Subscriber access provided by MIDWESTERN UNIVERSITY

Ag(I)-Fesulphos Catalyzed Enantioselective Synthesis of 3-Silylproline Derivatives

Raghunath Chowdhury, Akhil Kumar Dubey, and Sunil K. Ghosh

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.8b02412 • Publication Date (Web): 30 Jan 2019 Downloaded from http://pubs.acs.org on January 31, 2019

Just Accepted

Article

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Ag(I)-Fesulphos Catalyzed Enantioselective Synthesis of 3-Silylproline Derivatives

Raghunath Chowdhury,*a Akhil K. Dubey,a Sunil K. Ghosha,b

Bio-Organic Division,^a ^bHomi Bhabha National Institute,

Bhabha Atomic Research Centre, Trombay, Mumbai 400085

Fax: +91-22-25505151

E-mail: raghuc@barc.gov.in

Abstract: efficient catalytic asymmetric 1,3-dipolar cycloaddition N-An of benzylidineiminoglycinate derived azomethine ylides to β-silylmethylene malonates catalysed by a Ag(I)-Fesulphos complex has been developed, affording fully substituted 3-silylproline derivatives with an all carbon quaternary center. The silvlproline derivatives were obtained in moderate-to-good yields (up to 81%) in high diastereo- and enantioselectivities (dr up to 95:5; er up to 96:4). Tamao-Fleming oxidation of selected 3-silvlproline derivatives provided efficient and shortest route to 3-hydroxyproline derivatives which are not accessible by direct 1,3-dipolar cycloadditions of azomethine ylide with frequently used arylidene/alkylidene malonates.

INTRODUCTION

Organosilicon compounds are known to have enormous applicability starting from protecting group to intermediates in natural product synthesis.^{1,2} In recent time, silicon-containing amino acids (Figure 1) are getting considerable attention because they are well-suited to provide the protein structure and also can act as a structural probes for finding drug-protein binding

interaction.^{3,4} In addition, many silicon-containing molecules and peptides are known for their inhibitory activity towards certain enzymes (Figure 1) and some of them are in the final stage of clinical trials.^{3,4} Silicon is considered as a bioisostere of carbon since both belong to the same group in the periodic table. Incorporation of the silicon into the amino acid or peptide enhances the lipophilicity due to unique properties of the silyl group.⁵ Enhancement of lipophilicity may ease membrane permeability and cellular uptake.⁵ It has also been found that the integration of silicon-containing amino acids into peptide changes the properties of these biomolecules such as conformational freedom, enhanced stability, hydrophobicity, and increase in resistance to enzymatic degradation and bioavailability.³ Despite their alluring medicinal and biological applications, only a handful of methods are available for synthesis of silicon-containing amino acids and their derivatives.^{3,4} The use of stoichiometric reagents, auxiliaries and resolution of intermediates are still common protocols for their synthesis.^{3,4}The catalytic methods for synthesis of novel silicon-containing amino acid derivatives is a pre-requisite and at the same time challenging.

Figure 1. Representative examples of silicon-containing amino acids and medicinally important silicon-containing molecules.

To understand the mechanism of conformational stability of protein triple helix structures and development of novel peptide-based drug molecules, new 3-hydroxyproline

derivatives and 3-silylproline derivatives are likely to play significant roles. 3-hydroxyproline is known to induce β -turn in peptide and is also present in many bioactive peptides including important structural protein collagen.⁷ Furthermore, 3-hydroxypyrrolidines are privileged substructures widespread in numerous biologically active natural products (Figure 2) and also crucial intermediates for variety of natural products and drug molecules.⁸

Figure 2. 3-Hydroxypyrrolidine based natural products and amino acid.

The catalytic asymmetric1,3-dipolar cycloadditions of azomethine ylides to variety of electrondeficient alkenes as dipolarophiles is the most explored route for the construction of enantioenriched densely substituted pyrrolidines because of its efficacy, straightforwardness and atom economy.^{9,10} Research groups of Zhang¹¹ and Jørgensen¹² independently reported first examples of metal catalyzed asymmetric1,3-dipolar cycloaddition of azomethine ylides derived from iminoesters with activated alkenes. Since then, diverse electron deficient alkenes including aryl- and alkylidene malonates (Scheme 1 A) and different variety of azomethine ylides have been enrolled in catalytic asymmetric1,3-dipolar cycloadditions affording pyrrolidines with diverse substitution patterns.^{9,10}However, presumably β -silvlmethylene malonate 2 has not so far been employed as a dipolarophile in 1,3-dipolar cycloaddition with azomethine ylide.¹³ Considering the importance of 3-silylproline derivatives and 3hydroxypyrrolidine derivatives, we envisaged that 1,3-dipolar cycloaddition reaction of Nbenzylideneiminoglycinates derived azomethine ylides with β -silylmethylene malonates¹⁴ would lead to 3-silylproline derivatives. Subsequent conversion of dimethyl(phenyl)silyl group to a hydroxy group following the Tamao–Fleming oxidation¹⁵ would lead to 3-hydroxyproline derivatives. Several methods¹⁶ have been reported for the preparation of enantiopure 3hydroxyproline whereas the synthetic routes for the substituted 3-hydroxyproline derivatives are in dearth. To best of our knowledge, there are only two reports for the enantioselective synthesis of substituted 3-hydroxyproline derivatives wherein Rh or Ru catalyzed intramolecular carbenoid N-H insertion reaction of appropriately designed chiral δ -amino β ketoester based diazo compounds followed by stereoselective reduction have been used (Scheme 1 B).¹⁷ Herein, we report a straightforward synthetic route for the asymmetric synthesis of fully substituted 3-silylproline derivatives and 3-hydroxyproline derivatives starting from simple and easily accessible achiral starting materials (Scheme 1C).

Scheme 1. Asymmetric 1,3-dipolar cycloadditions of azomethine ylides with arylidene-/ alkylidene-/β-silylmethylene malonates and synthesis of 3-hydroxyproline derivatives.

A. Prevoius work: 1,3 -dipolar cycloaddtion of azomethine ylides with arylidene-/alkylidene malonates

B. Prevoius strategies for 3-hydroxyproline derivatives

RESULTS AND DISCUSSION

Our investigation began with the optimization studies of the 1,3-dipolar cycloaddition reaction of azomethine ylide, derived *in-situ* from *N*-(4-chlorobenzylidene)glycine methyl ester **1a** and

Page 5 of 36

 β -silvlmethylene malonate 2a. When the reaction between 1a and 2a was performed in toluene without addition of silver salt, ligand and base at 27 °C, the conversion to desired pyrrolidine derivative **3a** was very slow as judged by ¹H NMR spectroscopy.¹⁸ Then, we investigated the catalytic version of the reaction using the *cinchona* alkaloid derived tertiary amino-(thio)urea derivatives and trans-1,2-diaminocyclohexane based-(thio)urea derivatives. We found that these (thio)urea derivatives were not promising for this 1,3-dipolar cycloaddition reaction (see Supporting Information). Subsequently, we switched to commercially available axially chiral bisphosphine ligands. When the reaction between model substrates 1a and 2a was carried out in the presence of (R)-BINAP ligand L1 in combination with Ag_2O as the catalyst system and DABCO as the base in toluene at 27 °C, the reaction proceeded smoothly and to our delight, the exo-3a was formed with moderate yield and enantioselectivity (Table 1, entry 1). Encouraged by this preliminary result, an array of bisphosphine ligands L2-L7 were screened (Table 1, entries 2-7). In all the cases, the desired exo-3a was obtained without any improvement of enantioselectivity. The next series of attempts were performed with ligands L8 and L9 having ferrocene backbone. (R)-Fesulphos ligand L8/Ag₂O catalyst system was found to be more promising, furnishing the exo-product 3a in 74% yield, with high diastereoselectivity (96:4 dr) and moderate enantioselectivity (86:14 er) (Table 1, entry 8). Therefore, Fesulphos L8 was selected as the ligand for further studies. Exploration of the reaction with silver carbonate (Table 1, entry 10), silver acetate (Table 1, entry 11), and cupric acetate (Table 1, entry 12) did not give superior result compared to Ag_2O .

entry	metal salt	ligand	% conv. ^b	dr ^c	yield ^d (%)	er ^e
1	Ag ₂ O	L1	>98	ND	62	19:81
2	Ag ₂ O	L2	>98	90:10	65	77:23
3	Ag ₂ O	L3	ND ^f	NDf	67	28:72
4	Ag ₂ O	L4	>98	90:10	65	76:24
5	Ag ₂ O	L5	>98	88:12	66	45:55
6	Ag ₂ O	L6	>99	88:12	73	25:75
7	Ag ₂ O	L7	>97	95:5	61	66:34
8	Ag ₂ O	L8	>99	95:5	74	86:14
9	Ag ₂ O	L9	>98	85:15	ND^{f}	52:48
10 ^g	Ag ₂ CO ₃	L8	>96	94:6	74	85:15
11	AgOAc	L8	>99	94:6	75	82:18

12^g	$Cu(OAc)_2$	L8	>42	ND	ND	ND

^{*a*}Unless otherwise stated, reactions were carried out with 0.2 mmol of **1a** and 0.1 mmol of **2a** in 1 mL of toluene at 27 °C. ^{*b*}Indicate percentage of conversion of the starting material **2a**, determined by ¹H NMR analysis of the crude reaction mixture. ^{*c*}The dr¹⁹ was determined by ¹H NMR analysis of the crude reaction mixture. ^{*d*}Yield of the major diastereomer. ^{*e*}The enantiomeric ratio (er) was determined by HPLC analysis using a chiral stationary phase. ^{*f*}Not determined. ^{*g*}Reaction time 2h.

Subsequently different organic bases were surveyed (Table 2, entries 1-3) in the reaction but found inferior than DABCO. A solvent screening (Table 2, entries 2 and 4-6) revealed that toluene remained the best choice of solvent in terms of yield, diastereo-and enantioselectivity. Dilution of the reaction did no effect on the enantioselectivity of 3a. Lowering the temperature had a beneficial effect on enantioselectivity. When the reaction was carried out at 0 °C, the exo-adduct 3a was obtained with excellent diastereoselectivity and improved enantioselectivity (Table 2, entry 8). Lowering of the temperature to -40 °C lead to improvement in enantioselectivity of 3a while the yield and diastereoselectivity remained unchanged (Table 2, entry 10). Further enhancement of enantioselectivity of **3a** could not be achieved by performing the reaction at -60 °C (Table 2, entry 11). Lowering in the loading of catalyst system viz. Ag₂O (5 mol%), and ligand L8 (5.5 mol%), resulted in slightly reduced yield without much change in selectivities (Table 2, entry 12). From the above studies, we chose two sets of optimized reaction conditions: Conditions A: 1a (0.2 mmol), 2a (0.1 mmol), Ag₂O (0.01mmol), L8 (0.011mmol) and DABCO (0.02 mmol) in 1mL of toluene at -40 °C (Table 2, entry 10) and *Conditions B*: 1a (0.4 mmol), 2a (0.2 mmol), Ag₂O (0.01mmol), L8 (0.011mmol) and DABCO (0.04 mmol) in 2 mL of toluene at -40 °C (Table 2, entry 12).

