Since benzene eluted with silacyclopentane on our GC columns, the above reaction can account for part (i.e., roughly one-third) of the apparent unexpectedly large yield increases of the latter at the highest study temperatures. The principal cause of this apparent increase, however, still remains a serious concern.

Secondary Free-Radical Reactions. Reaction rates in benzene were close to 3 times as fast as those under butadiene inhibition. Benzene is neither a free radical nor a silvlene inhibitor; therefore, both silvlene and free-radical chains can occur in the presence of benzene. Toluene should quench most of the free-radical-induced decomposition. Therefore, the differences in product yields observed in added benzene (Table IIB) and in added toluene (Table IIA) can be attributed mainly to free-radical processes. The yields of most of the products are about the same in the two studies; however, ethylene yields increase substantially. Ethylene, then, must be the major product of the free-radical-induced decomposition of n-butylsilane. This is reasonable on the basis of the expected products of the predicted Rice-Herzfeld type chains. Thus radical H abstraction from n-butylsilane can generate five different radicals whose possible decomposition pathways and rough statistical weights (based on reaction path degeneracies) are shown in reactions 28-33.

The above indicates that every 12 abstractions will produce roughly 11 ethylenes, four methanes, two propylenes, one 1-butene, and no 2-butenes. This correlates

	wt
·CH ₂ CH ₂ CH ₂ CH ₂ SiH ₃	3
CH3CHCH2CH2SiH3 - 30 - C3H6 + •CH2SiH3	2
CH3CH2CHCH2SiH3 31 1-C4H8 + *SiH3	1
$CH_3CH_2\mathring{C}HCH_2SiH_3 \xrightarrow{32} CH_3 \cdot + CH_2 = CHCH_2SiH_3$	1
CH3CH2CH2CHSiH3 33 H. + C2H4 + CH2=CHSiH3	2
CH3CH2CH2CH2SiH2 34 CH3. + C2H4 + CH2=SiH2	3

stat

rather well with the observed yields of the two studies.

Conclusions

The main primary dissociation processes for n-butyl-silane are 1,1- and 1,2-hydrogen eliminations: $\phi_{1,1}/\phi_{1,2} \simeq 2$. At high temperatures, C-C bond rupture also occurs. Alkylsilylenes (R > Me) decompose readily to olefins, and the mechanism of their decompositions is stepwise through silacyclic species formed by intramolecular silylene insertions into C-H bonds. Such insertions, involving 3-, 4-, and 5-centered cyclic transitions states, are all competitive at shock-tube reaction temperatures (i.e., T > 1065 K).

Acknowledgment. We are indebted to AFOSR for support under Grant 83-0209.

Registry No. n-BuSiH₃, 1600-29-9; silacyclopentane, 288-06-2.

Chemistry of Methylgallium(III) Compounds in Protic Solvents

O. T. Beachley, Jr.,* R. U. Kirss, R. J. Bianchini, and T. L. Royster

Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14214

Received November 3, 1986

The chemical properties of as well as routes to the formation of methylgallium(III) compounds in aqueous acidic solutions and in other protic solvents have been investigated. Aqueous perchloric acid solutions of Me_2GaClO_4 at room temperature are surprisingly resistant to hydrolytic cleavage of the gallium–carbon bond. Only 14% of the available methyl groups of Me_2GaClO_4 when dissolved in 0.0171 M $HClO_4$ are converted to CH_4 after a 3-month time period. In contrast, Me_2GaClO_4 undergoes a significantly faster methyl-transfer reaction with $Ga(ClO_4)_3$ in aqueous $HClO_4$ solution to form $MeGa^{2+}(aq)$ which in turn hydrolyzes to form $Ga^{3+}(aq)$ and methane. Approximately 36% of the initially available methyl groups form CH_4 in 3 months. The dimethylgallium cation also methylates $Hg^{2+}(aq)$ to form $MeGa^{2+}(aq)$ and $MeHg^+(aq)$ in aqueous solution, but $Me_2Ga^+(aq)$ does not react with $Al^{3+}(aq)$, $Zn^{2+}(aq)$, or $Na^+(aq)$. In a second series of experiments the methylation of gallium(III) by $Me_2Co(BDM1,3pn)$ ($BDM1,3pn = \{N,N'-\text{propane-}1,3-\text{diyl}[\text{bis}(\text{biacetyl monooxime imino})]\})$ was investigated in ethanol and acetone solutions by using UV titration and 1H NMR data. The observed stoichiometry of the reaction requires 1 mol of $Ga(ClO_4)_3$ for every 2 mol of $Me_2Co(BDM1,3pn)$. The identified products are Me_2Ga^+ and $MeCo(BDM1,3pn)^+$. In contrast, gallium(III) is not methylated by methylcobalamin in aqueous solution.

