we envisioned that 
the analogous cross coupling reaction of arylpalladium(II) 
complex with a -dicarbonylalkyl radical [•CH(COR)2] would 
lead to the formation of -aryl dicarbonyl compounds.8 
Herein we report a mild Pd(II)-catalyzed direct α-arylation of 40 

1,3-dicarbonyls with anilides by cross dehydrogenative 
coupling reaction using Mn(OAc)3·2H2O as stoichiometric 
oxidant.  
 At the outset, we examined the reaction of 3,4-dimethyl-N-
pivalanilide (1a, 0.2 mmol) and dimethyl malonate (6 equiv.) 45 

in the presence of Pd(OAc)2 (10 mol%), trifluoroacetic acid 
(TFA) (0.5 equiv.) and TBHP (2 equiv.) as oxidant with 
dioxane or toluene as solvent. No significant product 

formation was observed despite standing the mixture for 
Table 1 Reaction Optimizationsa 50 

Entry Pd catalyst Malonate 
(equiv.) 

Oxidant 
(equiv.) 

TFA 
(equiv.) 

Yieldb

(%) 
1c Pd(OAc)2 6 TBHP (2) 0.5 0 
2d Pd(OAc)2 6 TBHP (2) 0.5 0 
3 Pd(OAc)2 6 Mn(OAc)3 (1) 0.5 17 
4 Pd(TFA)2 6 Mn(OAc)3 (1) 0.5 18 
5 Pd(OTs)2(MeCN)2 6 Mn(OAc)3 (1) 0.5 16 
6 Pd(OAc)2 3 Mn(OAc)3 (1) 2 41 
7e Pd(OAc)2 2 × 3 equiv. [Mn] 

(2 × 50 mol%) 
2 × 3 equiv. 72 

8e Pd(OAc)2 2 × 3 equiv. [Mn] 
(2 × 50 mol%) 

2 × 3 equiv. 80 

9e,f Pd(OAc)2 3 × 3 equiv. [Mn]  
(3 × 50 mol%) 

2 × 3 equiv. 85 

10e none 3 × 3 equiv. [Mn] 
(3 × 50 mol%) 

2 × 3 equiv. 0 

a Reaction conditions: 1a (0.2 mmol), dimethyl malonate, Pd catalyst (10 
mol%), TBHP or Mn(OAc)3·2H2O as oxidant, TFA, toluene (1.5 mL) at 
room temperature under N2 for overnight. b Yields are determined by 1H 
NMR. c Dioxane was used as solvent. d 80 oC instead of rt. e Batchwise 
addition interval 4 h. f Isolated yield. 55 

overnight at room temperature or at 80 oC (Table 1, entries 1 – 
2). Gratifyingly, when Mn(OAc)3·2H2O (1 equiv.) was 
employed as oxidant, the “1a + dimethyl malonate” reaction 
at room temperature furnished the arylmalonate 2a in 17% 
yield (entry 3). The molecular structure of a di-tert-butyl 60 

arylmalonate derivative 2c has been established by X-ray 
crystallography (see Figure S44 in ESI). Other palladium 
catalysts such as Pd(TFA)2 and Pd(OTs)2(MeCN)2 did not 
give significant improvement (entries 4 – 5). After several 
trials, we found that employing 2 equiv. of TFA would 65 

improve the product yield to 41% (entry 6). In order to 
achieve a sustained supply of the malonate radicals over the 
reaction time, reagents were added to the reaction mixture in a 
batchwise fashion. Thus, when 1a was treated with dimethyl 
malonate (3 × 3 equiv./4 h), Pd(OAc)2 (10 mol%), 70 

Mn(OAc)3·2H2O (3 × 50 mol%/4 h) and TFA (3 × 3 equiv./4 
h) in toluene (1.5 mL) at room temperature, 2a was obtained 
in 85% yield (entry 9). Notably, no 2a formation was 
observed in the absence of the Pd catalyst (entry 10).  
 With the optimized conditions in hand, various malonates 75 

+
[Pd] (10 mol%), oxidant

TFA, toluene, rt, overnight
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and keto esters were examined for the Pd-catalyzed direct C-H  
Table 2 Substrate scope studya,b 

 
a Reaction conditions: 1 (0.2 mmol), 1,3-dicarbonyls (3 × 3 equiv. / 4 h), 
Pd(OAc)2 (10 mol%), Mn(OAc)3·2H2O (3 × 50 mol% / 4 h), TFA (3 × 3 5 

equiv. / 4 h), toluene (1.5 mL) at room temperature under N2 for 
overnight. b Isolated yields; percentage yield based on anilide conversion 
is given in parentheses. 