Table 2. Reaction optimizations^a

CI	N OMe +	Ag ₂ O(10 n e ₂ Ph L8(11 mol CO ₂ Et toluene, 2 40 min	nol%) %) nol%) 27 °C EtO_2C EtO_2C Ar	SiMe ₂ Ph CO ₂ Me		
	1a 2	la	3	а		
entry	base	solvent	% conv. ^b	dr ^c	yield ^d (%)	er (%) ^e
1	Et ₃ N	C ₆ H ₅ CF ₃	90	90:10	58	81:19
2	^{<i>i</i>} Pr ₂ NEt ₂	C ₆ H ₅ CF ₃	86	90:10	54	85:15
3	DBU	toluene	>40	70:30	ND ^f	NDſ
4 ^g	DABCO	Et ₂ O	>90	82:18	57	85:15
5	DABCO	THF	>99	75:25	55	85:15
6	DABCO	MTBE	90	ND	58	85:15
7^h	DABCO	toluene	ND ^f	95:5	62	85:15
8 ^{<i>i</i>}	DABCO	toluene	>99	96:4	76	89.5:10.5
9 <i>i</i>	DABCO	toluene	>99	95:5	75	90.5:9.5
10^k	DABCO	toluene	>99	95:5	77	94.5:5.5
11 ¹	DABCO	toluene	>98	95:5	70	94:6
12 ^{<i>m</i>}	DABCO	toluene	>98	95:5	74	94.5:5.5

^{*a*} Reactions were carried out with 0.2 mmol of **1a** and 0.1 mmol of **2a**, Ag₂O (0.01 mmol), **L8** (0.011 mmol) and DABCO (0.02 mmol) in 1 mL of solvent at 27°C. ^{*b*} Determined by ¹H NMR analysis of the crude reaction mixture. ^{*c*}The dr¹⁹ was determined by ¹H NMR analysis of the crude reaction mixture. ^{*d*} Yield of the major diastereoisomer. ^{*e*}The enantiomeric ratio (er) was determined by HPLC analysis using a chiral stationary phase. ^{*f*}Not determined. ^{*g*}Reaction time was 2 h. ^{*h*}2 mL of toluene was used. ^{*i*}The reaction was carried out at 0°C, reaction time 5 h,

Page 9 of 36

The Journal of Organic Chemistry

10 mol% of L8 was used. ^jThe reaction was performed at -20°C and reaction time 10 h, 10 mol% L8 was used. ^k The reaction was performed at -40 °C and reaction time was 10 h. ^lThe reaction was performed at -60°C and reaction time 12 h. "Reactions was carried out with 0.4 mmol of 1a and 0.2 mmol of 2a, Ag₂O (0.01mmol), L8 (0.011 mmol) and DABCO (0.04 mmol) in mL of toluene -40 °C, reaction time h. at was

With the established optimization reaction conditions in hand, we explored the reaction of β silylmethylene malonate **2a** with various imino esters **1**. The results are summarised in Table 3. Imino esters **1** with the aryl group substituted at *para* position with electron withdrawing or donating groups were well tolerated and afforded desired *exo*-products **3a**, **3c**-**3f** in moderate to high yield and high diastereo - and enantioselectivity. The imino esters with substituent at *meta* and *ortho* position on the aromatic ring was also equally effective and provided the *exo*cycloadducts **3g**-**3k** in high yield, diastereo- and enantioselectivity. It is noteworthy that the reaction worked well with heteroaromatic-substituted imino ester and the product **31** was formed in high yield and enantioselectivity. The scope of this methodology was further extended to exploring the reaction of azomethine ylide derived from *N*-(4chlorobenzylidene)glycine methyl ester **1a** with alkyl substituted β -silylmethylene malonate **2b**. The desired product **3m** was obtained in high yield and excellent stereoselectivity.

Table 3. Scope of substrates^{a,b}

entry	R ¹ /R ²	3	dr ^c	yield ^d (%)	er (%) ^e
1 <i>a</i>	4-ClC ₆ H ₄ /Ph	3 a	95:5	77	94.5:5.5
2^b	Ph/Ph	3 b	94:6	73	93:7
3^b	4-BrC ₆ H ₄ /Ph	3c	94:6	77	95:5
4^b	$4-FC_6H_4/Ph$	3d	95:5	74	94.5:5.5
5 ^{<i>a</i>}	$4-CF_3C_6H_4/Ph$	3 e	94:6	74	95:5
6 ^{<i>a,f</i>}	4-EtC ₆ H ₄ /Ph	3f	90:10	66	91.5:8.5
7	3-BrC ₆ H ₄ /Ph	3g	94:6	76	92:8
8 ^{<i>a</i>}	3-ClC ₆ H ₄ /Ph	3h	92:8	75	93:7
9 ^{<i>a</i>}	$3-FC_6H_4/Ph$	3 i	95:5	78	92:8
10 ^a	2-ClC ₆ H ₄ /Ph	3j	92:8	71	95:5
11^{a}	$2\text{-}FC_6H_4/Ph$	3k	91:9	71	95:5
12 ^{<i>a</i>}	2-thienyl/Ph	31	95:5	81 ^g	93.5:6.5
13 ^{<i>a</i>}	4-ClC ₆ H ₄ /OTMS	3m	94:6	72	96:4

^{*a*}Reaction *conditions A*: **1** (0.2 mmol), **2a** (0.1 mmol), Ag₂O (0.01 mmol), **L8** (0.011 mmol), DABCO (0.02 mmol) in 1.0 mL toluene at -40 °C for 10-16 h. ^{*b*}Reaction *conditions B*: **1** (0.4 mmol), **2a** (0.2 mmol), Ag₂O (0.01 mmol), **L8** (0.011 mmol) and DABCO (0.04 mmol) in 2.0 mL of toluene at -40 °C for 10-14 h. ^{*c*}The dr¹⁸ was determined by ¹H NMR of the crude reaction mixture. ^{*d*}Isolated yield of the major diastereomer. ^{*e*}Enantiomeric ratio (er) was determined by HPLC analysis using a chiral stationary phase. ^{*f*}The reaction was performed at 0 °C, 2.3 equiv of imino ester was used. ^{*g*}Combined yield of two diastereomers.

To demonstrate the practicality of the above developed method, the asymmetric 1,3-dipolar cycloaddition between 1a and 2a was conducted on a 1 mmol scale under the optimized conditions, affording 3a with 80% yield and with >95:5 er (Scheme 2).

Next, we turned our attention to extend the scope for other dipolarophiles. Thus the reaction between *N*-(4-chlorobenzylidene)glycine methyl ester **1a** and β -dimethylphenylsilyl-acrylate **4** was performed under optimized reaction conditions (*Conditions B*), which provided the *exo*-product **5** in good yield but with poor enantioselectivity (Scheme 3). The configuration of **5** was confirmed by comparison with literature data.¹³

Scheme 3. 1,3-Dipolar cycloaddition reaction of β-dimethylphenylsilyl acrylate

The asymmetric 1,3-dipolar cycloaddition reaction of azomethine ylide derived from *N*-(4-chlorobenzylidene)glycine methyl ester **1a** to benzylidene-malonate **6** was examined under the optimized reaction conditions (*Conditions A*), the cycloadduct *exo*-**7** was obtained in good yield and excellent diastereoselectivity but in moderate enantioselectivity (Scheme 5). The relative stereochemistry of **7** was confirmed from literature report.^{10c}

Scheme 4. 1,3-Dipolar cycloaddition reaction of benzylidene malonate 6

The relative and absolute configuration of **3j** was established by single crystal X-ray crystallography as shown in Figure 4 which confirmed the cycloaddition took place in *exo* fashion. The configurations of the other products were assigned in analogy as *exo* products.

CCDC 1868102

Figure 4. ORTEP diagram of 3j, ellipsoids show 50% probability levels.

The observed high stereoselectivity in the above developed 1,3-dipolar cycloaddition reaction could be explained by the proposed transition state (Figure 5).^{10g} The azomethine ylide coordinates with Ag(I)–Fesulphos preferably in the orientation where the carbonyl oxygen atom of azomethine ylide and sulphur atom of Fesulphos ligand are *trans* to each other.^{10c} The "bottom" face of the azomethine ylide is shielded by the bulky 'Bu group of the Fesulphos ligand. Therefore, the dipolarophile **2** would preferably approach from the less hindered "top" face. Between the two faces of the dipolarophile **2**, a *Si*-face attack would lead to less stable transition state **I** due to steric repulsion between bulky silicon group of dipolarophile and PPh₂ group of the Fesulphos ligand while *Re*-face attack would lead to favourable transition state **II**.

Figure 5. Proposed transition states

After successfully demonstrating the synthesis of fully substituted 3-silylproline derivative with an all carbon quaternary centre, we focussed our efforts to the synthesis of 3-hydroxyproline derivatives. Treatment of **3** with *p*-toluene sulfonyl chloride in presence of Et_3N in dichloromethane furnished the products **8**. Subsequently, the dimethyl(phenyl)silyl group in **8** was converted to hydroxy group (Table 4) with retention of configuration following the Tamao–Fleming oxidation.¹⁵

	EtO ₂ C EtO ₂ C Ar N CO ₂ Me	TsCI, Et ₃ N <u>DMAP</u> CH ₂ Cl ₂ , 30 °C, 22h	SiMe ₂ Ph CO ₂ Me Ts	$\frac{\text{Br, AcOOH}}{30 \text{ °C}} \xrightarrow{\text{EtO}_2\text{C}} \xrightarrow{\text{OH}} \xrightarrow{\text{EtO}_2\text{C}} \xrightarrow{\text{OH}} \xrightarrow{\text{CO}_2\text{Me}} \xrightarrow{\text{CO}_2\text{Me}} \xrightarrow{\text{Ts}} \xrightarrow{\text{CO}_2\text{Me}} \text{CO$
	3		8	9
entry	3 , Ar	8 , yield ^c (%)	9 , yield ^{<i>d</i>} (%)	_
1	3a , 4- ClC ₆ H ₄	8a , 90	9a , 72	_
2	3b , C ₆ H ₅	8b , 88	9b ,70	
3	3c , 4-BrC ₆ H ₄	8c , 92	9c , 71	
4	3i , 3-FC ₆ H ₄	8i , 84	9i , 65	

^{*a*} Step1: Reactions were carried out with 0.15 mmol of **3**, 0.45 mmol of TsCl, 0.6 mmol of Et₃N and 20 mol% of DMAP in 3 mL of CH₂Cl₂. ^{*b*} Step 2: Reactions were carried out with 0.12 mmol of **8**, 0.16 mmol of potassium bromide, 0.1 mL of H₂O₂, 3 mL of peroxyacetic acid (35% solution in acetic acid). ^{*c*} Isolated yield of **8**. ^{*d*} Isolated yield of **9**.

Conclusion

In summary, we have developed an efficient Ag(I)-Fesulphos catalytic system for asymmetric 1,3-dipolar cycloaddition reaction of azomethine ylides with β -silylmethylene malonates, affording 3-silylproline derivatives in good yield and excellent stereoselectivities. Notably, β -silylmethylene malonates has been introduced for the first time as dipolarophiles in the 1,3-dipolar cycloaddition reactions of azomethine ylides. The usefulness of the developed reaction has been demonstrated by converting four cyclo-adducts into 3-hydoxyproline derivatives in two steps.

EXPERIMENTAL SECTION

General information. Solvent removal was performed with a rotary evaporator that was connected to a dry ice condenser. TLC (0.5 mm) was carried out using homemade silica gel plates with fluorescence indicator. Column chromatography was performed on silica gel (230-400 mesh). The ¹H and ¹³C NMR spectroscopic data were recorded with 500 MHz (¹H NMR: 500 MHz, ¹³C NMR: 125 MHz) Varian spectrometer and 200 MHz (¹H NMR: 200 MHz, ¹³C NMR: 50 MHz) Bruker spectrometer. The ¹H and ¹³C chemical shifts are given in ppm (δ scale) and are measured relative to CHCl₃ (7.27 ppm) and CDCl₃ (77.0 ppm), respectively, as internal standards. High resolution mass spectra were recorded at 60-70 eV with a Waters Micromass Q-TOF spectrometer (ESI, Ar). Enantiomeric ratio (*er*) values were determined by HPLC analysis with a JASCO (JASCOPU-2080) instrument fitted with a Daicel Chiralpak AD-H column, Daicel Chiralcel OD-H column and Daicel Chiralpak AS-H with UV-2075 detector (λ fixed at 254 nm). Melting points (mp) were measured in a Büchi B-540 apparatus. *N*-Benzylideneiminoglycinates **1** were prepared according to previously reported procedure.²⁰ β -Silylmethylene malonate **2a** and **2c** was prepared according to reported procedure.^{9,21} Ag (I)-

Page 15 of 36

The Journal of Organic Chemistry

salts, DABCO and chiral ligands were purchased from the commercial source and used as received without further purification. Et₃N, *i*Pr₂EtN, DBU and TMG were dried over CaH₂ and stored over it. All the solvents were dried according to standard procedures.