Introduction

Methylgallium compounds can exist in aqueous solution, and these solutions are exceedingly toxic. The inorganic derivatives of gallium are also poisonous. However, relatively little is known about the hydrolytic stability, the chemical reactions, or the modes of formation

of methylgallium compounds in aqueous solution. The hydrolysis of trimethylgallium is very rapid until the first methyl group has been removed, and then further hydrolysis becomes slow.^{1,4,5} The removal of the second and third methyl groups has been described as being particularly slow.^{1,4,5} For example, the reaction of a diethyl ether solution of Me₃GaOEt₂ with a slight excess of water gives Me₂GaOH, which in turn reacts readily with both aqueous

⁽¹⁾ Coates, G. E.; Green, M. L. H.; Wade, K. Organometallic Compounds, Meuthen: Inc., London 1967; Vol. 1, p 343.

⁽²⁾ Venugopal, B.; Luckey, T. D. Metal Toxicity in Mammals, Plenum Press: New York, 1977; Vol. 1, p 171.

⁽³⁾ Christensen, H. E.; Luginbyhl, T. T.; Carroll, B. S. Toxic Substances List, 1974, U.S. Department of Health, Education and Welfare.

⁽⁴⁾ Kenny, M. E.; Laubengayer, A. W. J. Am. Chem. Soc. 1954, 76, 1839.

⁽⁵⁾ Tobias, R. S.; Sprague, M. J.; Glass, G. E. Inorg. Chem. 1968, 7,

acids and bases at room temperature without rupture of the gallium-carbon bonds.⁵ No methane evolution⁵ was reported when either excess HNO₃, HClO₄, or NaOH was added to Me₂GaOH. However, after the resulting solutions had been at room temperature for several hours, very small quantities of a gas were observed.⁵ No further details regarding the extent of hydrolysis or the reaction products have been described in the literature.

The presence of toxic organometallic compounds in the aqueous environment has prompted numerous studies of reactions of metal ions with a variety of methylcobalt complexes. Mercury(II), 6,7 chromium(II),8 and thallium-(III)⁹ have been observed to react with either $\{N,N'\}$ propane-1,3-diyl[bis(biacetyl monooxime imino)]}dimethylcobalt(III) [Me₂Co(BDM1,3pn)] or bis(dimethylglyoximato)monomethylcobalt(III) to form MeHg⁺. MeCr²⁺, and MeTl²⁺, respectively. Zinc(II), cadmium(II), and lead(II) also react with 2 mol of Me₂Co(BDM1,3pn) in 2-propanol to initially form ZnMe₂, CdMe₂, and PbMe₂, respectively, which then rapidly hydrolyze in the reaction solvent to liberate 2 mol of methane/mol of metal.¹⁰

The increasing importance of methylgallium compounds to the electronics industry as well as the potential presence and impact of methylgallium compounds in the environment leads us to study the chemical properties of methylgallium compounds in aqueous solution and in protic solvents. In this paper we report the results of our investigations of the hydrolytic stability of methylgallium compounds in dilute perchloric acid solution and of methyl-transfer reactions between aqueous solutions of dimethylgallium(III) cations and gallium(III), aluminum-(III), and zinc(II) perchlorate salts and mercury(II) nitrate. Secondly, we report on the methylation of gallium(III) by Me₂Co(BDM1,3pn) in protic solvents. Our results dem-

Me₂Co(BDM1,3pn)

onstrate that aqueous solutions of dimethylgallium(III) cations are stable to hydrolysis of the gallium-carbon bond over a limited time period, but methyl-transfer reactions can occur between Me₂Ga⁺(aq) and Ga³⁺(aq) and Hg²⁺(aq). Furthermore, Me₂Co(BDM1,3pn) reacts with gallium(III) perchlorate in a 2:1 stoichiometry in ethanol solution to produce Me₂Ga⁺ as the only methylgallium(III) product. These reactions represent the first examples of the methylation of gallium(III) in protic solvents.

