Accepted Manuscript

Regioselective Oxidative Ring-Opening of Cyclopropenyl Carboxylates by Visible Light Photoredox Catalysis

Qianwen Ye, Hongqiang Ye, Dongping Cheng, Xiaonian Li, Xiaoliang Xu

 PII:
 S0040-4039(18)30661-0

 DOI:
 https://doi.org/10.1016/j.tetlet.2018.05.047

 Reference:
 TETL 49994

To appear in: Tetrahedron Letters

Received Date:17 February 2018Revised Date:17 May 2018Accepted Date:18 May 2018

Please cite this article as: Ye, Q., Ye, H., Cheng, D., Li, X., Xu, X., Regioselective Oxidative Ring-Opening of Cyclopropenyl Carboxylates by Visible Light Photoredox Catalysis, *Tetrahedron Letters* (2018), doi: https://doi.org/10.1016/j.tetlet.2018.05.047

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Tetrahedron Letters journal homepage: www.elsevier.com

Regioselective Oxidative Ring-Opening of Cyclopropenyl Carboxylates by Visible Light Photoredox Catalysis

Qianwen Ye,^a Hongqiang Ye,^a Dongping Cheng,^{*b} Xiaonian Li,^{*a} and Xiaoliang Xu*

^aCollege of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China ^bCollege of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China

ARTICLE INFO

Received in revised form

Article history:

Available online

Received

Accepted

ABSTRACT

Catalyzed by $Ir(dFCF_3ppy)_2(dtbbpy)PF_6$, several aroyl methylidenemalonates were synthesized in good to excellent yields via visible light photoredox-catalyzed the oxidative ring-opening of cyclopropenyl carboxylate derivatives. The possible mechanism of oxidative quenching cycle was proposed.

2009 Elsevier Ltd. All rights reserved.

Keywords: Visible light photoredox catalysis Oxygen Cyclopropenyl carboxylates Aroyl methylidenemalonates

^{*} Corresponding author. Tel.: +86-571-88320920; e-mail: chengdp@zjut.edu.cn; xnli@zjut.edu.cn; xuxiaoliang@zjut.edu.cn

Tetrahedron

Introduction

Visible light catalysis has attracted tremendous attention from chemists owing to its wide applications in organic synthesis and its significance in sustainable chemistry.¹ Without stoichiometric activated reagents, this catalytic strategy make it easier to get access to various radical ions and/or radicals by photo-excited single electron-transfer under very mild conditions.²⁻³ These highly active in situ formed intermediates could participate in the innovative valuable reactions and transform into numerous interesting molecules in a controllable manner.⁴ Among the various reactions mediated by visible light catalysis, the oxidation of carbon-carbon double bonds and its subsequent transformation have drawn much attention. For example, Yoon group reported several [2+2] cross-cycloadditions through the photocatalytic oxidation of olefins to give a range of cyclobutane derivatives.⁵ Most noteworthy was that the oxidative dehydrogenative coupling of alkenes induced by photo-oxidation was also explored, such as the selective oxidative [4+2]annulation of imine and alkene for the synthesis of substituted dihydroisoquinolines,^{6a} the C-H/C-H cross-coupling between electron-rich arenes and styrene derivatives affording various substituted aryl alkenes,^{6b} and the cross-coupling of alkenes with alcohols or azoles generating multi-substituted enol ether.6c