arylation (Table 2). A series of dialkyl malonates such as 
ethyl, tert-butyl malonates would successfully transform 1a to 10 

the corresponding arylmalonates 2b and 2c in good yields. 
When malonates bearing more sterically hindered benzyl 
group were used as coupling partner, 2d and 2e were obtained 
in 93–94% yields. Notably, diethyl phenylmalonate was also 
effective for the coupling reaction, and α,α-biarylmalonate 2f 15 

bearing a quaternary carbon was obtained in 52% yield. Based 
on their smaller pKa’s comparing to the malonates,9 β-keto 
esters should be effective coupling partners. Notwithstanding, 
the corresponding coupling with 1a produced 2g–2m in 20–
69% yields. The lower anilide conversion was attributed to the 20 

incompatibility of the rate of arene C-H palladation and the 
Mn-mediated radical generation. 
 The scope of the anilides was also investigated, and the Pd-
catalyzed direct C-H activation was found to be sensitive to 
the substituent effects. For example, pivalanilides bearing 25 

other meta-substituents (H, Ph and OPiv) reacted with 
dimethyl malonate to give 2n–2p in 25–58% yields. As 
anticipated, benzamido and acetamido are capable directing 
groups for the ortho C-H coupling reactions to give 2q–2s in 
48–60% yields. 30 

 Next, we sought to apply this coupling reaction for the 
synthesis of indoles. For instance, treating 2g and 2h (0.2 
mmol) with concentrated HCl (0.1 mL) and EtOH (5 mL) 
under reflux for 0.5 h afforded the unprotected indole 3g and 

3h in 73 and 69% yield, respectively (Scheme 1). 35 

Scheme 1 Synthesis of unprotected indole 3g and 3h. 

 The Pd-catalyzed oxidative coupling reaction exhibits a 
primary KIE (kH/kD) of 3.3 based on the competitive 
experiments using an equimolar amount of 1n and 1n-d5 
(Scheme 2).10 In addition, a cyclopalladated complex Pd-1r 40 

was prepared according to the literature.
4g In this work, the 

stoichiometric reaction of Pd-1r and dimethyl malonate in 
presence of Mn(OAc)3·2H2O and TFA in toluene at room 
temperature produced the corresponding product 2r in 44% 
yield (Scheme 3). This result suggested that the Pd-catalyzed 45 

coupling reaction is likely to proceed via the cyclopalladated 
complex, which is formed by the rate-limiting arene C-H 
activation.  

NHPiv

H5/d5 + MeO2C CO2Me

Pd(OAc)2 (10 mol%)
Mn(OAc)3·2H2O (2 x 0.1 mmol /4 h)

TFA (2 x 0.6 mmol/4 h)
toluene, rt, N2
20% conversion, kH/kD = 3.3

1n : 1n-d5
 

(1 : 1; 0.2 mmol) (2 x 0.6 mmol/4 h)

NHPiv

H5/d5 CO2Me

CO2Me
 

Scheme 2 Kinetic isotope effect study. 50 

+
(3 x 6 equiv./4 h)

Mn(OAc)3·2H2O 
(3 x 1 equiv./4 h)

TFA (3 x 6 equiv./4 h)
toluene, r.t., N2

NH

CO2Me
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O

2r, 44%
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O
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HN O

O

O

O
O

CF3
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Scheme 3 Stoichiometric reaction of Pd-1r with dimethyl malonate. 

  
 Scheme 4 depicts a plausible mechanism for the Pd-
catalyzed direct C-H α-arylation of the 1,3-dicarbonyl 55 

compounds. In the presence of an excess amount of TFA, 
Pd(OAc)2 should undergo ligand exchange to form Pd(TFA)2. 
Coordination of 1 with Pd(TFA)2, followed by the rate-
limiting C-H activation, afforded the six-membered 
palladacycle with the elimination of TFA. Since oxidation of 60 

dicarbonyl compounds by Mn(OAc)3·2H2O is known to 
generate enolate radicals,11 we hypothesized that the enolate 
radicals would couple with the palladacycle to give some 
either the dinuclear Pd(III)12 or Pd(IV)13 complexes. 
Reductive elimination of the high valent Pd species would 65 

give the desired arylmalonate.  
 In conclusion, we have described a Pd-catalyzed direct C-
H/C-H cross coupling of 1,3-dicarbonyl compounds and 
anilides. With Mn(OAc)3·2H2O as oxidant, arylmalonates 
were obtained in good yields and regioselectivity. A 70 

mechanism involving the coupling of cyclopalladated 
complex with carboradical is proposed. The reaction can be 
performed under mild conditions without addition of base and 
provides a easy route to -aryl carbonyl compounds. 
Comprehensive mechanistic studies are underway. 75 
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Scheme 4 Proposed mechanism. 
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