Experimental Section

General Data. All of the compounds used in these studies, with the exception of trimethylgallium diethyl etherate, were handled on the laboratory bench top. Trimethylgallium diethyl etherate was prepared from GaCl3 and the methyl Grignard reagent in diethyl ether under an argon atmosphere. Dimethylgallium hydroxide was prepared from isolated and purified

Me₃Ga·OEt₂ and water in diethyl ether at room temperature.⁵ Dimethylgallium perchlorate⁵ was prepared from Me₂GaOH and HClO₄. The cobalt complex Me₂Co(BDM1,3pn) was prepared from Co(BDM1,3pn)[ClO₄]₂ by using previously published methods. 10,11 The formation of CH₄ from the hydrolysis of methylgallium(III) compounds was confirmed after isolation by fractional vacuum distillation and identification by vapor pressure measurements at -196 °C (10 mm).

Spectral Measurements. Infrared spectra were recorded in the range 4000-250 cm⁻¹ by using either a Perkin-Elmer 457 or 683 spectrometer. Spectra of solids were observed as Nujol mulls by using KBr or CsI windows. Ultraviolet spectra were recorded by using a Perkin-Elmer 575 UV-visible spectrometer and 1-cm quartz cells. Proton NMR spectra were recorded by using a Varian EM-390 spectrometer. Chemical shifts are reported in δ units (ppm) with internal references of benzene (δ 7.13) or sodium 3-(trimethylsilyl)-1-propanesulfonate (δ 0.00). The following chemical shifts (reference benzene, 7.13 ppm) of starting materials were observed: Me_2GaOH (acetone- d_6) -0.56 (Me, s), 4.28 (H, s); $Me_2Ga(ClO_4)$ (acetone- d_6) -0.29 (Me, s); $Me_2Co(BDM1,3pn)$ (acetone- d_6) -0.19 (Me, s), 1.94 (s), 1.84 (m), 2.04 (s), 4.52 (s).

Determination of Hydrolytic Stability of Me₂GaClO₄ in Aqueous Solutions by Measuring the Evolved Methane. The hydrolytic stability of an aqueous acidic solution of Me₂GaClO₄ was monitored by measuring the evolved CH4 by using a Toepler pump-gas buret assembly. The following data were observed for a solution of 2.23 mL that was 0.994 M Me₂GaClO₄ (2.217 mmol), 0.0171 M HClO₄, and 1.27 M acetone [time (mmol of CH₄, % available methyl groups converted to CH₄)]: 6 (0.0629, 1.42), 13 (0.121, 2.73), 20 (0.166, 3.74), 27 (0.210, 4.74), 34 (0.254, 5.73), 48(0.356, 8.02), 105 days (0.647, 14.6).

In a second series of experiments, the methane evolved from an aqueous solution of 2.96 mL that was 1.02 M Me₂GaClO₄ (3.008 mmol), 0.884 M Ga(ClO₄)₃ (2.617 mmol), 0.0164 M HClO₄, and 1.00 M acetone was investigated. The following measurements of evolved CH4 were observed [time (mmol of CH4, % available methyl groups converted to CH₄)]: 6 (0.157, 2.61), 13 (0.336, 5.59), 20 (0.478, 7.94), 27 (0.610, 10.1), 34 (0.761, 12.6), 48 (1.12, 18.6), 76 (1.93, 32.1), 103 days (2.22, 36.9).

Determination of Hydrolytic Stability of Me₂GaClO₄ in Aqueous Solution by Using ¹H NMR Spectroscopy. The hydrolytic stability of Me₂GaClO₄ contained in sealed NMR tubes was evaluated by using ¹H NMR spectral data. For one series of experiments an aqueous solution that was 1.25 M Me₂GaClO₄, 0.020 M HClO₄, and 1.25 M acetone was prepared. The relative intensity of the single line due to Me₂GaClO₄ vs. the line due to acetone was monitored over a period of 150 days. The following data were observed time (Integration ratio Me₂Ga⁺(aq)/acetone): 0 (1.0), 0.79 (0.95), 1.01 (1.0), 2.04 (0.86), 5.96 (0.96), 13.00 (0.99),14.00 (0.96), 34.00 (0.99), 150.00 days (1.0). After 150 days, an extremely small line due to MeGa²⁺(aq) was just barely visible in the spectrum.