General Procedure A for the preparation of rac-3-silyl proline derivatives 3a-3m

In an oven and vacuum-dried round-bottom flask, Ag₂O (2.3 mg, 0.01 mmol) and DABCO (2.3 mg, 0.02 mmol) were taken with 0.5 mL of freshly distilled toluene under argon. The reaction mixture was stirred at 30 °C for 30 min. A solution of *N*-benzylideneiminoglycinates **1** (0.2 mmol, 2.0 equiv) in toluene (0.25 mL) was added slowly to the reaction mixture followed by the addition of a solution of β -silylmethylene malonate **2** (0.1 mmol, 1 equiv) in toluene (0.25 mL) and the reaction mixture was stirred at 30 °C for 40 min-24 h. Once starting material was consumed (monitored by TLC), the reaction mixture was passed through a small pad of Celite and flushing with 100 mL of 50% EtOAc/hexane. The solvent was removed under reduced pressure and the residue was directly subjected to column chromatography on silica gel to afford the corresponding products *rac* **3a-3m**.

General Procedure B for the preparation of chiral 3-silylproline derivatives 3a, 3e-3m

Condition A. Under Argon atmosphere, Ag₂O (2.3 mg, 0.01 mmol), DABCO (2.3 mg, 0.02 mmol) and ligand L8 (5.0 mg, 0.011 mmol) were dissolved in 0.5 mL of freshly distilled toluene and stirred at room temperature for about 50 min. Then, the reaction mixture was cooled to -40 °C and a solution of *N*-benzylideneiminoglycinates 1 (0.2 mmol, 2.0 equiv) in toluene (0.25 mL) was added slowly to the reaction mixture followed by the addition of a solution of β -silylmethylene malonate 2 (0.1 mmol, 1 equiv) in toluene (0.25 mL). The reaction mixture and once the β -silylmethylene malonate 2 was consumed (monitored by TLC), the reaction mixture was passed through a small pad of silica and flushing with 100 mL of 50% EtOAc/hexane. The solvent was removed under reduced

pressure and the residue was directly subjected to column chromatography on silica gel to afford the corresponding products **3a**, **3e-3m**.

General Procedure C for the preparation of chiral 3-silylproline derivatives 3a-3d

Condition B. Under Argon atmosphere, Ag₂O (2.3 mg, 0.01 mmol), DABCO (~4.5 mg, 0.04 mmol) and ligand **L8** (5.0 mg, 0.011 mmol) were dissolved in 1.0 mL of freshly distilled toluene and stirred at room temperature for about 50 min. Then, the reaction mixture was cooled to -40 °C and a solution of *N*-benzylideneiminoglycinates **1** (0.4 mmol, 2.0 equiv) in toluene (0.5 mL) was added slowly to the reaction mixture followed by the addition of a solution of β -silylmethylene malonate **2** (0.2 mmol, 1 equiv) in toluene (0.5 mL). The reaction mixture was stirred at this temperature and once the β -silylmethylene malonate **2** was consumed the reaction mixture (monitored by TLC), was passed through a small pad of silica and flushing with 150 mL of 50% EtOAc/hexane. The solvent was removed under reduced pressure and the residue was directly subjected to column chromatography on silica gel to afford the corresponding products **3a-3d**.

(2*R*, 3*S*, 5*S*)-4, 4-diethyl 2-methyl 5-(4-chlorophenyl)-3-(dimethylphenylsilyl)pyrrolidine-2, 4, 4tricarboxylate (**3a**). The title compound was prepared according to the general procedure C (*Condition B*). Yield : 77 mg (74 %); colorless liquid; ¹H NMR (500 MHz, CDCl₃): δ 7.54-7.52 (m, 2 H), 7.47 (d, *J* = 8.5 Hz, 2 H), 7.37-7.35 (m, 3H), 7.27-7.26 (m, 2 H), 5.05 (s, 1 H), 4.21 (dq, *J* = 10.8, 7.2 Hz, 1 H), 3.88 (d, *J* = 10.5 Hz, 1 H), 3.87-3.82 (m, 1 H), 3.80-3.76 (m, 1 H), 3.56 (dq, *J* = 10.8, 7.2 Hz, 1 H), 3.30 (s, 3 H), 2.86 (d, *J* = 10.5 Hz, 1 H), 1.21 (t, *J* = 7.5 Hz, 3 H), 0.94 (t, *J* = 7.5 Hz, 3 H), 0.40 (s, 3 H), 0.33 (s, 3 H); 13C{1H} NMR (125 MHz, CDCl₃): δ 174.2, 170.4, 168.6, 139.6, 137.7, 134.0 (3 C), 133.5, 129.5 (2 C), 129.1, 128.0 (2 C), 127.6, 69.0, 67.7, 62.1, 61.7, 61.3, 51.8, 36.4, 13.7, 13.5, -1.6, -4.8; The er was determined by HPLC using a Daicel Chiralpak AD-H [hexane/*i*-PrOH (90:10)]; flow rate 1.0 mL/min; $\tau_{major} = 9.54$ min, $\tau_{minor} = 13.37$ min, $[\alpha]_D^{27} = +3.22$ (*c* 4.16, CHCl₃, ee>89%); HRMS (ESI) m/z; [M+H]⁺Calcd for C₂₆H₃₃ClNO₆Si 518.1760; Found 518.1761.

(2*R*,3*S*,5*S*)-4,4-diethyl 2-methyl 3-(dimethylphenylsilyl)-5 phenylpyrrolidine-2,4,4tricarboxylate (**3b**). The title compound was prepared according to the general procedure C (*Condition B*). Yield: 71 mg (73 %); colorless liquid; ¹H NMR (200 MHz, CDCl₃): δ 7.57-7.46 (m, 4 H), 7.38-7.33 (m, 3 H), 7.29-7.25 (m, 3 H), 5.08 (s, 1 H), 4.21 (dq, *J* = 11.0, 7.0, Hz, 1 H), 3.90 (d, *J* = 10.5 Hz, 1 H), 3.92-3.79 (m, 1 H), 3.76-3.63 (m, 1 H), 3.48 (dq, *J* = 10.5, 6.5, Hz, 1 H), 3.28 (s, 3 H), 2.88 (d, *J* = 10.5 Hz, 1 H), 2.45(bs, 1 H), 1.20 (t, *J* = 7.5 Hz, 3 H), 0.87 (t, *J* = 7.0 Hz, 3 H), 0.41 (s, 3 H), 0.33 (s, 3H); 13C {1H} NMR (50 MHz, CDCl₃): δ 174.1, 170.6, 168.8, 140.7, 137.9, 134.0 (2 C), 129.0, 128.0 (2 C), 127.9 (2 C), 127.7, 127.6 (2 C), 69.1, 68.5, 62.1, 61.6, 61.1, 51.8, 36.8, 13.7, 13.4, -1.5, -4.9; The er was determined by HPLC using a Daicel Chiralpak AD-H [hexane/*i*-PrOH (90:10)]; flow rate 1.0 mL/min; $\tau_{major} = 9.07$ min, $\tau_{minor} = 11.60$ min, $[\alpha]_D^{26} = +3.0$ (*c* 1.1, CHCl₃, ee >84%); HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₆H₃₄NO₆Si 484.2150; Found 484.2143.

(2*R*,3*S*,5*S*)-4,4-diethyl 2-methyl 5-(4-bromophenyl)-3-(dimethylphenylsilyl)pyrrolidine-2,4,4tricarboxylate (**3c**). The title compound was prepared according to the general procedure C (*Condition B*). Yield: 87 mg (77 %); colorless liquid; ¹H NMR (200 MHz, CDCl₃): δ 7.55-7.51 (m, 2 H), 7.41(s, 4 H), 7.38-7.33 (m, 3 H), 5.04 (s, 1 H), 4.21 (dq, *J* = 10.9, 7.2 Hz, 1 H), 3.89 (d, *J* = 11.0 Hz, 1 H), 3.87-3.71 (m, 2 H), 3.61-3.47 (m, 1 H), 3.29 (s, 3 H), 2.86 (d, *J* = 10.5 Hz, 1 H), 2.63 (bs, 1 H), 1.21 (t, *J* = 7.0 Hz, 3 H), 0.94 (t, *J* = 7.5 Hz, 3 H), 0.40 (s, 3 H), 0.33 (s, 3H); 13C {1H} NMR (50 MHz, CDCl₃): δ 174.2, 170.3, 168.5, 140.0, 137.6, 134.0 (2 C), 131.0 (2 C), 129.8 (2 C), 129.1, 127.6 (2 C), 121.6, 68.8, 67.6, 61.9, 61.7, 61.3, 51.9, 36.2, 13.7, 13.5, -1.6, -4.8; The er was determined by HPLC using a Daicel Chiralpak AD-H [hexane/*i*-PrOH (90:10)]; flow rate 1.0 mL/min; $\tau_{major} = 9.67 min$, $\tau_{minor} = 13.32 min$, [α]_D²⁶ = +5.6 (*c* 4.9, CHCl₃, ee = 90%); HRMS (ESI) calcd for C₂₆H₃₃BrNO₆Si [M + H]⁺: 562.1255, found 562.1258. (2*R*,3*S*,5*S*)-4,4-diethyl 2-methyl 3-(dimethylphenylsilyl)-5-(4-fluorophenyl)-pyrrolidine-2,4,4tricarboxylate (**3d**). The title compound was prepared according to the general procedure C (*Condition B*). Yield: 74 mg (74 %); colorless liquid; ¹H NMR (200 MHz, CDCl₃): δ 7.56-7.46 (m, 4 H), 7.38-7.34 (m, 3 H), 7.02-6.94 (m, 2 H), 5.07 (s, 1 H), 4.21 (dq, *J* = 11.0, 7.2 Hz, 1 H), 3.89 (d, *J* = 10.6 Hz, 1 H), 3.89-3.70 (m, 2 H), 3.59-3.49 (m, 1 H), 3.29 (s, 3 H), 2.87 (d, *J* = 10.5 Hz, 1 H), 2.68 (bs, 1 H), 1.21 (t, *J* = 7.2 Hz, 3 H), 0.94 (t, *J* = 7.2 Hz, 3 H), 0.41 (s, 3 H), 0.34 (s, 3H); 13C{1H} NMR (50 MHz, CDCl₃): δ 174.2, 170.5, 168.7, 162.4 (d, *J*_{C-F} = 244.6 Hz), 137.7, 136.7 (d, *J*_{C-F} = 3.2 Hz), 134.0 (3 C), 129.7 (d, *J*_{C-F} = 8.0 Hz), 129.1, 127.7 (3 C), 114.7 (d, *J*_{C-F} = 21.0 Hz), 68.9, 67.6, 62.1, 61.7, 61.3, 51.9, 36.3, 13.8, 13.5, -1.5, -4.9; The er was determined by HPLC using a Daicel Chiralpak AD-H [hexane/*i*-PrOH (90:10)]; flow rate 1.0 mL/min; τ_{major} = 8.96 min, τ_{minor} = 14.58 min, $[\alpha]_D^{26}$ = +8.2 (*c* 2.2, CHCl₃, ee >89%); HRMS (ESI) m/z; [M+H]⁺Calcd for C₂₆H₃₃FNO₆Si 502.2079; Found 502.2072.