Cyclopropenes, the smallest unsaturated carbocycles, are readily prepared molecules. Because of the highly strained double bond, they have unique and higher reactivity than olefins, allenes and alkynes.⁷ With regard to the many types of cyclopropenes, substituted cyclopropene carboxylates have frequently been the focus of study. They easily undergo intramolecular cyclizations⁸ as well as C-C bond cleavage⁹ to arouse ring expansion and afford ring-opening products. Substantive studies showed that the 1,3 or 2,3 carbon-carbon bond cleavage of cyclopropene carboxylates is feasible, which gave totally different products. Under the nucleophilic attack of Grignard reagents,^{9c} halide ions,^{8d,10} organolithium,^{8b,9b} organocuprate,^{9d} the 2,3 cleavage of cyclopropene carboxylates was attained extensively. In contrast, reports regarding the 1,3 bond cleavage of cyclopropylene carboxylates were very rare. For instance, the tri- and tetrasubstituted alkenes were synthesized by Fe(acac)₃-catalyzed ring-opening reactions of cyclopropene carboxylates with trialkylaluminum reagents.^{9a} Ma reported the ring-opening cycloisomerization of cyclopropenyldicarboxylates for the synthesis of 2,3,5trisubstituted furans via tri(2-furanyl)phosphine catalysis.^{8a} On the other hand, aroyl methylidenemalonates have found a wide range of applications due to their bioactive¹¹ and pharmaceutical significance.¹² They can be used as Michael acceptors or starting materials for the synthesis of different compounds such as pyrroles^{13a}, furans,^{13b} pyridazines,¹⁴ indoles,¹⁵ enonediesters,¹⁶ oxazoles,¹⁷ and etc. Generally, the preparation of aroyl methylidenemalonates was achieved by (1) BF₃·OEt₂-mediated ring-opening of D-A nitrocyclopropanes;^{18a} (2) one-pot reaction of 2-diazomalonate with epoxypropane catalyzed by $Rh_2(OAc)_4$ and subsequently Wittig olefination;^{18b} and (3) oxidative radical reaction of aryl-substituted allenes with dimethylmalonate catalyzed by $Mn(OAc)_3$.^{18c} Although these procedures are all good, they have also some obvious shortcomings such as multistep reactions, unaccessible starting materials and etc.

Result and discussion

Herein we wish to report a facile access to aroyl methylidenemalonate derivatives via visible light photocatalytic regioselective ring-opening reaction of cyclopropenyl carboxylates. Table 1: Optimization of the reaction conditions^a

MeO ₂ Ph	C_CO ₂ Me <u>1mol% photo</u> solvent, 45	catalyst O COOMe V CFL Ph COOMe 2a		
entry	photocatalyst	oxidant	time/h	Yield (%) ^b
1	Ir(ppy) ₃	PhN_2BF_4	14	36
2	Ir(ppy) ₃	-	4	16
3	Ir(ppy) ₃	CBr ₄	10	65
4	Ir(ppy) ₃	CCl ₄	14	65
5	Ir(ppy) ₃	$Na_2S_2O_8$	24	67
6	Ir(ppy) ₃	$K_2S_2O_8$	24	26
7	Ir(ppy) ₃	$(NH_4)_2S_2O_8$	24	trace
8	Ru(bpy) ₃ (BF ₄) ₂	$Na_2S_2O_8$	2	48
9	Ru(bpy) ₃ Cl ₂ -6H ₂ O	$Na_2S_2O_8$	2	46
10	Ru(bpz) ₃ (PF ₆) ₂	O_2	24	20
11	Ir(dFCF3ppy)2(dtbbpy)PF6	O_2	5	52
12 ^c	Ir(dFCF3ppy)2(dtbbpy)PF6	O_2	36	trace
13 ^d	Ir(dFCF ₃ ppy) ₂ (dtbbpy)PF ₆	O_2	6	63
14 ^e	Ir(dFCF3ppy)2(dtbbpy)PF6	-	36	trace
15 ^f	Ir(dFCF ₃ ppy) ₂ (dtbbpy)PF ₆	O_2	10	see footnote

***1a** (0.3mmol), oxidant (0.3mmol), photocatalyst (0.003mmol, 1mol%), 4mL DCE (AR), 45W compact fluorescent light (CFL) irradiation under O₂ at room temperature unless otherwise noted. ^bYield of isolated product based on **1a**. ^cNo photocatalyst or no light. ^d7W blue LED instead of 45W CFL. ^cUnder N₂ atmosphere. ^fDistilled water (1eq, 2eq, 3eq) was added to absolute DCE to give the product in 70%, 73%, 74% yield respectively.