For a second series of experiments an aqueous solution that was 1.12 M Me₂GaClO₄, 0.969 M Ga(ClO₄)₃, 1.12 M acetone, and 0.0179 M HClO₄ was monitored over a period of 150 days. During the course of this study, the ¹H NMR line due to Me₂Ga⁺(aq) decreased in intensity and a new line due to MeGa²⁺ appeared but never became very large relative to the line due to acetone. The following data were observed time (integration ratio Me₂Ga⁺(aq)/acetone, MeGa²⁺(aq)/acetone): 0 (0.92, 0), 0.79 (0.89, 0.027), 1.01 (0.95, 0.025), 2.04 (0.90, 0.024), 5.96 (0.85, 0.063), 13.00 (0.74, 0.11), 34.00 (0.62, 0.17), 150.00 days (0.042, 0.31).

In order to determine the effects of other metal perchlorate salts on the hydrolytic stability of Me₂Ga⁺(aq), saturated aqueous solutions of Me₂GaClO₄ containing 0.0912 M HClO₄ were mixed with aqueous solutions of Al(ClO₄)₃, Zn(ClO₄)₂, and NaClO₄. The ¹H NMR spectrum of these resulting solutions were monitored over a 150-day time period. The line due to Me₂Ga⁺(aq) did not decrease in intensity, and no new lines suggesting the formation of MeGa²⁺(aq) or any other methylmetal species appeared.

Methyl-Transfer Reactions between Me₂GaClO₄ and Hg(NO₃)₂ in Aqueous HClO₄ Solution. The reaction between Me₂GaClO₄ and Hg(NO₃)₂ in aqueous perchloric acid was mon-

⁽⁶⁾ Magnuson, V. E.; Weber, J. H. J. Organomet. Chem. 1974, 74, 135. (7) Tauzher, G.; Dreos, R.; Costa, G.; Green, M. J. Organomet. Chem. 1974, 81, 107.

⁽⁸⁾ Espenson, J. H.; Shveima, J. S. J. Am. Chem. Soc. 1973, 95, 4468. (9) Ablex, P.: Dockal, E. R.: Halpern, J. J. Am. Chem. Soc. 1973, 95.

⁽¹⁰⁾ Whitman, M. W.; Weber, J. H. Inorg. Chem. 1976, 15, 2375.

⁽¹¹⁾ Costa, G.; Mestroni, G.; Licari, T.; Mestroni, E. Inorg. Nucl. Chem. Lett. 1969, 5, 561.

itored by means of a ¹H NMR spectral titration. To an NMR tube that contained 1 mL of saturated Me₂GaClO₄ solution in $0.0912~M~HClO_4$ was added $0.173~M~Hg(NO_3)_2$ dropwise. The $^1H~NMR$ spectrum was recorded after each Hg^{2+} addition. The data support the formation of MeGa²⁺(aq) and MeHg⁺(aq) (see Results and Discussion).

UV Spectral Titrations. Solutions of Me₂Co(BDM1,3pn) in absolute ethanol (0.203-0.292 mM) were titrated with 4.14 mM Ga(ClO₄)₃ in absolute ethanol in 0.50-mL increments. The extent of reaction was monitored by following the change in the UV spectrum in the 390-500 nm range of a sample contained in 1-cm quartz cells after equilibrium was established. The addition of Ga(ClO₄)₃ was discontinued after at least three additions caused no change in the absorbance at 412 nm. The purity of Me₂Co-(BDM1,3pn) was verified before each titration by recording the spectrum, noting the presence of the absorption at 412 nm characteristic of Me₂Co(BDM1,3pn) as well as the absence of the absorption at 470 nm characteristic of MeCo(BDM1,3pn)+, and calculating the extinction coefficient of Me₂Co(BDM1.3pn). Similar UV titrations were studied in order to detect a potential reaction between methylcobalamin and Ga(ClO₄)₃ in water.