(2*R*,3*S*,5*S*)-4,4-diethyl 2-methyl 3-(dimethylphenylsilyl)-5-(4-(trifluoromethyl)phenyl)pyrrolidine-2,4,4-tricarboxylate (**3e**). The title compound was prepared according to the general procedure B (*Condition A*). Yield: 41 mg (74 %); colorless liquid; ¹H NMR (500 MHz, CDCl₃): δ 7.68-7.66 (m, 2 H), 7.56-7.52 (m, 4 H), 7.38-7.35 (m, 3 H), 5.15 (s, 1 H), 4.22 (dq, J = 11.0, 7.0 Hz, 1 H), 3.92 (d, J = 10.5 Hz, 1 H), 3.83 (dq, J = 11.0, 7.0 Hz, 1 H), 3.74 (dq, J = 10.5, 7.0 Hz, 1 H), 3.53 (dq, J = 11.0, 7.0 Hz, 1 H), 3.32 (s, 3 H), 2.89 (d, J = 10.0 Hz, 1 H), 1.21 (t, J = 7.0 Hz, 3 H), 0.88 (t, J = 7.0 Hz, 3 H), 0.42 (s, 3 H), 0.35 (s, 3H); ¹13C{1H} NMR (125 MHz, CDCl₃): δ 174.2, 170.3, 168.4, 145.2, 137.5, 134.0 (3 C), 129.8 (q, Jc-F = 32.0 Hz), 129.1, 128.5 (2 C), 127.6 (2 C), 124.7 (q, $J_{C-F} = 3.8$ Hz), 124.1 (q, $J_{C-F} = 270.5$ Hz), 68.8, 67.6, 62.0, 61.8, 61.3, 51.9, 36.1, 13.7, 13.3, -1.7, -4.9; The er was determined by HPLC using a Daicel Chiralcel OD-H [hexane/*i*-PrOH (90:10)]; flow rate 1.0 mL/min; $\tau_{major} = 4.99$ min, $\tau_{minor} = 6.79$ min, [α]_D²⁶ = +2.3 (*c* 2.1, CHCl₃, ee = 90%); HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₇H₃₃F₃NO₆Si 552.2052; Found 552.2046.

(2*R*,3*S*,5*S*)-4,4-diethyl 2-methyl 3-(dimethylphenylsilyl)-5-(4-ethylphenyl)-pyrrolidine-2,4,4tricarboxylate (**3f**). The title compound was prepared according to the general procedure B (*Condition A*). Yield: 34 mg (66 %); colorless liquid; ¹H NMR (500 MHz, CDCl₃): δ 7.56-7.54 (m, 2 H), 7.38-7.34 (m, 5 H), 7.12 (d, *J* = 8.0 Hz, 2 H), 5.06 (s, 1 H), 4.21 (dq, *J* = 7.0, 10.5 Hz, 1 H), 3.88 (d, *J* = 10.5 Hz, 1 H), 3.87-3.81 (m, 1 H), 3.72 (dq, *J* = 10.5, 7.0 Hz, 1 H), 3.50 (dq, *J* = 10.5, 7.0 Hz, 1 H), 3.28 (s, 3 H), 2.87 (d, *J* = 10.5 Hz, 1 H), 2.61 (q, *J* = 7.5 Hz, 2 H), 1.20 (m, 6 H), 0.87 (t, *J* = 7.0 Hz, 3 H), 0.41 (s, 3 H), 0.33 (s, 3H); 13C {1H} NMR (125 MHz, CDCl₃) δ 174.1, 170.6, 168.9, 143.8, 138.0, 137.8, 134.0 (2 C), 128.9, 127.9 (2 C), 127.6 (2 C), 127.4 (2 C), 69.1, 68.4, 62.2, 61.5, 61.1, 51.8, 36.9, 28.5, 15.6, 13.7, 13.4, -1.5, -4.9; The er was determined by HPLC using a Daicel Chiralpak AD-H [hexane/*i*-PrOH (90:10)]; flow rate 1.0 mL/min; $\tau_{major} = 11.65$ min, $\tau_{minor} = 13.93$ min, $[\alpha]_D^{26} = +4.4$ (*c* 1.27, CHCl₃, ee >83%, mixture of **3f** and ~ 4% of minor isomer); HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₈H₃₈NO₆Si 512.2463; Found 512.2463.

(2*R*,3*S*,5*S*)-4,4-diethyl 2-methyl 5-(3-bromophenyl)-3-(dimethylphenylsilyl)-pyrrolidine-2,4,4tricarboxylate (**3g**). The title compound was prepared according to the general procedure B (*Condition A*).Yield: 43 mg (76 %); colorless liquid; ¹H NMR (500 MHz, CDCl₃): δ 7.62 (brs, 1 H), 7.55-7.53 (m, 3 H), 7.38-7.35 (m, 4 H), 7.19 (t, *J* = 7.0 Hz, 1 H), 5.04 (s, 1 H), 4.22 (dq, *J* = 10.5, 7.0 Hz, 1 H), 3.89 (d, *J* = 10.5 Hz, 1 H), 3.88-3.78 (m, 2 H), 3.61 (dq, *J* = 11.0, 7.0 Hz, 1 H), 3.30 (s, 3 H), 2.86 (d, *J* = 10.5 Hz, 1 H), 1.22 (t, *J* = 7.0 Hz, 3 H), 0.98 (t, *J* = 7.5 Hz, 3 H), 0.40 (s, 3 H), 0.33 (s, 3H); 13C{1H} NMR (125 MHz, CDCl₃): δ 174.0, 170.3, 168.4, 143.5, 137.6, 134.0 (2 C), 131.3, 130.6, 129.6, 129.1, 127.6 (2 C), 126.6, 121.8, 68.8, 67.5, 62.0, 61.7, 61.4, 51.8, 36.0, 13.7, 13.5, -1.6, -4.9; The er was determined by HPLC using a Daicel Chiralcel OD-H [hexane/*i*-PrOH (90:10)]; flow rate 1.0 mL/min; τ_{major} = 5.53 min, τ_{minor} = 7.05 min, [α]_D²⁶ = +6.51 (*c* 1.2, CHCl₃, ee ~84 %); HRMS (ESI) m/z: [M+H]+Calcd for C₂₆H₃₃BrNO₆Si 562.1255; Found 562.1257. (2*R*,3*S*,5*S*)-4,4-diethyl 2-methyl 5-(3-chlorophenyl)-3-(dimethylphenylsilyl)-pyrrolidine-2,4,4tricarboxylate (**3h**). The title compound was prepared according to the general procedure B (*Condition A*). Yield: 39 mg (75%); colorless liquid; ¹H NMR (500 MHz, CDCl₃): δ 7.55-7.53 (m, 2 H), 7.47 (bs 2 H), 7.37-7.35 (m, 3 H), 7.25-7.22 (m, 2 H), 5.06 (s, 1 H), 4.21 (dq, *J* = 11.0, 7.0 Hz, 1 H), 3.91 (d, *J* = 10.5 Hz, 1 H), 3.88-3.78 (m, 2 H), 3.60 (dq, *J* = 10.5, 7.0 Hz, 1 H), 3.32 (s, 3 H), 2.87 (d, *J* = 10.5 Hz, 1 H), 1.21 (t, *J* = 7.0 Hz, 3 H), 0.97 (t, *J* = 7.0 Hz, 3 H), 0.41 (s, 3 H), 0.34 (s, 3 H); 13C{1H} NMR (125 MHz, CDCl₃): δ 173.9, 170.2, 168.5, 142.9, 137.7, 134.1 (2 C), 133.8, 129.3, 129.1, 128.5, 127.8, 127.6 (2 C), 126.1, 69.0, 67.7, 62.1, 61.8, 61.4, 51.9, 36.3, 13.7, 13.5, -1.6, -4.7; The er was determined by HPLC using a Daicel Chiralcel OD-H [hexane/*i*-PrOH (90:10)]; flow rate 1.0 mL/min; $\tau_{major} = 5.75$ min, $\tau_{minor} = 7.93$ min, [α]_D²² = +4.1 (*c* 1.8, CH₂Cl₂, ee = 86%); HRMS (ESI) m/z: [M+H]+Calcd for C₂₆H₃₃ClNO₆Si 518.1760; Found 518.1779.

(2*R*,3*S*,5*S*)-4,4-diethyl 2-methyl 3-(dimethylphenylsilyl)-5-(3-fluorophenyl)-pyrrolidine-2,4,4tricarboxylate (**3i**). The title compound was prepared according to the general procedure B (*Condition A*). Yield: 39 mg (78 %); colorless liquid; ¹H NMR (500 MHz, CDCl₃): δ 7.55-7.53 (m, 2 H), 7.38-7.35 (m, 3 H), 7.30-7.23 (m, 3 H), 6.96-6.92 (m, 1 H), 5.08 (s, 1 H), 4.22 (dq, *J* = 11.5, 7.5 Hz, 1 H), 3.89 (d, *J* = 10.0 Hz, 1 H), 3.87-3.76 (m, 2 H), 3.59 (dq, *J* = 10.5, 7.0 Hz, 1 H), 3.30 (s, 3 H), 2.87 (d, *J* = 11.0 Hz, 1 H), 1.21 (t, *J* = 7.0 Hz, 3 H), 0.94 (t, *J* = 7.0 Hz, 3 H), 0.41 (s, 3 H), 0.34 (s, 3 H); 13C{1H} NMR (125 MHz, CDCl₃): δ 174.0, 170.4, 168.5, 162.5 (d, *J*_{C-F} = 244.0 Hz), 143.8 (d, *J*_{C-F} = 6.8 Hz), 137.8, 134.1 (2 C), 129.3 (d, *J*_{C-F} = 8.0 Hz), 129.1, 127.6 (2 C), 123.6 (d, *J*_{C-F} = 2.9 Hz), 115.3 (d, *J*_{C-F} = 21.8 Hz), 114.5 (d, *J*_{C-F} = 21.8 Hz), 69.1, 67.8 (d, *J*_{C-F} = 1.74 Hz), 62.2, 61.7, 61.3, 51.8, 36.4, 13.7, 13.5, -1.5, -4.7; The er was determined by HPLC using a Daicel Chiralcel OD-H [hexane/*i*-PrOH (90:10)]; flow rate 1.0 mL/min; τ_{major} = 5.35 min, τ_{minor} = 6.94 min; [α]_D²² = -3.1 (*c* 3.42, CHCl₃, ee = 84%); HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₆H₃₃FNO₆Si 502.2079; Found 502.2074. (2*R*,3*S*,5*R*)-4,4-diethyl 2-methyl 5-(2-chlorophenyl)-3-(dimethylphenylsilyl)-pyrrolidine-2,4,4-tricarboxylate (3i). The title compound was prepared according to the general procedure B (*Condition A*). Yield: 37 mg (71 %); white solid; mp: 92-94 °C; ¹H NMR (200 MHz, CDCl₃): δ 7.93 (dd, J = 1.5, 7.8 Hz, 1 H), 7.57-7.52 (m, 2 H), 7.37-7.26 (m, 5 H), 7.23-7.13 (m, 1 H), 5.79 (s, 1 H), 4.29 (dq, J = 10.8, 7.1 Hz, 1 H), 4.09 (dq, J = 10.8, 7.1, Hz, 1 H), 3.94 (d, J =12.3 Hz, 1 H), 3.78 (dq, J = 10.8, 7.2 Hz, 1 H), 3.53 (dq, J = 10.7, 7.1, Hz, 1 H), 3.20 (s, 3 H), 2.91 (d, J = 12.4 Hz, 1 H), 2.80 (bs, 1 H), 1.29 (t, J = 7.0 Hz, 3 H), 0.98 (t, J = 7.2 Hz, 3 H), 0.42 (s, 3 H), 0.30 (s, 3 H); 13C{1H}NMR (50 MHz, CDCl₃): δ 173.8, 170.6, 168.3, 139.2, 137.9, 134.0 (2 C), 133.7, 130.1, 129.0, 128.8, 128.7, 127.6 (2 C), 127.0, 69.0, 63.4, 62.2, 61.9, 61.4, 51.8, 37.2, 13.8, 13.4, -1.1, -5.4; The er was determined by HPLC using a Daicel Chiralcel OD-H [hexane/*i*-PrOH (90:10)]; flow rate 1.0 mL/min; $\tau_{maior} = 5.85 \text{ min}$, $\tau_{minor} = 12.55 \text{ min}$; $[\alpha]_D^{29} = +29.4$ (c 2.8, CHCl₃, ee >90%); HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₆H₃₃ClNO₆Si 518.1760; Found 518.1764. After recrystallization from petroleum ether at - 20 °C, a suitable crystal for X-ray diffraction was obtained.