In order to obtain optimal conditions for the synthesis of aroyl methylidenemalonate derivatives, a variety of conditions were attempted (Table 1). Firstly dimethyl 2-phenylcycloprop-2-ene-1,1-dicarboxylate 1a with 1eq of PhN₂BF₄ in the presence of 1mol% Ir(ppy)₃ was illuminated under air by a 45W white CFL at room temperature (entry 1). To our delight, the reaction afforded the desired 2a in 36% yield. Without PhN₂BF₄, the reaction turned to be complicated and several unidentified by-products could be observed (entry 2). Then several oxidants were examined. CBr₄, CCl₄ and Na₂S₂O₈ all worked (entries 3-5). And 67% yield of 2a could be obtained when Na₂S₂O₈ was used as an oxidant (entry 5). However, the reaction did not proceed well with $K_2S_2O_8$ or $(NH_4)_2S_2O_8$ (entries 6-7). Catalyzed by $Ru(bpy)_3(BF_4)_2$ or $Ru(bpy)_3Cl_2$, moderate yield of 2a was obtained with $Na_2S_2O_8$ as the oxidant (entries 8-9). It ocurred to us that if the oxidizing ability of the photocatalyst was strong enough, the desired transformation may proceed as well even in the absence of extra oxidant. Based on the redox potential values of the photocatalysts,¹⁹ Ir(dFCF₃ppy)₂(dtbbpy)PF₆ $(E_{1/2}III^*/II=+1.21V \text{ vs SCE in CH}_3CN)$ and Ru(bpz)₃(PF₆)₂ $(E_{1/2}III/II=+1.86V \text{ vs SCE in CH}_3CN)$ were attempted under O₂ atmosphere (entries 10-11). To our delight, the desired target product could be obtained in 52% yield with Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ as the catalyst (entry11). Almost no 2a was observed in the absence of light or photocatalyst (entry12). Under the illumination of 7W blue LED for 6hrs the target product was isolated in 63% yield (entry13). The reaction could not proceed under N₂ atmosphere (entry14). When the reaction was carried out in DMSO, DMF and THF, only complicated mixtures were obtained. Other solvents such as DCM, diethyl ether, toluene, MeCN, or acetone, could give 2a in 42%, 10%, 50%, 52% and 53% yield respectively. Moreover,

2

when 1-3 equiv. of water was added to the absolute DCE, the yield is almost same as the results of entries 3-5 which the AR grade DCE was used as the solvent (entry15).

Scheme 1: Regioselective ring-opening reaction of cyclopropenyl carboxylates^{a,b}

^a1(0.5 mmol), Ir(dFCF₃ppy)₂(dtbbpy)PF₆ (0.005 mmol, 5.6mg, 1mol%), 10hrs, 7W blue LED, O₂, 4mL DCE (AR), r.t. ^bYield of isolated product. ^cCBr₄ (1eq).

To explore the scope of the reaction, a series of cyclopropenyl carboxylates were tested under the optimized conditions (Scheme 1). The *para*-halogen on the aryl of **1** generated the corresponding products 2b, 2c or 2d in moderate to reasonalbe yields. Substrates 1 with an aryl substituted by electron-donating group at the para position, such as Me, $n-C_5H_{11}$, *t*-Bu or MeO, afforded good yields (2e-2h). The target product 2j was isolated in 90% yield when the substrate bearing 2-MeO on the phenyl ring was used, which showed no obvious steric effect on the reaction. Especially heterocyclic substituted dimethyl 2-(3thienyl)cycloprop-2-ene-1,1-dicarboxylate 1i also underwent the reaction smoothly to afford 2i in 77% yield. When the ethyl, ipropyl and t-butyl esters were used as the substrates, moderate yields were also obtained (21-2n). Unfortunately alkyl substituted substrate dimethyl 2-n-hexylcycloprop-2-ene-1,1-dicarboxylate is inert in this reaction, which was in accordance with the results reported.20