Identification by ¹H NMR Data of the Methylated Gallium Species from the Reaction of $Ga(ClO_4)_3$ with Me_2Co (BDM1,3pn). A small quantity of Me₂Co(BDM1,3pn) was dissolved in the desired solvent, and the ¹H NMR spectrum was recorded. Then, a sample of Ga(ClO₄)₃ (0.50 mol/mol of Me₂Co(BDM1,3pn)) was added, and the spectrum was recorded a second time. The appearance of lines assigned to MeCo-(BDM1,3pn)⁺, Me₂Ga⁺, and/or MeGa²⁺ was noted. After the spectrum showed no further change with time, a small quantity of a known solution of Me₂GaClO₄ was added to verify the identity of the Me₂Ga⁺ line. These studies were carried out in both acetone- d_6 and ethanol- d_6 .

Results and Discussion

Our experimental results demonstrate that aqueous acidic solutions of Me₂GaClO₄, which are reported⁵ to contain Me₂Ga(H₂O)₂⁺ and are represented as Me₂Ga⁺(aq), are surprisingly resistant to hydrolytic cleavage of the gallium-carbon bond to produce methane. In contrast, Me₂Ga⁺(aq) undergoes a significantly faster methyltransfer reaction with Ga3+(aq) in aqueous HClO4 solution to form MeGa²⁺(aq) that in turn hydrolyzes to form Ga³⁺(aq) and methane. Available data also suggest that MeGa²⁺(aq) hydrolyzes much more rapidly than Me₂Ga⁺(aq). The dimethylgallium cation also methylates Hg²⁺(aq) to form MeGa²⁺(aq) and MeHg⁺(aq), but Me₂Ga⁺(aq) does not react with Al³⁺(aq), Zn²⁺(aq), or Na+(aq). Conversely, gallium(III) is methylated by Me₂Co(BDM1,3pn) to form Me₂Ga⁺ and MeCo-(BDM1,3pn)⁺ in ethanol and acetone solutions. These methylation reactions of gallium represent the first examples in which gallium-carbon bonds are formed in protic solvents, including water.

The hydrolytic stability of methylgallium cationic species in HClO₄ solution and the propensity of these cations to undergo methyl-transfer reactions were monitored by measuring the evolved CH₄ and by following the changes in the ¹H NMR spectrum of related solutions. In the ¹H NMR experiments, the intensities of the lines due to Me₂Ga⁺(aq) (-0.35 ppm, referenced to sodium 3-(trimethylsilyl)propanesulfonate) and acetone were compared for 0.02 M HClO₄ solutions equimolar in Me₂GaClO₄ and Me₂CO. The NMR signal due to Me₂Ga⁺(aq) did not decrease in intensity over a period of 5 months, and no other new signals of significant intensity appeared. In the experiments in which the CH₄ was measured, only 0.0642 mmol of CH₄ was formed after 6 days from 2.217 mmol of Me₂Ga⁺(aq) and only 0.647 mmol of CH₄ was measured after 105 days, less than 15% of the available methyl groups. Both types of observations confirm that the hydrolysis of Me₂Ga⁺(aq) in 0.02 M HClO₄ is exceedingly

slow. However, when a 0.018 M HClO₄ solution equimolar in Me₂GaClO₄, Ga(ClO₄)₃, and Me₂CO was observed over the same time period, the intensity of the ¹H NMR line due to Me₂Ga⁺(aq) decreased with time and one new line at -0.14 ppm (referenced to sodium 3-(trimethylsilyl)propanesulfonate) due to MeGa²⁺(aq) appeared in the spectrum and grew slightly in intensity but never became very large relative to the acetone line. (The assignment of the new line to MeGa²⁺(aq) is based on a comparison of the chemical shift of this line to a line in the spectrum of MeGaCl₂ dissolved in a mixture of HClO₄, acetone, and water at the identical pH.) The Me₂Ga⁺(aq) line decreased to half of its original intensity in approximately 80 days. However, the sum of the intensities of the lines due to Me₂Ga⁺(aq) and MeGa²⁺(aq) decreased relative to the intensity of the internal acetone sample. In the quantitative experiments of evolved CH₄, 0.157 mmol of CH₄ was formed after 6 days from an acidic solution that initially contained 3.01 mmol of Me₂Ga⁺(aq) and 2.617 mmol of Ga³⁺(aq). This quantity of CH₄ is almost twice that observed for the solution that contained Me₂Ga⁺(aq) as the only initial gallium species. Our observations are consistent with the occurrence of a methyl-transfer reaction (eq 1) and the hydrolysis of the resultant MeGa²⁺(aq) (eq

