Received 22 March 2013,

Revised 17 May 2013,

Accepted 28 May 2013

(wileyonlinelibrary.com) DOI: 10.1002/jlcr.3081

A facile synthesis of 5,5-dideutero-4-dimethyl (phenyl)silyl-6-undecyl-tetrahydropyran-2-one as a deuterium labeled synthon for (–)-tetrahydrolipstatin and (+)- δ -hexadecanolide[†]

Sandip J. Wagh,^a Raghunath Chowdhury,^a Sulekha Mukhopadhyay,^b and Sunil K. Ghosh^{a*}

Deuterium-labeled biologically active compounds are gaining importance because they can be utilized as tracers or surrogate compounds to understand the mechanism of action, absorption, distribution, metabolism, and excretion. Deuterated drug molecules (heavy drugs) become novel as well as popular because of better stability and bioavailability compared with their hydrogen analogs. Labeling of organic molecules with deuterium at specific positions is thus gaining popularity. In this work, we have exploited a highly regioselective and enantioselective direct Michael addition of methyl- d_3 alkyl ketones to dimethyl (phenyl)silylmethylene malonate that was catalyzed by (*S*)-*N*-(2-pyrrolidinylmethyl)pyrrolidine/trifluoroacetic acid/ D₂O combination with high yield and isotopic purity. The 5,5-dideutero-4-dimethyl(phenyl)silyl-6-undecyl-tetrahydropyran-2-one was obtained from the adduct of methyl- d_3 undecanyl ketone and dimethyl(phenyl)silylmethylene malonate by a silicon controlled diastereoselective ketone reduction, lactonization, and deethoxycarbonylation. The dideuterated silylated tetrahydropyran-2-one is the precursor for *geminal* ²H₂-labeled (+)-4-hydroxy-6-undecyl-tetrahydropyran-2-one, an advanced intermediate for *gem*-dideutero (-)-tetrahydrolipstatin and (+)- δ -hexadecanolide syntheses.

Keywords: deuterium labeling; organocatalysis; Michael addition; 5,5-dideutero-4-dimethyl(phenyl)silyl-6-undecyl-tetrahydropyran-2-one; methyl-d₃ alkyl ketones, dimethyl(phenyl)silylmethylene malonate; 4,4-dideuterated 3-silyl-5-keto ester

Introduction

There are significant advancements in the analytical techniques for the detection of stable isotopes (e.g., ²H and ¹³C) attached to organic molecules by NMR or mass spectrometry. Therefore, there is a surge of interest in applications of stable isotope-labeled compounds in general and deuterium (²H or D)-labeled compounds, in particular, in a variety of scientific fields. Deuterium-labeled biologically active compounds are utilized as tracers or surrogate compounds to understand the mechanism of action, absorption, distribution, metabolism, and excretion.¹⁻³ Compounds labeled with deuterium at specific positions are used in the investigation of chemical and enzymatic reaction mechanisms,^{4,5} kinetics,^{6–10} and the structural elucidation of biological macromolecules.¹¹

The difference in physical and chemical properties between H and D is very small but measurable. Deuteration increases lipophilicity of organic molecules. A C–D bond is shorter than a C–H bond. There is a slight increase in basicity of deuterated amines and a slight decrease in acidity of deuterated phenols and carboxylic acids. The primary use of D substitution in place of H in drug discovery is to use the kinetic isotope effect (KIE), which usually ranges from onefold to sevenfold, with exceptions. Thus, site specific substitution of hydrogen with D where H atom abstraction is the rate determining step that can impede metabolism and also can reduce toxicity. Because of KIE, deuterium slows epimerization thus enhances stereochemical stability. Recently, deuterated drug molecules (heavy drugs) become novel as well as popular drugs that exhibit better stability and bioavailability compared with their hydrogen analogs.^{12,13} Deuterated paroxetine,^{14,15} an antidepressant (Figure 1) altered the drug's metabolism and prolonged its activity *in vivo*. The metabolism rate of deuterated analog of venlafaxine,¹⁶ dual serotonin/norepinephrine reuptake inhibitor dropped to 50%. The nephrotoxicity of efavirenz (Figure 1), an HIV-1 non-nucleoside reverse transcriptase inhibitor got reduced to a good extent.¹⁷ The chiral center next to α -ketoamide (*S*-configuration) in telaprevir (Figure 1) tends to epimerize (*R*-configuration), which was suppressed through the deuteration at the specified position of telaprevir.¹⁸