Scheme 2: The oxidative ring-opening reaction of 3

 $\begin{array}{c} \begin{array}{c} 1 \text{mol}\% \\ \text{MeO}_2\text{C} \\ \text{Ph} \end{array} + \text{CBr}_4 & \frac{\text{Ir}(\text{dFCF}_3\text{ppy})_2(\text{dtbbpy})\text{PF}_6}{O_2, 4\text{mL DCE}} \\ \textbf{O}_2, 4\text{mL DCE} \\ \textbf{O}_2, 4\text{mL DCE} \\ \textbf{O}_3 \end{array} + \begin{array}{c} \text{Ph} \text{COOMe} + \text{PhCO}_2\text{Me} \\ \text{Ph} \text{COOMe} + \textbf{O}_2, 4\text{mL DCE} \\ \textbf{O}_3 \\ \textbf{O}_4 \\ \textbf{O}_5 \end{array} + \begin{array}{c} \text{Ph} \text{COOMe} \\ \textbf{O}_2, 4\text{mL DCE} \\ \textbf{O}_3 \\ \textbf{O}_4 \\ \textbf{O}_5 \\ \textbf{O}_4 \\ \textbf{O}_5 \\ \textbf{O}_6 \\$

It is worth mentioning that methyl 1,2-diphenylcycloprop-2ene-1-carboxylate **3** could not give the corresponding oxidative ring-opening product (Scheme 2). Instead, the 2-oxo-2phenylacetic acid methyl ester **4** and methyl benzoate **5** were obtained in 63% and 12% yields, respectively, which may be formed by the oxidative cleavage of ring opening product and subsequent intermolecular transesterification. Without additional oxidant CBr_4 , the reaction could not proceed. In order to elucidate the mechanism, two control experiments were conducted (Scheme 3). When D_2O was added, **2a** was isolated in 70% yield and the deuterium product was not found. The replacement of H_2O with H_2O^{18} , the heavy oxygen substituted product **2o** was obtained in 65% yield. Moreover, when TEMPO was added as radical scavenger, the product was obtained in 10% yield for 24hrs.

Scheme 3: The control experiments with D_2O and H_2O^{18}

		1 2	
MeO ₂ C_COO	Me + D ₂ O -	1mol% Ir(dFCF3ppy)2(dtbbpy)PF6	O COOMe
Ph	- 2 -	O ₂ , 4mL DCE	Ĥ
0.5mmol	0.3mL	7Ŵ blue LED	10hrs, 2a, 70%
MeO ₂ C、COO	Me	1mol% lr(dFCF ₃ ppy) ₂ (dtbbpy)PF ₆	Q ¹⁸ COOMe
	+ H ₂ O ¹⁸		
PII		O_2 , 4mL DOE	
0.5mmol	0.3mL	7W blue LED	10hrs, 2o , 65%

Based on the literatures²¹ and the above experiments, a plausible mechanism was proposed in Scheme 4. At first, illumination by a 7W blue LED, the ground state of Ir^{2+} was excited to provide Ir^{*2+} . Then Ir^{3+} was formed by the oxidation of Ir^{*2+} by O₂. Ir^{3+} captures one electron from substrate 1 to give the radical cation 5, which itself was reduced to the initial photocatalyst Ir^{2+} . The nucleophilic attack of H₂O to 5 provides intermediate 6, which subsequently losses one electron and one proton by the oxidation of Ir^{3+} , and then undergoes ring opening to give the intermediate 7. At last 7 loses one proton and affords product 2,

Scheme 4: A plausible mechanism

Conclusions

In summary, a visible-light photoredox catalyzed aerobic oxidative ring-opening of cyclopropenyl carboxylates has been developed for the synthesis of aroyl methylidene malonates. The simple and mild conditions make the method attractive, especially the visible light as a clean and renewable energy source makes it as a good substitute for the existing conventional synthetic reagents. Further investigations on the interesting reactivity of cyclopropenes are ongoing in our laboratory.