$$Me_2Ga^+(aq) + Ga^{3+}(aq) \rightarrow 2MeGa^{2+}(aq)$$
 (1)

$$MeGa^{2+}(aq) + H^{+} \rightarrow Ga^{3+}(aq) + CH_{4}$$
 (2)

2). Thus, MeGa²⁺(aq) is significantly more susceptible to gallium-carbon bond cleavage with methane formation than is Me₂Ga⁺(aq) in aqueous perchloric acid solution.

Methyl-transfer reactions also occur between Me₂Ga⁺(aq) and Hg²⁺(aq) in aqueous HClO₄ solution (eq 3), but this reaction is significantly faster than methyl transfer between Me₂Ga⁺(aq) and Ga³⁺(aq). The intensity

$$Me_2Ga^+(aq) + Hg^{2+}(aq) \rightarrow MeGa^{2+}(aq) + MeHg^+(aq)$$
(3)

of the ¹H NMR line due to Me₂Ga⁺(aq) at -0.35 ppm, referenced to sodium 3-(trimethylsilyl)propanesulfonate, in a solution initially equimolar in Me₂Ga⁺(aq) and Hg²⁺(aq), decreased to half of its original intensity in only 31 min, and two new lines at 1.08 and -0.14 ppm appeared in the spectrum. The line at 1.08 ppm is assigned to MeHg⁺(aq) by comparison with the literature¹² whereas the line at -0.14 ppm is due to MeGa²⁺(aq). The observed formation of MeHg⁺(aq) instead of HgMe₂ is consistent with previously observed methylation reactions of mercury(II). Others⁹ have also observed that it is more difficult to methylate $MeHg^+(aq)$ than $Hg^{2+}(aq)$ due to the decreased electrophilic character of MeHg⁺(aq). It is significant to note that mercury(II) acetate is also methylated¹³ by Me₂Tl(MeCO₂), another group 3 alkyl, to yield $MeHg^{+}(aq)$ and $MeTl^{2+}(aq)$.

N,N'-Propane-1,3-diyl[bis(biacetyl monoxime imino)]dimethylcobalt(III), Me₂Co(BDM1,3pn), methylates gallium(III) perchlorate and gallium(III) chloride in polar solvents. This reaction represents the first reported example of the formation of a dimethylgallium(III) species in a protic solvent. The stoichiometry of the reaction as shown by eq 4 is consistent with all UV titration data. In

$$Ga^{3+} + 2Me_2Co(BDM1,3pn) \rightarrow Me_2Ga^+ + 2MeCo(BDM1,3pn)^+$$
 (4)

⁽¹²⁾ Rabenstein, D. L.; Ozubko, R.; Libich, S.; Evans, C. A.; Fairhurst, M. T.; Suvanprakorn, C. J. Coord. Chem. 1974, 3, 263.

⁽¹³⁾ Kurosawa, M.; Okawara, R. Inorg. Nucl. Chem. Lett. 1967, 3, 93

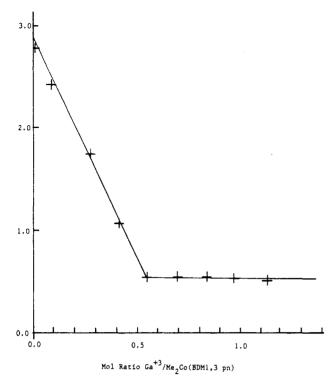


Figure 1. Titration of Me₂Co(BDM1,3pn) with Ga(ClO₄)₃·6H₂O.

the UV titrations, absolute ethanol solutions of Ga(ClO₄)₃ were added to ethanol solutions of Me₂Co(BDM1,3pn). The linear decrease in the absorbance at 412 nm, characteristic of Me₂Co(BDM1,3pn),¹⁰ as well as the increase in the absorbance at 470 nm, characteristic of the methylcobalt(III) product¹⁰ MeCo(BDM1,3pn)+, were used to determine the extent of reaction. A plot of the absorbance at 412 nm vs. the mole ratio Ga⁺³/Me₂Co(BDM1,3pn) had a distinct break at 0.532 mol of Ga³⁺/mol of Me₂Co-(BDM1,3pn) (Figure 1). The observation of only the absorbance at 470 nm¹⁰ at the end of the titration demonstrates the formation of MeCo(BDM1,3pn)+ and precludes the possibility that both methyl groups are removed from cobalt.