The 4-hydroxytetrahydropyran-2-one (commonly known as β -hydroxy- δ -lactone) subunit is present in a large number of

^aBio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India

^bChemical Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India

*Correspondence to: Sunil K. Ghosh, Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India. E-mail: ghsunil@barc.gov.in

[†]Supporting information may be found in the online version of this article.

biologically important molecules^{19–21} (Figure 2) and it has been shown²² from structure activity relationship (SAR) studies that the lactone moiety is essential for the biological activity. The synthesis of 4-hydroxytetrahydropyran-2-ones can be achieved from the corresponding 4-dimethyl(phenyl)silyl-tetrahydropyran-2-ones by a stereospecific Fleming–Tamao^{23,24} oxidation of dimethyl

Figure 1. Some D-labeled pharmaceuticals.

inhibitor analogue

R = H Compactin R = Me Mevinolin

Figure 2. Some biologically active β -hydroxy- δ -lactones.

and aroun with retention

(phenyl)silvl group to a hydroxyl group with retention of configuration. Labeled 4-dimethyl(phenyl)silvltetrahydropyran-2ones with deuterium at specific positions would therefore be useful for detailed biological studies for such kind of molecules. The H–D exchange reactions are often carried out at C–Hs α to a carbonyl or OH groups, aryl-C-Hs and benzylic C-Hs because of the reactivity of these positions.^{25–27} Inactivated positions do not undergo H-D exchange so easily, although some efforts have been made for perdeuteration of alkanes.^{28–30} We propose a selective deuterium labeling strategy at the unreactive 5-position of the tetrahyropyran-2-one as shown in Scheme 1. The 5,5-dideutero-4-dimethyl(phenyl)silyl-tetrahydropyran-2-ones $1-d_2$ could be obtained from the 4,4-dideuterated 3-silyl-5-keto ester $2-d_2$ which in turn could be prepared by a regioselective and enantioselective Michael addition of methyl- d_3 alkyl ketones **3** to a silylmethylene malonate 4. Herein, we report enantioselective organo-catalyzed Michael addition of methyl- d_3 alkyl ketones **3** to silylmethylene malonate 4 and conversion of one of the adducts to 5,5-

Scheme 1. Retro synthetic analysis of 6-alkyl-5,5-dideutero-4-dimethyl(phenyl) silyl-tetrahydropyran-2-ones.

Scheme 3. Michael addition of methyl ketones to malonate 4.

Scheme 4. Michael addition of acetone-d₆ to malonate 4.

Scheme 5. Prototropy of the enamines.

Scheme 6. Synthesis of methyl- d_3 alkyl ketones.

Result and discussion

Recently, we have shown³⁵ a highly regioselective Michael addition of alkyl methyl ketones to silylmethylene malonate **4** using *N*-(2-pyrrolidinylmethyl)pyrrolidine **8**³⁶ (Scheme 3) and Trifluoroacetic acid combination as the catalyst system of choice and *N*-methyl-2-pyrrolidone (NMP) as the solvent. A large number of alkyl methyl ketones with varying steric or electronic nature were reacted with malonate **4** to give exclusively the adducts **2** with high yield, regioselectivity and enantioselectivity (Scheme 3). The optimized conditions were to use 4–12 equiv of alkyl methyl ketone with respect to silylmethylene malonate **4** and 30 mol% of catalyst **8** in combination with 10 mol% of TFA in NMP (0.25 M) at –10 °C for 3–7 days providing the adducts **2** in very good yield (>76%) and with high enantiomeric excess (>90%). The formation of the regioisomeric addition product could not be detected in any of the cases.

When we replaced ordinary acetone with acetone- d_6 **3a** (99.5 atom% D) in the aforementioned optimized conditions, we obtain our desired product **2a**- d_5 (Scheme 4) in 64% yield but with deteriorated deuterium content (CD₂:71 atom% D, CD₃:61 atom% D).