Acknowledgments

The authors are grateful to Zhejiang Provincial Natural Science Foundation of China (No. LY18B020018) and National Science Foundation of China (No. 21602197).

Tetrahedron

Supplementary Material

Supplementary data (¹H NMR, ¹³C NMR data and ¹H NMR, ¹³CNMR spectra of all compounds) associated with this article can be found, in the online version, at

References and notes

- (a) Johnston, C. P.; Smith, R. T.; Allmendinger. S.; MacMillan, D. W. C. *Nature* 2016, **536**, 322; (b) Yoon, T. P.; Ischay, M. A.; Du, J. *Nat. Chem.* 2010, **2**, 527; (c) Bosque, I.; Magallanes, G.; Rigoulet, M.; Karkas, M. D.; Stephenson, C. R. J. *ACS Cent. Sci.* 2017, **3**, 621; (d) Reckenthaler, M.; Griesbeck, A. G. *Adv. Synth. Catal.* 2013, **355**, 2727; (e) Zhao, Q. Q.; Chen, J.; Yan, D. M.; Chen J. R.; Xiao, W. J. *Org. Lett.* 2017, **19**, 3620; (f) Wang, L.; Lv, J.; Li, S.; Luo, S. Z. *Org. Lett.* 2017, **19**, 3366.
- Reviews on photocatalysis: (a) Levin, M. D.; Kim, S.; Toste, F. D. ACS. Cent. Sci. 2016, 2, 293; (b) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075; (c) Schultz, D. M.; Yoon, T. P. Science. 2014, 343, 1239176; (d) Hoffmann, N.; J. Photochem. Photobiol. 2008, 9, 43; (e) Ravelli, D.; Fagnoni, M.; Albini, A. Chem. Soc. Rev. 2013, 42, 97; (f) Hari, D. P.; Konig, B. Chem. Commun. 2014, 50, 6688; (g) Zhang, N.; Samanta, S. R.; Rosen, B. M.; Percec, V. Chem. Rev. 2014, 114, 5848; (h) Shi, L.; Xia, W. Chem. Soc. Rev. 2012, 41, 7687; (i) Narayanan, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102. (j) Xuan, J.; Xiao, W. J. Angew. Chem., Int. Ed. 2012, 51, 6828. (k) Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.; Evans, R. W.; MacMillan, D. W. C. Nat. Rev. Chem. 2017, 1, 0052.
- (a) Lin, S. S.; Lies, S. D.; Gravatt, C. S.; Yoon, T. P. Org. Lett. 2017, 19, 368; (b) Miyake, Y.; Ashida, Y.; Nakajima, K.; Nishibayashi, Y. Chem. Commun. 2012, 48, 6966; (c) Rono, L. J.; Yayla, H. G.; Wang, D. Y.; Armstrong, M. F.; Knowles, R. R. J. Am. Chem. Soc. 2013, 135, 17735.
- (a) Huo, H.; Wang, C.; Harms, K.; Meggers, E. J. Am. Chem. Soc. 2015, 137, 9551; (b) Liu, W. Q.; Lei, T.; Song, Z. Q.; Yang, X. L.; Wu, C.; Jiang, X.; Chen, B.; Tung, C. H.; Wu, L. Z. Org. Lett. 2017, 19, 3251; (c) Jia, K.; Pan, Y.; Chen, Y. Angew. Chem. Int. Ed. 2017, 56, 2478; (d) Huang, H.; Jia, K.; Chen, Y. ACS Catal. 2016, 6, 4983.
- (a) Miller, Z. D.; Lee, B. J.; Yoon, T. P. Angew. Chem. Int. Ed. 2017, 56, 11891. (b) Hurtley, A. E.; Lu, Z.; Yoon, T. P. Angew. Chem. Int. Ed. 2014, 53, 8991; (c) Du, J.; Skubi, K. L.; Schultz, D. M.; Yoon, T. P. Science 2014, 344, 392; (d) Ischay, M. A.; Ament, M. S.; Yoon, T. P. Chem. Sci. 2012, 3, 2807; (e) Ischay, M. A.; Lu, Z.; Yoon, T. P. J. Am. Chem. Soc. 2010, 132, 8572; (f) Ischay, M. A.; Anzovino, M. E.; Du, J.; Yoon, T. P. J. Am. Chem. Soc. 2008, 130, 12886.
 (a) Hu, X.; Zhang, G.; Bu, F.; Lei, A.; Angew. Chem. Int. Ed. 2018, 57,
- (a) Hu, X.; Zhang, G.; Bu, F.; Lei, A.; Angew. Chem. Int. Ed. 2018, 57, 1286.
 (b) Hu, X.; Zhang, G.; Bu, F.; Luo, X.; Yi, K.; Zhang, H.; Lei, A.; Chem. Sci. DOI:10.1039/C7SC04634K; (c) Yi, H.; Niu, L.; Song, C.; Li, Y.; Dou, B.; Singh, A. K.; Lei, A. Angew. Chem. Int. Ed. 2017, 56, 1120.
- (a) Baird, M. S. Cyclopropenes; Transformations. InHouben-Weyl; Thieme, Stuttgart, Germany, 1997, Vol. E17d/2, pp 2781; (b) Back, R. D.; Dmitrenko, O. J. Am. Chem. Soc. 2004, **126**, 4444; (c) Rubin, M.; Rubina, M.; Gevorgyan, V. Chem. Rev. 2007, **107**, 3117; (d) Fox, J. M.; Yan, N. Curr. Org. Chem. 2005, **9**, 719; (e) Archambeau, A.; Miege, F.; Meyer, C.; Cossy, J. Acc. Chem. Res. 2015, **48**, 1021; (f) Rubina, M.; Rubin, M.; Gevorgyan, V. J. Am. Chem. Soc. 2003, **125**, 7198.