The proposed stoichiometry of the Ga³⁺-Me₂Co-(BDM1,3pn) reaction and the identity of the products are also supported by ¹H NMR spectral data. The products observed after reaction were MeCo(BDM1,3pn)+ and Me₂Ga⁺. The NMR spectrum of Me₂Co(BDM1,3pn) in acetone is characterized by a sharp singlet at -0.16 ppm (referenced to benzene at 7.13 ppm) for the methyl groups bound to cobalt. This resonance disappeared as Ga(ClO₄)₃

was added, and two new sharp lines at 0.51 and -0.26 ppm due to methyl groups of MeCo(BDM1,3pn)⁺ and Me₂Ga⁺, respectively, appeared. The identity of the species responsible for the -0.26 ppm line, Me₂Ga⁺, was verified by examining the ¹H NMR spectrum of the product mixture after the addition of a solution of pure Me₂GaClO₄. The stoichiometry of the methylation reaction of gallium(III) by Me₂Co(BDM1,3pn) and identity of the reaction products were independent of the solvent, ethanol, acetone, or acetonitrile, and the gallium(III) reactant, Ga(ClO₄)₃ and $Ga(NO_3)_3$.

Gallium species other than simple solvated Ga³⁺ ions have also been shown to undergo methyl-transfer reactions with Me₂Co(BDM1,3pn) in acetone and ethanol solutions. Anhydrous GaCl₃ dissolves in ethanol, and acetone but the exact nature of the solubilized species is unknown. Therefore, the gallium(III) solute¹⁴ will be referred to as [GaCl_n]⁽³⁻ⁿ⁾⁺. These solutions react readily with Me₂Co-(BDM1,3pn) in a 1:2 stoichiometry to yield MeCo-(BDM1,3pn)⁺ and a dimethylgallium(III) product according to data from UV spectroscopic titrations and ¹H NMR studies. It is also significant that $[GaCl_n]^{(3-n)+}$ undergoes a faster methyl-transfer reaction with Me₂Ga⁺ in acetone than Ga³⁺ from Ga(ClO₄)₃ does in water. The intensity of the ¹H NMR line due to Me₂Ga⁺ decreased to half intensity in 112 h in the presence of excess $[GaCl_n]^{(3-n)+}$ in acetone solution, and a new line due to $MeGa^{2+}$ appeared.

The methylcobalt(III) complex Me₂Co(BDM1,3pn) is considered to be of high reactivity for the methylation of metal ions whereas methylcobalamin is significantly less reactive.10 Since Ga3+ reacted so readily with Me₂Co-(BDM1,3pn) to form Me₂Ga⁺, the reactivity of methylcobalamin toward Ga(ClO₄)₃ in aqueous solution was studied by UV titration experiments. However, no reaction occurred. The absorbance of the bands of methylcobalamin at 520 and 350 nm did not change significantly as an aqueous solution of Ga(ClO₄)₃ was added. Thus, it is unlikely that exceedingly toxic methylgallium species will be formed directly by methylcobalamin methylation in the aqueous environment.

Acknowledgment. This work was supported in part by the Office of Naval Research.

Registry No. Me₂GaClO₄, 21978-10-9; Hg(NO₃)₂, 10045-94-0; MeGa²⁺, 106733-82-8; MeHg⁺, 22967-92-6; Me₂Co(BDM1,3pn), 33569-60-7; Ga(ClO₄)₃, 19854-31-0.

⁽¹⁴⁾ Lincoln, S. F.; Sandercock, A. C.; Stranks, D. R. J. Chem. Soc., Dalton Trans. 1975, 669.