(2*R*,3*S*,5*S*)-4,4-diethyl 2-methyl 3-(dimethylphenylsilyl)-5-(2-fluorophenyl)-pyrrolidine-2,4,4tricarboxylate (**3k**). The title compound was prepared according to the general procedure B (*Condition A*). Yield: 36 mg (71 %); colorless liquid; ¹H NMR (500 MHz, CDCl₃): δ 7.88-7.85 (m, 1 H), 7.55-7.54 (m, 2 H), 7.38-7.35 (m, 3 H), 7.24-7.20 (m, 1 H), 7.18-7.15 (m, 1 H), 6.94 (t, *J* = 9.0 Hz, 1 H), 5.49 (s, 1 H), 4.23 (dq, *J* = 10.5, 7.0 Hz, 1 H), 3.96 (dq, *J* = 10.5, 7.0 Hz, 1 H), 3.92 (d, *J* = 11.5 Hz, 1 H), 3.82 (dq, *J* = 10.5, 7.0 Hz, 1 H), 3.58 (dq, *J* = 10.5, 7.0 Hz, 1 H), 3.24 (s, 3 H), 2.90 (d, *J* = 12.0 Hz, 1 H), 1.25 (t, *J* = 7.0 Hz, 3 H), 0.98 (t, *J* = 7.0 Hz, 3 H), 0.41 (s, 3 H), 0.32 (s, 3 H); 13C{1H} NMR (125 MHz, CDCl₃): δ 173.8, 170.4, 168.5, 160.2 (d, *J*_{C-F} = 245.8Hz), 137.7, 134.0 (2 C), 130.2 (d, *J*_{C-F} = 3.4 Hz), 129.3 (d, *J*_{C-F} = 8.4 Hz), 129.0, 128.1 (d, *J*_{C-F} = 11.2 Hz), 127.6 (2 C), 124.3 (d, *J*_{C-F} = 3.5 Hz), 114.6 (d, *J*_{C-F} = 22.5 Hz), 68.7, 62.1, 61.8, 61.4, 60.8 (d, *J*_{C-F} = 4.0 Hz), 51.9, 36.7, 13.8, 13.4, -1.3, -5.1; The er was determined

by HPLC using a Daicel Chiralcel OD-H [hexane/*i*-PrOH (90:10)]; flow rate 1.0 mL/min; τ_{major} = 5.30 min, τ_{minor} = 9.41 min; $[\alpha]_D^{26}$ = +6.83 (*c* 3.14, CHCl₃, ee >90%); HRMS (ESI) m/z: [M+H]+Calcd for C₂₆H₃₃FNO₆Si 502.2079; Found 502.2072.

(2R,3S,5R)-4,4-diethyl 2-methyl 3-(dimethylphenylsilyl)-5-(thiophen-2-yl)-pyrrolidine-2,4,4tricarboxylate (**31**). The title compound was prepared according to the general procedure B (*Condition A*). Yield: 40 mg (81%); colorless liquid; ¹H NMR (500 MHz, CDCl₃): δ 7.56-7.54 (m, 2 H), 7.37-7.34 (m, 3 H), 7.21-7.20 (m, 1 H), 7.10 (d, J = 3.5 Hz, 1 H), 6.94 (dd, J = 3.5, 5.5 Hz 1 H), 5.30 (s, 1 H), 4.25 (dq, J = 10.5, 7.0 Hz, 1 H), 3.94-3.86 (m, 2 H), 3.85 (d, J = 11.0 Hz, 1 H), 3.72 (dq, J = 10.5, 7.0 Hz, 1 H), 3.26 (s, 3 H), 2.94 (d, J = 10.5 Hz, 1 H), 1.23 (t, J = 7.0 Hz, 3 H), 1.02 (t, J = 7.0 Hz, 3 H), 0.42 (s, 3 H), 0.34 (s, 3 H); 13C {1H} NMR (125 MHz, CDCl₃): δ 173.7, 170.3, 168.4, 144.8, 138.1, 134.0 (2 C), 128.9, 127.6 (2 C), 126.4, 125.6, 124.9, 69.2, 64.1, 62.0, 61.7, 61.4, 51.7, 35.8, 13.7, 13.5, -1.4, -4.7;The er was determined by HPLC using a Daicel Chiralcel AD-H [hexane/*i*-PrOH (90:10)]; flow rate 1.0 mL/min; τ_{major} = 9.44 min, τ_{minor} = 15.20 min; $[\alpha]_D^{28}$ = -7.2 (*c* 2.4, CHCl₃, ee = 87%); HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₄H₃₂NO₆SSi 490.1740; Found 490.1738.

(2R, 3S, 5S)-4, 4-diethyl2-methyl5-(4-chlorophenyl)-3-(1, 1, 3, 3-

pentamethyldisiloxanyl)pyrrolidine-2,4,4-tricarboxylate (**3m**). The title compound was prepared according to the general procedure B (*Condition A*).Yield: 38 mg (72 %); colorless liquid;¹H NMR (500 MHz, CDCl₃): δ 7.46 (d, J = 8.4 Hz, 2 H), 7.26-7.25 (m, 2 H), 5.03 (s, 1 H), 4.38 (dq, J = 11.0, 7.4 Hz, 1 H), 4.06 (dq, J = 10.8, 7.2 Hz, 1 H), 3.91 (d, J = 11.0 Hz, 1 H), 3.82-3.76 (m, 1 H), 3.80 (s, 3 H), 3.56 (dq, J = 10.8, 7.2 Hz, 1 H), 2.53 (d, J = 11.0 Hz, 1 H), 1.28 (t, J = 7.2 Hz, 3 H), 0.95 (t, J = 7.2 Hz, 3 H), 0.16 (s, 3 H), 0.12 (s, 3 H), 0.87 (s, 9 H); 13C{1H} NMR (125 MHz, CDCl₃): δ 174.6, 170.5, 168.3, 139.7, 133.4, 129.5 (2 C), 127.9 (2 C), 68.5, 67.3, 61.6, 61.4, 61.2, 52.2, 37.7, 13.8, 13.5, 1.90 (3 C), 1.41, 0.60; The er was determined by HPLC using a Daicel Chiralcel OD-H [hexane/*i*-PrOH (90:10)]; flow rate 0.5

mL/min; $\tau_{\text{major}} = 8.25 \text{ min}$, $\tau_{\text{minor}} = 9.30 \text{ min}$; $[\alpha]_D^{28} = -39.02 (c \ 1.68, \text{CH}_2\text{Cl}_2, \text{ee} = 92\%)$; HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₃H₃₇ClNO₇Si₂ 530.1792; Found 530.1793.

(2R,3S,4S,5R)-dimethyl5-(4-chlorophenyl)-3-(dimethylphenylsilyl)pyrrolidine-2,4-

dicarboxvlate 5: Under Argon atmosphere, Ag₂O (2.3 mg, 0.01 mmol), DABCO (~4.5 mg, 0.04 mmol) and ligand L8 (5.0 mg, 0.011 mmol) were dissolved in 1.0 mL of freshly distilled toluene and stirred at room temperature for about 50 min. Then, the reaction mixture was cooled to -40 °C and a solution of (4-chlorobenzylidene)glycine methyl ester 1a (~85 mg, 0.4 mmol) in toluene (0.5 mL) was added slowly to the reaction mixture followed by the addition of a solution of β -dimethylphenylsilyl-acrylate 4 (44 mg, 0.2 mmol) in toluene (0.5 mL). The reaction mixture was stirred at this temperature overnight and then reaction mixture was passed through a small pad of silica and flushing with 100 mL EtOAc. The solvent was removed under reduced pressure and the residue was directly subjected to column chromatography on silica gel to afford the product 5^{13} as a colourless liquid in 64% yield (55 mg, combined yield of two diastereomers); Data of Major isomer ¹H NMR (500 MHz, CDCl₃): δ 7.54-7.52 (m, 2 H), 7.39-7.38 (m, 3 H), 7.25 (d, J = 8.3 Hz, 2 H), 7.19 (d, J = 8.5 Hz, 2 H), 4.14 (d, J = 8.2 Hz, 1 H), 3.79 (d, J = 9.7 Hz, 1 H), 3.65 (s, 3 H), 3.18-3.15 (m, 4 H), 2.21 (dd, J = 9.5, 7.9 Hz, 1 H), 0.40 (s, 3 H), 0.39 (s, 3 H); 13C{1H} NMR (125 MHz, CDCl₃): δ 173.4, 173.1, 137.3, 135.9, 134.0 (2 C), 133.2, 129.6, 128.2 (2 C), 128.15 (2 C), 127.9 (2 C), 65.2, 62.5, 53.0, 52.1, 51.4, 34.6, -4.1, -4.3; The er was determined by HPLC using a Daicel Chiralpak AD-H [hexane/i-PrOH (90:10)]; flow rate 0.8 mL/min, $\lambda = 220$ nm; $\tau_{\text{maior}} = 14.18$ min, $\tau_{\text{minor}} = 29.25$ min.

(2S,3S,5S)-4,4-diethyl 2-methyl5-(4-chlorophenyl)-3phenylpyrrolidine-2,4,4-tricarboxylate 7: Under Argon atmosphere, Ag₂O (2.3 mg, 0.01 mmol), DABCO (2.3 mg, 0.02 mmol) and ligand L8 (5.0 mg, 0.011 mmol) were dissolved in 0.5 mL of freshly distilled toluene and stirred at room temperature for about 50 min. Then, the reaction mixture was cooled to -40 °C and a solution of (4-chlorobenzylidene)glycine methyl ester 1a (42 mg, 0.2 mmol) in toluene (0.25 mL) was added slowly to the reaction mixture followed by the addition of a solution of benzylidene malonate **6** (0.1 mmol, 1 equiv) in toluene (0.25 mL). The reaction mixture was stirred at this temperature overnight and then the reaction mixture was passed through a small pad of silica and flushing with 100 mL EtOAc. The solvent was removed under reduced pressure and the residue was directly subjected to column chromatography on silica gel to afford the product 7^{10c} as a white solid in 72% yield (33 mg). mp 106-108 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.46 (d, J = 8.4 Hz, 2 H), 7.33-7.26 (m, 7 H), 5.33 (s, 1 H), 4.41 (d, J = 6.6 Hz, 1 H), 4.21 (d, J = 6.6 Hz, 1 H), 3.88-3.79 (m, 2 H), 3.77 (s, 3 H), 3.48-3.40 (m, 2 H), 0.82-0.77 (m, 6 H); 13C{1H} NMR (125 MHz, CDCl₃): δ 173.0, 169.3, 168.6, 138.7, 136.9, 133.8, 129.0 (2 C), 128.9 (2 C), 128.4 (2 C), 128.2 (2 C), 127.6, 70.6, 67.2, 66.2, 61.4, 61.1, 55.8, 52.5, 13.3, 13.2; [α]_D²⁶ = -39.5 (*c* 1.88, CHCl₃); The er was determined by HPLC using a Daicel Chiralpak AS-H [hexane/*i*-PrOH (80:20)]; flow rate 1.0 mL/min; τ_{major} = 4.84 min, τ_{minor} = 6.07 min.

Scale up procedure for the catalytic asymmetric 1,3-dipolar cycloaddition of azomethine ylide 1a with β -silylmethylene malonate 2a

Under an Argon atmosphere, Ag₂O (11.5 mg, 0.05 mmol), ligand L8 (25 mg, 0.055 mmol, mmol), and DABCO (22.5 mg, 0.2 mmol) were dissolved in toluene (5.0 mL) and stirred at room temperature for approximately 1h. Then, the reaction mixture was cooled to -40 °C and a solution of imino ester 1a (423 mg, 2.0 mmol) in toluene (2.5 mL) was added slowly over a period of 5 min and the resulting mixture was stirred for 5 min followed by addition of a solution of β -silylmethylene malonate 2 (306 mg, 1.0 mmol) in toluene (2.5 mL) over a period of 5 min. Once the starting material was consumed (monitored by TLC), then the mixture was filtered through a small pad of silica flushing with 150 mL of CH₂Cl₂ and 250 mL of 50% EtOAc/hexane. The filtrates were concentrated and purified by column chromatography to give **3a** as a colorless liquid in 80% yield (415 mg).