Although, the result was slightly disappointing, it was not totally unexpected. Barbas III³⁷ has suggested that these reactions proceeded through enamine intermediates^{38,39} of the

Table 1. Conjugate addition of methyl- d_3 ketones 3a-e to silyl malonate 4						
$4 + R = CD_{3}; 3a R = Cb_{3}; 3a R = Cb_{13}; 3c R $						
Entry	Ketone (equiv)	Time (d)/ Temp (°C)	Product	Yield ^a	%ee ^b	atom% D (CD ₂) ^c
1	3a (10)	4/-10	2a - d_5	64	77	>95
2	3b (5)	2/-10	2b - d_2	82	99	93
3	3c (4)	4/-10	2c - d_2	80	86	82
4	3d (5)	3/-10	2d - d_2	88	96	93
5	3e (5)	3/4	2e - d_2	95	90	82
Ee, enantiomeric excess.						

^aYield of chromatographically homogeneous product.

^bDetermined by HPLC.

^cFrom ¹H NMR spectra by comparing integration of the scrambled CD_2 peaks with terminal Me or ester Me groups.

Scheme 7. Synthesis of 5,5-dideutero substituted tetrahydropyran-2-one $1-d_2$.

carbonyl donors. It is well-established^{40,41} that in the presence of acid, the prototropy of the reactive enamine is more favorable, and the equilibration between the more and less substituted enamines **9** and **10** (Scheme 5) could occur. Thus, the moisture content of the solvent and the use of non-deuterated TFA might have scrambled the D–H in donor acetone- d_6 or in the product resulting in the lowering of deuterium content in the product. The deuterium content of the product **2a**- d_5 could be improved to a good extent (CD₂:>95 atom% D, CD₃:>95 atom% D) by using dry NMP and adding a small amount of D₂O in to the reaction mixture.

To see the generality of this process, a few methyl- d_3 alkyl ketones *viz.* 2-heptanone **3b**, 2-octanone **3c**, 2-undecanone **3d**, and 2-tridecanone **3e** were synthesized from commercially available starting materials as depicted in Scheme 6. An addition of an ethereal solution of methyl magnesium iodide- d_3 (99 atom% D) to Weinreb's amides **11b**– e^{42} directly gave methyl- d_3 ketones **3b–e** in very good yield and isotopic purity (Scheme 6).

When this methyl alkyl ketones **3a–d** were reacted with the silyl malonate **4** under optimal conditions, we obtained only one regioisomeric product in very good yield and with good to excellent enantioselectivity as depicted in Table 1. The deuterium content at the specified site was also very high (82–>95% atom% D) in all cases. The reaction requires excess amount of ketones (4–10 equiv) to obtain appreciable rate of reaction and completion within a period mentioned in Table 1. Valuable ketones that have been used in excess can be recovered partially during isolation of products.

We next carried out a Si-directed reduction³¹ of the carbonyl group in **2e**- d_2 to intermediate alcohol that could not be isolated but provided directly the lactone **12**- d_2 without any loss of D (Scheme 7). The ester group in **12**- d_2 was hydrolyzed with lithium hydroxide to give the intermediate acid, which on refluxing in toluene gave 5,5-dideutero analog of the 4-silyl-6-undecyl-tetrahydropyran-2-one **1**- d_2 . The relative and absolute stereochemistry of the silyl and the alkyl groups in **1**- d_2 were assigned from the ¹H and ¹³C chemical shift values³² and comparing the specific rotation value $[\alpha]_D^{25} = -30.8$ (*c* 2.6, CHCl₃); *lit.*³² $[\alpha]_D^{25} = -39.9, c$ 1.93, CHCl₃). The proteo analog **1** has already been converted³² to 4-hydroxy-6-undecyl-tetrahydropyran-2-one **5**, an advanced intermediate for (–)-tetrahydrolipstatin **6**³³ and (+)- δ -hexadecanolide **7**³⁴ syntheses.