- (a) Chen, J.; Ni, S.; Ma, S. Synlett. 2011, 7, 931; (b) Liu, Y.; Ma, Y. Org. Lett. 2012, 14, 720; (c) Patel, P. R.; Boger, D. L. J. Am. Chem. Soc. 2010, 132, 8527; (d) Ma, S.; Zhang, J. J. Am. Chem. Soc. 2003, 125, 12386; (e) Song, C.; Sun, D.; Peng, X.; Bai, J.; Zhang, R.; Hou, S.; Wang, J.; Xu, Z. Chem. Commun. 2013, 49, 9167; (f) Zhu, P. L.; Tang, X. Y.; Shi, M. Chem. Commun. 2016, 52, 7245.
- (a) Wang, Y.; Fordyce, E. A. F.; Chen, F. Y.; Lam, H. W. Angew. Chem. Int. Ed. 2008, 47, 7350; (b) Liu, Y.; Yu, Q.; Ma, S. Eur. J. Org. Chem. 2013, 3033; (c) Liu, Y.; Ma, S. Chem. Sci. 2011, 2, 811; (d) Song, C.; Sun, D.; Peng, X.; Bai, J.; Zhang, R.; Hou, S.; Wang, J.; Xu, Z. Chem. Commun. 2013, 49, 9167; (e) Chuprakov, S.; Malyshev, D. A.; Trofimov, A.; Gevorgyan, V. J. Am. Chem. Soc. 2007, 129, 14868.
- (a) Wang, Y.; Lam, H. W. J. Org. Chem., 2009, 74, 1353; (b) Ma, S.; Zhang, J.; Cai, Y.; Lu, L. J. Am. Chem. Soc. 2003,125, 13954; (c) Chen. J.; Ma, S. M. J. Org. Chem. 2009, 74, 5595; (d) Ma, S.; Zhang, J.; Lu, L.; Jin, X.; Cai, Y.; Hou, H. Chem. Commun. 2005, 909; (e) Chen, S.; Ren, J.; Wang, Z. Tetrahedron 2009, 65, 9146.
- (a) Gazar, H. A.; Bedir, E.; Takamatsu, S.; Ferreira, D.; Khan, I. A. *Phytochemistry* 2004, **65**, 2499; (b) Yamazaki, S.; Morikawa, S.; Iwata, Y.; Yamamoto, M.; Kuramoto, K. *Org. Biomol. Chem.* 2004, **2**, 3134; (c) Hermanson, J. R.; Gunther, M. L.; Belletire, J. L.; Pinhas, A. R. *J. Org. Chem.* 1995, **60**, 1900.
- (a) DeMartino, M. P.; Chen, K.; Baran, P. S. J. Am. Chem. Soc. 2008, 130, 11546. (b) Zhu, Y.; Cai, Q.; Gao, Q.; Jia, F.; Liu, M.; Gao, M.; Wu, A. Tetrahedron 2013, 69, 6392; (c) Yu, J. Q.; Corey, E. J. J. Am. Chem. Soc. 2003, 125, 3232; (d) Fouad, M.; Edrada, R. A.; Ebel, R.; Wray, V.; Muller, W. E. G.; Lin, W. H.; Proksch, P. J. Nat. Prod. 2006, 69, 211.