General Procedure D for the preparation of N-tosyl-3-silylyproline derivatives 8

Under nitrogen atmosphere, compound **3** (0.15 mmol, 1.0 equiv) was dissolved in 3 mL of dry CH_2Cl_2 . TsCl (0.45 mmol, 3.0 equiv), Et_3N (0.6 mmol, 4.0 equiv) and DMAP (0.03 mmol, 20 mol%) were added sequentially and the reaction mixture was stirred for 22 h at 27 °C. The solvent was evaporated and the residue was purified by column chromatography to give the corresponding product **8a-8c** and **8i**.

(2*R*, 3*S*, 5*S*)-4, 4-diethyl 2-methyl 5-(4-chlorophenyl) 3-(dimethylphenylsilyl) -1tosylpyrrolidine-2, 4, 4-tricarboxylate **8a**. The title compound was prepared according to the general procedure D. Yield: 91mg (90 %); colorless liquid, ¹H NMR (500 MHz, CDCl₃): δ 7.50-7.49 (m, 3 H), 7.45-7.43 (m, 4 H), 7.34-7.33 (m, 3 H), 7.16 (d, *J* = 8.5 Hz, 1 H), 7.08 (d, *J* = 8.5 Hz, 2 H), 5.65 (s, 1 H), 4.29 (d, *J* = 12.4 Hz, 1 H), 4.15-4.04 (m, 2 H), 3.76-3.70 (m, 1 H), 3.63-3.56 (m, 1 H), 3.14 (s, 3 H), 2.93 (d, *J* = 12.4 Hz, 1 H), 2.33 (s, 3 H), 1.27 (t, *J* = 7.0 Hz, 3 H), 0.99 (t, *J* = 7.2 Hz, 3 H), 0.46 (s, 3 H), 0.24 (s, 3 H); 13C{1H} NMR (125 MHz, CDCl₃): δ 171.7, 168.9, 166.4, 143.6, 137.4, 136.5, 135.4, 133.9 (2 C), 133.88, 129.7 (2 C), 129.2, 128.9 (2 C), 128.0 (2 C), 127.9 (2 C), 127.7 (2 C), 67.9, 67.3, 63.1, 62.5, 61.9, 52.1, 35.0, 21.4, 13.8, 13.5, -0.84, -5.4; $[\alpha]_D^{24} = +11.4$ (*c* 3.37, CHCl₃); HRMS (ESI) m/z: [M+Na]⁺Calcd for C₃₃H₃₈CINNaO₈SSi 694.1668; Found 694.1662.

(2*R*, 3*S*, 5*S*)-4, 4-diethyl 2-methyl 3-(dimethylphenylsilyl)-5-phenyl-1-tosylpyrrolidine-2, 4, 4tricarboxylate **8b**. The title compound was prepared according to the general procedure D. Yield: 84 mg (88 %); colorless liquid, ¹H NMR (500 MHz, CDCl₃): δ 7.52-7.48 (m, 4 H), 7.44 (d, *J* = 8.2 Hz, 2 H), 7.34-7.32 (m, 3 H), 7.19-7.18 (m, 3 H), 7.05 (d, *J* = 8.0 Hz, 2 H), 5.70 (s, 1 H), 4.30 (d, *J* = 12.0 Hz, 1 H), 4.13-4.06 (m, 2 H), 3.68-3.63 (m, 1 H), 3.59-3.53 (m, 1 H), 3.13 (s, 3 H), 3.00 (d, *J* = 12.4 Hz, 1 H), 2.30 (s, 3 H), 1.29 (t, *J* = 7.0 Hz, 3 H), 0.95 (t, *J* = 7.2 Hz, 3 H), 0.47 (s, 3 H), 0.24 (s, 3 H); 13C{1H} NMR (125 MHz, CDCl₃): δ 171.6, 169.2, 166.5, 143.3, 137.8, 137.6, 135.7, 134.0 (2 C), 129.1, 128.8 (2 C), 128.3 (2 C), 128.0, 127.9 (3 C), 127.8, 127.6 (2 C), 68.1, 68.0, 63.2, 62.4, 61.8, 52.0, 35.0, 21.4, 13.8, 13.5, -0.7, -5.4; $[\alpha]_D^{24} = +10.3$ (*c* 2.5, CHCl₃); HRMS (ESI) m/z: [M+Na]+Calcd for C₃₃H₃₉NNaO₈SSi 660.2058; Found 660.2056.

(2R, 3S, 5S)-4, 4-diethyl 2-methyl 5-(4-bromophenyl) 3-(dimethylphenylsilyl) -1-tosylpyrrolidine-2, 4, 4-tricarboxylate **8c** The title compound was prepared according to the general procedure D. Yield: 99 mg (92 %); colorless liquid;¹H NMR (200 MHz, CDCl₃): δ 7.52-7.40 (m, 5 H), 7.35-7.28 (m, 7 H), 7.08 (d, J = 8.0 Hz, 2 H), 4.29 (d, J = 12.3 Hz, 1 H), 4.15-4.01 (m, 2 H), 3.78-3.51 (m, 2 H), 3.15 (s, 3 H), 2.91(d, J = 12.3 Hz, 1 H), 2.33 (s, 3 H), 1.27 (t, J = 7.0 Hz, 3 H), 0.98 (t, J = 7.0 Hz, 3 H), 0.46 (s, 3 H), 0.24 (s, 3 H); 13C {1H} NMR (50 MHz, CDCl₃): δ 171.6, 168.8, 166.3, 143.6, 137.3, 137.0, 135.4, 133.9 (2 C), 130.9 (2 C), 130.0 (2 C), 129.1, 128.9 (2 C), 127.8 (2 C), 127.6 (2 C), 122.1, 67.9, 67.4, 63.1, 62.5, 61.9, 52.0, 35.0, 21.4, 13.7, 13.4, -0.91, -5.4; $[\alpha]_D^{25} = +11.3$ (*c* 2.0, CHCl₃); HRMS (ESI) m/z: [M+Na]+Calcd for C₃₃H₃₈BrNNaO₈SSi 738.1163; Found 738.1161.

(2R,3S,5S)-4,4-diethyl 2-methyl 3-(dimethylphenylsilyl) 5-(3-fluorophenyl) -1-tosylpyrrolidine-2,4,4-tricarboxylate **8i**. The title compound was prepared according to the general procedure D. Yield: 83 mg (84 %); colorless liquid, ¹H NMR (500 MHz, CDCl₃): δ 7.50-7.46 (m, 4 H), 7.34-7.33 (m, 3 H), 7.26 (bs, 2 H), 7.16 (q, J = 7.8 Hz, 1 H), 7.09 (d, J = 8.1 Hz, 2 H), 6.91-6.87 (m, 1 H), 5.67 (s, 1 H), 4.28 (d, J = 12.4 Hz, 1 H), 4.14-4.03 (m, 2 H), 3.76-3.69 (m, 1 H), 3.66-3.60 (m, 1 H), 3.15 (s, 3 H), 2.93 (d, J = 12.4 Hz, 1 H), 2.32 (s, 3 H), 1.27 (t, J = 7.2 Hz, 3 H), 0.99(t, J = 7.2 Hz, 3 H), 0.46 (s, 3 H), 0.24 (s, 3 H); 13C {1H} NMR (125 MHz, CDCl₃): δ 171.5, 168.8, 166.3, 162.3 (d, $J_{C-F} = 244.5$ Hz), 143.6, 140.6 (d, $J_{C-F} = 7.0$ Hz), 137.4, 135.4, 133.9 (2 C), 129.3 (d, $J_{C-F} = 8.0$ Hz), 129.2, 128.9 (2 C), 127.9 (2 C), 127.6 (2 C), 123.8 (d, $J_{C-F} = 2.8$ Hz), 115.3 (d, $J_{C-F} = 22.7$ Hz), 114.7 (d, $J_{C-F} = 21.0$ Hz), 68.0, 67.4 (d, $J_{C-F} = 1.8$ Hz), 63.2, 62.5, 61.9, 52.1, 35.0, 21.4, 138. 13.4, -0.86, -5.3; $[\alpha]_D^{25} = +5.3$

(*c* 1.71, CHCl₃); HRMS (ESI) m/z: [M+Na]⁺Calcd for C₃₃H₃₈FNNaO₈SSi 678.1964; Found 678.1964.

General Procedure E for the preparation of 3-hydroxyproline derivatives

Potassium bromide (0.16 mmol, 1.2 equiv) was added to a stirred solution of **8** (0.12 mmol, 1.0 equiv) and peracetic acid (35% solution in acetic acid, 3 mL) at 0 °C followed by H_2O_2 (30%, 0.1 mL). The reaction mixture was warmed slowly to room temperature and stir for 2d. Sodium thiosulphate was added to the reaction mixture and stirred until (approx. 10 min) the clear solution became turbid. Solvent was removed under reduced pressure and the residue was dissolved in dichloromethane and passed through Na₂SO₄. The organic solvent was evaporated under reduced pressure. The residue was purified by column chromatography to give **9a-9c** and **9i**.

(2S,3S,5S)-4,4-diethyl2-methyl5-(4-chlorophenyl)3-hydroxy-1-tosylpyrrolidine-2,4,4-

tricarboxylate **9a**. The title compound was prepared according to the general procedure E. Yield: 48 mg (72 %); white amorphous solid; ¹H NMR (500 MHz, CDCl₃): δ 7.51 (d, *J* = 8.1 Hz, 2 H), 7.33 (d, *J* = 8.4 Hz, 2 H), 7.12 (d, *J* = 8.0 Hz, 2 H), 7.09 (d, *J* = 8.0 Hz, 2 H), 5.57 (s, 1 H), 5.10 (s, 1 H), 4.59 (d, *J* = 4.8 Hz, 1 H), 4.26-4.21 (m, 1 H), 4.17-4.13 (m, 1 H), 3.88 (s, 3 H), 3.82-3.76 (m, 1 H), 3.49 (dq, *J* = 10.7, 7.2 Hz, 1 H), 3.01 (d, *J* = 5.0 Hz, 1 H), 2.37 (s, 3 H), 1.23 (t, *J* = 7.1 Hz, 3 H), 0.81 (t, *J* = 7.2 Hz, 3 H); 13C {1H} NMR (125 MHz, CDCl₃): δ 170.5, 166.72, 166.70, 143.9, 135.4, 135.0, 133.8, 129.8 (2 C), 129.0 (2 C), 128.2 (2 C), 127.9 (2 C), 76.4, 69.5, 67.0, 65.7, 62.5, 62.0, 52.9, 21.5, 13.9, 13.2; [α]_D²⁶ = -23.0 (*c* 0.7, CHCl₃); [M+H]⁺Calcd for C₂₅H₂₉CINO₉S 554.1246; Found 554.1241.

(2*S*,3*S*,5*S*)-4,4-diethyl 2-methyl 3-hydroxy-5-phenyl-1-tosylpyrrolidine-2,4,4-tricarboxylate **9b**. The title compound was prepared according to the general procedure E. Yield = 44 mg (70 %); white amorphous solid; ¹H NMR (500 MHz, CDCl₃): δ 7.51 (d, *J* = 8.0 Hz, 2 H), 7.387.37 (m, 2 H), 7.14-7.13 (m, 3 H), 7.09 (d, J = 8.0 Hz, 2 H), 5.60 (s, 1 H), 5.17 (d, J = 5.5 Hz, 1 H), 4.53 (d, J = 5.8 Hz, 1 H), 4.28-4.14 (m, 2 H), 3.88 (s, 3 H), 3.75 (dq, J = 10.6, 7.1 Hz, 1 H), 3.45 (dq, J = 10.5, 7.2 Hz, 1 H), 2.98 (bs, 1 H), 2.34 (s, 3 H), 1.25 (t, J = 7.1 Hz, 3 H), 0.78 (t, J = 7.2 Hz, 3 H); 13C {1H} NMR (125 MHz, CDCl₃): δ 170.6, 167.1, 166.8, 143.6, 136.8, 135.2, 128.9 (3 C), 128.4, 128.2 (2 C), 127.9, 127.8 (2 C), 76.4, 69.1, 66.4 (2 C), 62.5, 61.8, 52.9, 21.5, 13.9, 13.2; $[\alpha]_D^{26} = -23.2$ (*c* 1.4, CHCl₃); $[M+H]^+$ Calcd for C₂₅H₃₀NO₉S 520.1636; Found 520.1631.