Conclusions

In conclusion, we have developed a directly organocatalytic asymmetric Michael addition of alkyl methyl- d_3 ketones to a silylmethylene malonate in good yields and with high regioselectivity and enantioselectivity. The deuterium content of the products at the specified position is appreciably high. This

is also the first successful attempt to engage unsymmetrical alkyl methyl- d_3 ketones to add via methyl terminal of acetyl group in such reactions. One of the ketone adducts thus obtained has already been converted to *gem*-dideutero substituted tetrahydropyran-2-one, the precursor for deuterated analog of 4-hydroxy-6-undecyl-tetrahydropyran-2-one, an advanced intermediate for (–)-tetrahydrolipstatin and (+)- δ -hexadecanolide syntheses. The 4-silyl-6-alkyl-tetrahydropyran-2-ones hold promise for *O*-and *N*-heterocyclic natural/pharmaceutical products with deuterium labeling at specific positions.

Experimental

General experimental

High-performance liquid chromatography grade acetone and NMP were used as received. Dimethyl(phenyl)silyl chloride, CD₃MgBr (1 M solution in ether) and (*S*)-*N*-(benzyloxycarbonyl)proline were obtained from Aldrich (MO, USA). Silylmethylene malonate **4** was prepared following a procedure reported by us.⁴³ The catalyst **8** was prepared following the literature procedures.³⁶

Solvent removal was carried out using a rotary evaporator connected to a dry ice condenser. TLC (0.5 mm) was carried out using homemade silica plates with fluorescence indicator. Column chromatography was performed on silca gel (230–400 mesh).

¹H and ¹³C NMR spectra were recorded in a 200 MHz (¹H: 200 MHz, ¹³C: 50 MHz) or 500 MHz (¹H: 500 MHz, ¹³C: 125 MHz) or 600 MHz (¹H: 600 MHz, ¹³C: 150 MHz) or 700 MHz (¹H: 700 MHz, ¹³C: 175 MHz) spectrometers. ¹H and ¹³C shifts are given in ppm, δ scale and are measured relative to internal CHCl₃ and CDCl₃ as standards, respectively. Enantiomeric excess determinations were carried out by HPLC using a JASCO PU-2080 instrument (Japan) fitted with a Daicel chiralpak AD-H column and UV-2075 detector with λ fixed at 254 nm. Optical rotations were measured in a JASCO DIP Polarimeter (Japan).

General procedure I: preparation of *N*-methoxy-*N*-methylamides 11b-e

In a typical procedure, an acyl chloride (10 mmol) and *N*,*O*dimethylhydroxylamine hydrochloride (1.1 g, 11 mmol) was dissolved in dichloromethane (100 mL) at room temperature. The solution was cooled to 0 °C, and pyridine (1.9 mL, 22 mmol) was added to it. The reaction mixture was stirred at room temperature for 1 h and evaporated under reduced pressure. The residue was partitioned between brine and dichloromethane. The organic extract was dried over MgSO₄ and evaporated under reduced pressure to afford the amides **11b–e** in 93–96% yield which were sufficiently pure and used directly for the next step.

N-Methoxy-N-methylhexanamide 11b

Yield: 94%; IR (neat): 3433, 2959, 1653, 1463, 1416 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 0.88 (t, J = 6.6 Hz, 3H, CH_3CH_2), 1.24–1.37 (m, 4H, $2 \times CH_2$), 1.53–1.68 (m, 2H, CH₂), 2.39 (t, J = 7.5 Hz, 2H, CH_2CH_2CO), 3.16 (s, 3 H, *N*-CH₃), 3.66 (s, 3H, *O*-CH₃); ¹³C NMR (50 MHz, CDCl3): δ 13.7, 22.3, 24.1, 31.4, 31.7, 32.0, 61.0, 174.5; EI-MS: m/z 160 (2%, M + 1), 99 (44), 71 (52), 61 (100).

N-Methoxy-N-methylheptanamide 11c

Yield: 93%; IR (neat): 3453, 2949, 1656, 1468, 1418 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 0.86 (t, J = 6.6 Hz, 3H, CH_3CH_2), 1.20–1.40 (m, 6H, $3 \times CH_2$), 1.53–1.67 (m, 2H, CH₂), 2.39 (t, J = 7.2 Hz, 2H, CH₂CH₂CO), 3.16 (s, 3H, *N*-CH₃), 3.66 (s, 3H, *O*-CH₃); ¹³C NMR (50 MHz, CDCl3): δ 13.8, 22.3, 24.4, 28.9, 31.4, 31.7, 32.0, 61.0, 174.5; EI-MS: *m/z* 113 (30%), 103 (8), 85 (35), 73 (5), 61 (100).