- (a) Morikawa, S.; Yamazaki, S.; Furusaki, Y.; Amano, N.; Zenke, K.; Kakiuchi, K. J. Org. Chem. 2006, 71, 3540; (b) Morikawa, S.; Yamazaki, S.; Tsukada, M.; Izuhara, S.; Morimoto, T.; Kakiuchi, K. J. Org. Chem. 2007, 72, 6459.
- 14. Gao, Q.; Zhu, Y.; Lian, M.; Liu, M.; Yuan, J.; Yin, G.; Wu, A. J. Org. Chem. 2012, **77**, 9865.
- (a) Weng, J. Q.; Fan, R. J.; Deng, Q. M.; Liu, R. R.; Gao, J. R.; Jia, Y. X. J. Org. Chem. 2016, **81**, 3023; (b) Yamazaki, S.; Iwata, Y. J. Org. Chem. 2006, **71**, 739.
- 16. Horwitz, M. A.; Fulton, J. L.; Johnson, J. S. Org. Lett. 2017, 19, 5783.
- 17. Selvi, T.; Srinivasan, K. Chem. Commun. 2014, 50, 10845.
- (a) Selvi, T.; Srinivasan, K. J. Org. Chem. 2014, **79**, 3653; (b) Horwitz, M. A.; Fulton, J. L.; Johnson, J. S. Org. Lett. 2017, **19**, 5783; (c) Wu, Z.; Huang, X. Synthesis 2007, **1**, 45; (d) Iesce, M. R.; Cermola, F.; Piazza, A.; Scarpati, R.; Graziano, M. L. Synthesis 1995, 439. (e) Hermanson, J. R.; Gunther, M. L.; Belletire, J. L.; Pinhas, A. R. J. Org. Chem. 1995, **60**, 1900.
- (a) Tucker, J. W.; Stephenson, C. R. J. J. Org. Chem. 2012, 77, 1617-1622; (b) Lowry, M. S.; Goldsmith, J. I.; Slinker, J. D. Rohl, R.; Pascal, R. A.; Malliaras, G. G.; Bernhard, S. Chem. Mater. 2005, 17, 5712-5719.
- Dange, N. S.; Jatoi, A. H.; Robert, F.; Landais, Y. Org. Lett. 2017, 19, 3652.
- (a) Karkas, M. D.; Bosque, I.; Matsuura, B. S.; Stephenson, C. R. J. Org. Lett. 2016, 18, 5166-5169.; (b) Nguyen, J. D.; Tucker, J. W.; Konieczynska, M. D.; Stephenson, C. R. J. J. Am. Chem. Soc. 2011, 133, 4160.

Click here to remove instruction text...

4

Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

Highlights

- Regioselective oxidative ring-opening of 1. Acctebric cyclopropenyl carboxylate derivatives via
- 2.
- 3.