(2*S*, 3*S*, 5*S*)-4,4-diethyl 2-methyl 5-(4-bromophenyl-3-hydroxy-1-tosylpyrrolidine-2,4,4tricarboxylate **9c**. The title compound was prepared according to the general procedure E. Yield: 51 mg (71 %); colorless liquid, ¹H NMR (500 MHz, CDCl₃): δ 7.50 (d, *J* = 8.5 Hz, 2 H), 7.25-7.20 (m, 4 H), 7.12 (d, *J* = 8.0 Hz, 2 H), 5.55 (s, 1 H), 5.09 (d, *J* = 4.3 Hz, 1 H), 4.61 (d, *J* = 4.3 Hz, 1 H), 4.26-4.18 (m, 1 H), 4.17-4.09 (m,1 H), 3.88 (s, 3 H), 3.79 (dq, *J* = 10.8, 7.2 Hz, 1 H), 3.48 (dq, *J* = 10.7, 7.2 Hz, 1 H), 3.17 (bs, 1 H), 2.32 (s, 3 H), 1.22 (t, *J* = 7.1 Hz, 3 H), 0.80 (t, *J* = 7.2 Hz, 3 H); 13C {1H} NMR (125 MHz, CDCl₃): δ 170.5, 166.73, 166.66, 144.0, 135.8, 135.0, 130.8, 130.2, 129.0 (3 C), 128.2 (3 C), 122.0, 76.4, 69.6, 67.2, 65.8, 62.4, 62.0, 52.9, 21.5, 13.9, 13.2; [α]_D²⁵ = -20.1 (*c* 3.0, CHCl₃); HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₅H₂₉BrNO₉ 598.0741; Found 598.0742.

(2S,3S,5S)-4,4-diethyl 2-methyl 5-(3-fluorophenyl-3-hydroxy-1-tosylpyrrolidine-2,4,4tricarboxylate **9i**. The title compound was prepared according to the general procedure E. Yield: 42 mg (65 %); colorless liquid, ¹H NMR (500 MHz, CDCl₃): δ 7.54 (d, *J* = 8.2 Hz, 2 H), 7.21 (d, *J* = 7.5 Hz, 1 H), 7.13-7.10 (m, 4 H), 6.84 (dd, *J* = 2.0, 8.0 Hz, 1 H), 5.59 (s, 1 H), 5.10 (d, *J* = 4.9 Hz, 1 H), 4.59 (d, *J* = 4.9 Hz, 1 H), 4.26-4.19 (m, 1 H), 4.18-4.12 (m, 1 H), 3.88 (s, 3 H), 3.78 (dq, *J* = 10.7, 7.1 Hz, 1 H), 3.51 (dq, *J* = 10.8, 7.2 Hz, 1 H), 3.11 (bs, 1 H), 2.35 (s, 3 H), 1.23 (t, *J* = 7.1 Hz, 3 H), 0.81 (t, *J* = 7.2 Hz, 3 H); 13C{1H} NMR (125 MHz, CDCl₃): δ 170.4, 166.7, 166.66, 162.2 (d, *J*_{C-F} = 244.5 Hz), 143.9, 139.4 (d, *J*_{C-F} = 7.2 Hz),

134.9, 129.3 (d, $J_{C-F} = 8.0 \text{ Hz}$), 129.0 (2 C), 128.2 (2 C), 124.1 (d, $J_{C-F} = 2.8 \text{ Hz}$), 115.4 (d, $J_{C-F} = 2.8 \text{ Hz}$), 115.4 (d, $J_{C-F} = 2.8 \text{ Hz}$)
$_{\rm F}$ = 22.8 Hz), 114.7 (d, $J_{\rm C-F}$ = 21.0 Hz), 76.4, 69.5, 67.0, 65.8 (d, $J_{\rm C-F}$ = 1.84 Hz), 62.5, 61.9,
52.9, 21.5, 13.9, 13.2; $[\alpha]_D^{25} = -21.6$ (<i>c</i> 2.35, CHCl ₃); HRMS (ESI) m/z: [M+H]+Calcd for
C ₂₅ H ₂₉ BrNO ₉ S 538.1542; Found 538.1540.
"Supporting Information:"
The Supporting Information is available free of charge on the
ACS Publications website:
X-ray crystallographic information of 3j (PDF)
X-ray crystallographic data for 3j (CIF)
¹ H and ¹³ C spectra for 3a-3m , 5 , 7 , 8a-8c , 8i , 9a-9c and 9i (PDF)
HPLC trace of 3a-3m, 5 and 7(PDF)
AUTHOR INFORMATION
Corresponding Author
* E-mail: <u>raghuc@barc.gov.in</u>
ORCID: Raghunath Chowdhury: 0000-0002-0395-7014
Notes and references
(1) Selected reviews (a) Fleming, I. In Science of Synthesis; Fleming, I., Ed.; Thieme: Stuttgart,
2002; Vol. 4, p 927. (b) Fleming, I.; Barbero, A.; Walter, D. Stereochemical Control in Organic
Synthesis Using Silicon-Containing Compounds. Chem. Rev. 1997, 97, 2063. (c) Denmark S.
E.; Regens, C. S. Palladium-Catalyzed Cross-Coupling Reactions of Organosilanols and Their
Salts: Practical Alternatives to Boron- and Tin-Based Methods. Acc. Chem. Res., 2008, 41,

1486. (d) Fleming, I. In *Comprehensive Organic Synthesis*, Trost, B. M.; Fleming, I., Ed.;
Pergamon Press, Oxford, 1991, Vol. 2, p 563. (e) Zhang, H. -J.; Priebbenow, D. L.; Bolm, C.
Acylsilanes: valuable organosilicon reagents in organic synthesis.*Chem. Soc. Rev.*, 2013, 42,
8540. (f) Langkof, E.; Schinzer, D. Uses of Silicon-Containing Compounds in the Synthesis of
Natural Products. *Chem. Rev.*, 1995, 95, 1375. (g) Díez-Poza, C.; Barbero, A. Synthesis of Oand N-Heterocycles by Silyl-Prins Cyclization of Allylsilanes. *Eur. J. Org. Chem.* 2017, 4651.

(2) Selected examples, (a) Verma, R.; Ghosh, S. K. A silicon controlled total synthesis of the antifungal agent (+)-preussin. *Chem. Commun* **1997**, 1601. (b) Singh, R.; Ghosh, S. K. Synthesis of enantiomerically pure all cis-2,3,6-trisubstitutedpiperidine: a silicon mediated total synthesis of (+)-carpamic acid. *Tetrahedron Lett.* **2002**, *43*, 7711. (c) Huang, H.; Panek, J. S. Organosilanes in Synthesis: Application to an Enantioselective Synthesis of Methyl-l-callipeltose. *Org. Lett.* **2003**, *5*, 1991. (d) Su, Q.; Panek, J. S. Total Synthesis of (+)-Leucascandrolide A. *Angew. Chem. Int. Ed.* **2005**, *44*, 1223 (e) Ghosh, A. K.; Cheng, X. Enantioselective Total Synthesis of (-)-Zampanolide, a Potent Microtubule-Stabilizing Agent. *Org. Lett.* **2011**, *13*, 4108.

(3) Selected reviews, (a) Mortensen, M.; Husmann, R.; Veri, E.; Bolm, C. Synthesis and applications of silicon-containing alpha-amino acids. *Chem. Soc. Rev.* **2009**, *38*, 1002. (b) Meanwell, N. A. Synopsis of Some Recent Tactical Application of Bioisosteres in Drug Design. *J. Med. Chem.* **2011**, *54*, 2529. (c) Franz, A. K.; Wilson, S. O. Organosilicon Molecules with Medicinal Applications. *J. Med. Chem.* **2013**, *56*, 388. (d) Min. G. K.; Herna'ndez, D.; Skrydstrup, T. Efficient Routes to Carbon-Silicon Bond Formation for the Synthesis of Silicon-Containing Peptides and Azasilaheterocycles. *Acc. Chem. Res.* **2013**, *46*, 457. (e) Rémond, E.; Martin, C.; Martinez. J.; Cavelier, F. Silicon-Containing Amino Acids: Synthetic Aspects, Conformational Studies, and Applications to Bioactive Peptides. *Chem. Rev.* **2016**, *116*, 11654.

(f) Mills, J. S.; Showell, G. A. Chemistry challenges in lead optimization: silicon isosteres in drug discovery. *Drug Discovery Today*, 2003, *8*, 551. (g) Ramesh, R.; Reddy, D. S. Quest for Novel Chemical Entities through Incorporation of Silicon in Drug Scaffolds. *J. Med. Chem.* 2018, *61*, 3779.

(4) Selected example, (a) Liu, G.; Sieburth, S. M. Enantioselective α-Silyl Amino Acid Synthesis by Reverse-Aza-Brook Rearrangement. Org. Lett. 2003, 5, 4677. (b) Ramesh, R.; Reddy, D. S. Zinc mediated allylations of chlorosilanes promoted by ultrasound: Synthesis of novel constrained sila amino acids. Org. Biomol. Chem. 2014, 12, 4093. (c) Fanelli, R.; Berthomieu, D.; Didierjean, C.; Doudouh, A.; Lebrun, A.; Martinez, J.; Cavelier, F. Hydrophobic α,α -Disubstituted Disilylated TESDpg Induces Incipient 310-Helix in Short Tripeptide Sequence. Org. Lett. 2017, 19, 2937. (d) Gately, S.; West, R. Novel therapeutics with enhanced biological activity generated by the strategic introduction of silicon isosteres into known drug Scaffolds. Drug Dev. Res. 2007, 68, 156. (e) Fanelli, R.; Besserer-Offroy, É; René, A.; Côte, J.; Tétreault, P.; Collerette-Tremblay, J.; Longpré, J, -M.; Leduc, R.; Martinez, J.; Sarret, P.; Cavelier, F. Synthesis and Characterization in Vitro and in Vivo of (L)-(Trimethylsilyl)alanine Containing Neurotensin Analogues. J. Med. Chem. 2015, 58, 7785. (f) Seetharmsingh, B; Ramesh, R.; Dange, S. S.; Khairnar, P.V.; Singhal, S.; Upadhyay, D.; Veeraraghavan, S.; Viswanadha, S.; Vakkalanka, S.; Reddy, D. S. Design, Synthesis, and Identification of Silicon Incorporated Oxazolidinone Antibiotics with Improved Brain Exposure. ACS Med. Chem. Lett., 2015, 6, 1105. (g) Nair, A. G.; Keertikar, K. M.; Kim, S. H.; Kozlowski, J. A.; Rosenblum, S.; Selyutin, O. B.; Wong, M.; Yu, W.; Zeng, Q. Fused tricyclic silvl compounds and methods of use thereof for the treatment of viral diseases. WO 2011/112429, 2011. (h) Kim, K. S. Preparation of silaproline-containing peptide IAP antagonists for cancer treatment. WO 2014011712, 2014.

(5) (a) Cavelier, F.; Vivet, B.; Martinez, J.; Aubry, A.; Didierjean, C.; Vicherat, A.; Marraud, M. Influence of Silaproline on Peptide Conformation and Bioactivity. *J. Am. Chem. Soc.* **2002**, *124*, 2917. (b) Madsen, J. L. H.; Hjørringgaard, C. U.; Vad, B. S.; Otzen, D.; Skrydstrup, T. Incorporation of β-Silicon-β3-Amino Acids in the Antimicrobial Peptide Alamethicin Provides a 20-Fold Increase in Membrane Permeabilization. *Chem. Eur. J.* **2016**, *22*, 8358. (c) Pujals, S.; Fernández-Carneado, J.; Kogan, M. J.; Martinez, J.; Cavelier, F.; Giralt, E. Replacement of a Proline with Silaproline Causes a 20-Fold Increase in the Cellular Uptake of a Pro-Rich Peptide. *J. Am. Chem. Soc.* **2006**, *128*, 8479.