N-Methoxy-N-methyldecanamide 11d

Yield: 95%; IR (neat): 3443, 2958, 1653, 1478, 1412 cm^{-1} ; ¹H NMR (200 MHz, CDCl₃): δ 0.85 (t, *J*=6.2 Hz, H, *CH*₃CH₂), 1.24 (s, broad, 12H, $6 \times CH_2$), 1.57–1.66 (m, 2H, *CH*₂), 2.39 (t, *J*=7.4 Hz, 2H, *CH*₂CH₂CO), 3.16 (s, 3H, *N*-CH₃), 3.66 (s, 3H, O-CH₃); ¹³C NMR (50 MHz, CDCl3): δ 13.9, 22.5, 24.4, 29.1, 29.3 (3C), 31.7 (2C), 32.0, 61.0, 174.5.

N-Methoxy-N-methyldodecanamide 11e

Yield: 96%; IR (neat): 3443, 2959, 1654, 1478, 1408 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 0.83 (t, *J* = 6.6 Hz, 3H, *CH*₃CH₂), 1.21 (s, broad, 18H, 9×CH₂), 1.50–1.61 (m, 2H, CH₂), 2.36 (t, *J* = 7.4 Hz, 2H, CH₂CH₂CO), 3.13 (s, 3H, *N*-CH₃), 3.63 (s, 3H, *O*-CH₃); ¹³C NMR (50 MHz, CDCl3): δ 13.8, 22.4, 24.4, 29.0, 29.1 (2C), 29.2, 29.3 (2C), 31.6, 31.9, 61.8, 174.4; EI-MS: *m/z* 244 (0.5%, M + 1), 183 (8), 109 (8), 85 (15), 71 (35), 61 (100).

General procedure II: preparation of alkyl methyl-d₃ ketones 3b–3e

An ethereal solution of CD₃MgI (1*M*, 11 mL, 11 mmol) was added drop wise to a stirred solution of *N*-methoxy-*N*-methylamides **11b**-e (10 mmol) in ether (15 mL) at 0 °C. After 1.5 h, the reaction mixture were poured into ice-cold 0.5*M* aqueous HCI (25 mL) and extracted with dichloromethane. The organic extract was dried over MgSO₄ and evaporated under reduced pressure. The residue was distilled to give the respective ketones **3b**-e in 70–87% yield.

1,1,1,-Trideuterioheptan-2-one 3b

Yield: 75%; IR (neat): 2925, 2855, 2253, 1714, 1465, 1410 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 0.86 (t, *J* = 6.6 Hz, 3H, CH₃CH₂), 1.21–1.34 (m, 4H, 2×CH₂), 1.47–1.62 (2H, CH₂), 2.39 (t, *J* = 7.2 Hz, 2H, CH₂CH₂CO); ¹³C NMR (50 MHz, CDCl₃): δ 13.8, 22.3, 23.4, 31.2, 43.6, 209.3; EI-MS: *m/z* 117 (2%, M⁺), 99 (40), 71 (68), 61 (100).

1,1,1,-Trideuteriooctan-2-one 3c

Yield: 82%; IR (neat): 2926, 2855, 2253, 1714, 1465, 1411 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 0.85 (t, J = 6.6 Hz, 3H, CH₃CH₂), 1.25–1.28 (m, 6H, 3×CH₂), 1.46–1.57 (m, 2H, CH₂CH₂CO), 2.35–2.42 (t, J = 7.5 Hz, 2H, CH₂CH₂CO); ¹³C NMR (50 MHz, CDCl₃): δ 13.9, 22.4, 23.7, 28.7, 31.5, 43.6, 209.4; EI-MS: *m/z* 131 (8%, M⁺), 113 (5), 88 (6) 74 (20), 61 (100).