(6) (a) Chung, J. Y. L.; Shevlin, M.; Klapars, A.; Journet, M. Asymmetric Synthesis of *N*-Boc-(*R*)-Silaproline via Rh-Catalyzed Intramolecular Hydrosilylation of Dehydroalanine and Continuous Flow *N*-Alkylation. *Org. Lett.* 2016, *18*, 1812. (b) Bartoccini, F.; Bartolucci, S.; Lucarini, S.; Piersanti, G. Synthesis of Boron- and Silicon-Containing Amino Acids through Copper-Catalysed Conjugate Additions to Dehydroalanine Derivatives. *Eur. J. Org. Chem.* 2015, 3352.

(7) Selected examples, (a) Chakraborty, T. K.; Srinivasu, P.; Rao, R. V.; Kumar, S. K.; Kunwar, A. C. Conformational Studies of Peptides Containing *cis*-3-Hydroxy-D-proline. *J. Org. Chem.* **2004**, *69*, 7399. (b) Wohlrab, A.; Lamer, R.; VanNieuwenhze, M. S. Total Synthesis of Plusbacin A3: A Depsipeptide Antibiotic Active Against Vancomycin-Resistant Bacteria. *J. Am. Chem. Soc.* **2007**, *129*, 4175. (c) Jenkins, C. L.; Bretscher, L. E.; Guzei, L. A.; Raines, R. T. Effect of 3-Hydroxyproline Residues on Collagen Stability. *J. Am. Chem. Soc.* **2003**, *125*, 6422. (d) Gryder, R. M.; Lamon, M.; Adams, E. Sequence position of 3-hydroxyproline in basement membrane collagen. Isolation of glycyl-3-hydroxyprolyl-4-hydroxyproline from swine kidney. *J. Biol. Chem.* **1975**, *250*, 2470.

(8) Selected examples, (a) Fattorusso, E.; Taglialatela-Scafati, *O. Modern Alkaloids: Structure, Isolation, Synthesis and Biology*, Wiley-VCH, Weinheim, 2008. (b) Snider, B. B.; Gao, X. Structure Revision and Syntheses of Epohelmins A and B. *Org. Lett.* **2005**, *7*, 4419. (c) Fukuda, T.; Sudoh, Y.; Tsuchiya, Y.; Okuda, T.; Igarashi, Y. Isolation and Biosynthesis of Preussin B, a Pyrrolidine Alkaloid from Simplicillium Ianosoniveum. *J. Nat. Prod.* **2014**, *77*, 813. (d) Buchman, M.; Csatayova, K.; Davies, S. G.; Fletcher, A. M.; Houlsby, I. T. T.; Roberts, P. M.; Rowe, S. M.; Thomson, J. E. Isolation and Biosynthesis of Preussin B, a Pyrrolidine Alkaloid from Simplicillium Ianosoniveum. *J. Org. Chem.* **2016**, *81*, 4907. (e) Trost, B. M.; Horne, D. B.; Woltering, M. J. Palladium-Catalyzed DYKAT of Butadiene Monoepoxide: Enantioselective Total Synthesis of (+)-DMDP, (-)-Bulgecinine, and (+)-Broussonetine G. *Chem. Eur. J.* **2006**, 12, 6607.

(9) Recent selected reviews, (a) Adrio, J.; Carretero, J. C. Recent advances in the catalytic asymmetric 1,3-dipolar cycloaddition of azomethine ylides. *Chem.* Commun. 2014, *50*, 12434.
(b) Narayan, R.; Potowski, M.; Jia, Z. -J.; Antonchick, A. P.; Waldmann, H. Catalytic Enantioselective 1,3-Dipolar Cycloadditions of Azomethine Ylides for Biology-Oriented Synthesis. *Acc. Chem. Res.* 2014, *47*, 1296. (c) Bdiri, B.; Zhao, B. -J.; Zhou, Z. -M. Recent advances in the enantioselective 1,3-dipolar cycloaddition of azomethine ylides and dipolarophiles. *Tetrahedron: Asymmetry* 2017, *28*, 876. (d) Otero-Fraga, J.; Montesinos-Magraner, M.; Mendoza, A. Perspectives on Intermolecular Azomethine Ylide [3+2] Cycloadditions with Non-Electrophilic Olefins. *Synthesis* 2017, 802.

(10) Selected examples, (a) Wang, M.; Wang, Z.; Shi, Y. -H.; Shi, X. -X.; Fossey, J. S.; Deng,
W. -P. An *exo*-and Enantioselective 1,3-Dipolar Cycloaddition of Azomethine Ylides with
Alkylidene Malonates Catalyzed by a *N*,*O*-Ligand/Cu(OAc)2-Derived Chiral Complex. *Angew. Chem. Int*. *Ed.* 2011, *50*, 4897. (b) Xue, Z.-Y.; Liu, T.-L.; Lu, Z.; Huang, H.; Tao, H.Y. Wang, C.-J. *exo*-Selective asymmetric 1,3-dipolar cycloaddition of azomethine ylides with

alkylidene malonates catalyzed by AgOAc/TF-BiphamPhos. *Chem. Commun.*, **2010**, *46*, 1727. (c) Watanabe, S.; Tada, A.; Tokoro, Y.; Fukuzawa, S.-I. Bifunctional AgOAc/ThioClick Ferrophos complex-catalyzed asymmetric 1,3-dipolar cycloaddition of azomethine ylides with aryl- and alkylidene malonates. *Tetrahedron Letter* **2014**, *55*, 1306. (d) Yan, X. –X.; Peng, Q.; Zhang, Y.; Zhang, K.; Hong, W. Hou, X.-L. Wu, Y.-D. A Highly Enantio- and Diastereoselective Cu-Catalyzed 1,3-Dipolar Cycloaddition of Azomethine Ylides with Nitroalkenes. *Angew. Chem. Int. Ed.* **2006**, *45*, 1979. (e) Fukuzawa, S.-I.; Oki, H. Highly Enantioselective Asymmetric 1,3-Dipolar Cycloaddition of Azomethine Ylide Catalyzed by a Copper(I)/ClickFerrophos Complex. *Org. Lett.* **2008**, *10*, 1747. (f) Li, J.; Zhao, H.; Jiang, X.; Wang, X.; Hu, H.; Yu, L.; Zhang, Y. The Cyano Group as a Traceless Activation Group for the Intermolecular [3+2] Cycloaddition of Azomethine Ylides: A Five-Step Synthesis of (±)-Isoretronecanol. *Angew. Chem. Int. Ed.* **2015**, *54*, 6306. (g) Yamashita, Y.; Nam, L. C.; Dutton, M. J.; Yoshimoto, S.; Kobayashi, S. Catalytic Asymmetric *endo*-Selective [3+2] Cycloaddition Reactions of Schiff bases of α -Aminophosphonates with Olefins Using Chiral Metal Amides, *Chem. Commun.*, **2015**, *51*, 17064.

(11) Longmire, M. J.; Wang, B.; Zhang, X. Highly Enantioselective Ag(I)-Catalyzed [3 + 2]
Cycloaddition of Azomethine Ylides. J. Am. Chem. Soc. 2002, 124, 13400.

(12) Gothelf, A. S.; Gothelf, K. V.; Hazell, R. G.; Jørgensen, K. A. Catalytic Asymmetric 1,3-Dipolar Cycloaddition Reactions of Azomethine Ylides-A Simple Approach to Optically Active Highly Functionalized Proline Derivatives. *Angew. Chem. Int. Ed.* **2002**, *41*, 4236.

(13) During the preparation of our manuscript, copper(I)-catalyzed asymmetric 1,3-dipolar cycloaddition of azomethine ylides with 3-silylunsaturated esters appeared in the literature:
Tian, F.; He, -S, F.; Deng, H.; Yang, W, -L.; Deng, W, -P. β-Silyl Acrylates in Asymmetric [3 + 2] Cycloadditions Affording Pyrrolidine Azasugar Derivatives. *Org. Lett.* 2018, *20*, 3838.

(14) (a) Ghosh, S. K.; Singh, R.; Date, S. M. A novel reaction of dimethylsulfonium methylide with Michael acceptors: application to the synthesis of difficultly accessible vinyl silanes and styrenes .*Chem.* Commun. **2003**, 636. (b) Singh, R.; Singh, G. C.; Ghosh, S. K.; A Novel Approach Towards Dibenzylbutyrolactone Lignans Involving Heck and Radical Reactions: Application to (\pm)-Matairesinol. Synthesis. *Eur. J. Org. Chem.* **2007**, 5376. (c) Chowdhury, R.; Ghosh, S. K. Highly Regio- and Enantioselective Organocatalytic Conjugate Addition of Alkyl Methyl Ketones to a β -Silylmethylene Malonate. *Org. Lett.* **2009**, *11*, 3270. (d) Chowdhury, R.; Ghosh, S. K. Organocatalytic Michael addition of aldehydes to a β -silylmethylene malonate to form intermediates for the enantioselective synthesis of hydroxylated valerolactones and piperidines. *Tetrahedron: Asymmetry* **2010**, *21*, 2696. (e) Chowdhury, R.; Ghosh, S. K. Organo-catalyzed enantioselective synthesis of some β -silyl γ -alkyl γ -butyrolactones. *Tetrahedron: Asymmetry* **2011**, *22*, 1895.

(15) Fleming, I.; Henning, R.; Parker, D. C.; Plaut, H. E.; Sanderson, P. E. J. The phenyldimethylsilyl group as masked hydroxy group. *J. Chem. Soc., Perkin Trans. 1* **1995**, 317. (b) Tamao, K.; Tanaka, T.; Nakajima, T.; Sumiya, R.; Arai, H.; Ito, Y. Silafunctional compounds in organic synthesis. 30. Intramolecular hydrosilation of alkenyl alcohols: A new approach to the regioselective synthesis of 1,2- and 1,3-diol. *Tetrahedron Lett.* **1986**, *27*, 3377.

(16) (a) Kumar, T. P.; Chandrasekhar, S. Asymmetric Syntheses of All Stereoisomers of 3-Hydroxyproline; A Constituent of Several Bioactive Compounds. *Synthesis* 2012, *44*, 2889.
(b) Klein, C.; Hüttel, W. *Adv. Synth. Catal.* 2011, *353*, 1375. (c) Davies, S. G.; Fletcher, A. M.; Linsdall, S. M.; Roberts, P. M.; Thomson, J. E. Asymmetric Syntheses of (2R,3S)-3-Hydroxyproline and (2S,3S)-3-Hydroxyproline. *Org. Lett.* 2018, *20*, 4135.

(17) (a) Davis, F. A.; Fang, T.; Goswami, R. Asymmetric Synthesis of Substituted Prolines from δ-Amino β-Ketoesters. Methyl (2S,5R)-(+)-5-Phenylpyrrolidine-2-carboxylate. *Org. Lett.*

, *4*, 1599. (b) Deng, Q, -H.; Xu, H, -W, Yuen, A. W. -H.; Xu, Z. -J.; Che, C. -M. Ruthenium-Catalyzed One-Pot Carbenoid N-H Insertion Reactions and Diastereoselective Synthesis of Prolines. *Org. Lett.* **2008**, *10*, 1529.

(18) After 30 min, no product formation was observed. After 2.30 h, conversion of the reaction was \sim 5% (determined by ¹H NMR spectroscopy). No background reaction was observed when the reaction was performed at 0 °C for 24 h.

(19) Beside the *exo* (major isomer) and minor isomer, we observed a small amount of third isomer.

(20) Cabrera, S.; Gómez Arrayás, R.; Martín-Matute, B.; Cossío, F. P.; Carreteroa, J. C. Cu(I)– Fesulphos complexes: efficient chiral catalysts for asymmetric 1,3-dipolar cycloaddition of azomethine ylides. *Tetrahedron* **2007**, *63*, 6587.

(21) Kundu, P. K.; Singh, R; Ghosh, S. K. Silicon assisted diversified reaction of a β -silylmethylene malonate with dimethylsulfoxonium methylide. *J. Organomet. Chem.***2009**, *694*, 382.