1,1,1,-Trideuterioundecan-2-one 3d

Yield: 70%; IR (neat): 2925, 2855, 2253, 1714, 1465, 1410 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 0.89 (t, *J* = 6 Hz, 3H, CH₃CH₂), 1.28–1.32 (m, 14H, 7 × CH₂), 1.57–1.60 (m, 2H, CH₂CH₂CO), 2.42 (t, *J* = 6.6 Hz, 2H, CH₂CH₂CO); ¹³C NMR (50 MHz, CDCl₃): δ 13.9, 22.0, 22.5, 23.8, 29.1, 29.2 (2C), 29.3, 31.7, 43.6, 208.8; El-MS: *m/z* 173 (5%, M⁺), 112 (5), 74 (26), 61 (100)

1,1,1,-Trideuteriotridecan-2-one 3e

Yield: 87%; IR (neat): 2926, 2855, 2253, 1714, 1465, 1410 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 0.87 (t, *J*=6 Hz, 3H, *CH*₃CH₂), 1.25 (s, broad, 16H, 8×CH₂), 1.52–1.64 (m, 2H, CH₂CH₂CO), 2.4 (t, *J*=7.2 Hz, 2H, CH₂CH₂CO); ¹³C NMR (50 MHz, CDCl3): δ 13.6, 22.3, 23.4, 28.8, 29.0, 29.1 (2C), 29.3 (2C), 31.5, 43.2, 208.1; El-MS: *m/z* 201 (2%, M⁺), 74 (20), 61 (100).

General procedure III. Michael addition of methyl- d_3 ketones 3a–e to silylmethylene malonate 4 using organocatalyst 8

Acetone- d_6 or respective alkyl methyl- d_3 ketone (2–5 mmol, 4–10 equiv) was added to a stirred mixture of silylmethylene malonate **4** (153 mg, 0.5 mmole, 1 equiv), pyrrolidine **8** (23 mg, 0.15 mmol, 0.3 equiv), TFA (4 μ L, 0.05 mmol, 0.1 equiv), and D₂O (20 μ L, 1 mmol, 2 equiv) in dry NMP (1 mL) at –10 °C. After 2–4 d at –10 °C, the reaction mixture was

diluted with water and extracted with EtOAc/hexane (1/1). The organic extract was washed with brine, dried (MgSO₄), and evaporated. The residue was purified by column chromatography on silica using hexane/EtOAc (95/5) as eluent to give either $2a-d_5$ (64%) or $2b-e-d_2$ (80–95%).

Ethyl (3*S*)-3-dimethyl(phenyl)silyl-4,4-dideutero-2ethoxycarbonyl-5-oxohexanoate 2a-*d*₅

Yield: 119 mg, 64%; HPLC: Daicel chiralpak AD-H, 2-propanol/hexane (1/99), flow rate = 1.0 mL/min, $t_R(3S)$ -**2a**- d_5 14.5 min (88.3%), $t_R(3R)$ -**2a**- d_5 21.05 min (11.7%); Opt. Rot.: $[\alpha]_D^{24} = +$ 1.3 (*c* 1.55, CHCl₃), *lit*.³⁵ for preteo analog $[\alpha]_D^{25} = +4.78$ (*c* = 2.31, MeOH); IR (film): 3070, 3029, 2957, 2931, 2855, 1747, 1729, 1465, 1427, 1370, 1301, 1250, 1152, 1032, 817 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 0.31 (s, 3H, CH₃Si), 0.32 (s, 3H, CH₃Si), 1.20 (t, *J* = 7.2 Hz, 6H, 2 × CH₃CH₂OCO), 2.28 (d, *J* = 5.6 Hz, 1H, SiCH), 3.47 (d, *J* = 5.6 Hz, 1H, CHCHSi), 3.95–4.11 (m, 4H, 2 × CH₃CH₂OCO), 7.30–7.35 (m, 3H, Ph), 7.47–7.52 (m, 2H, Ph); ¹³C NMR (50 MHz, CDCl₃): δ -3.6, -3.4, 13.8 (2C), 20.0, 51.5, 61.0, 61.1, 127.6 (2C), 129.0, 134.0 (2C), 137.0, 169.3, 169.7, 207.6.

Ethyl (3*S*)-3-dimethyl(phenyl)silyl-4,4-dideutero-2ethoxycarbonyl-5-oxodecanoate 2b-*d*₂

Yield: 174 mg, 82%; HPLC: Daicel chiralpak AD-H, 2-propanol/ hexane (0.7/99.3), flow rate = 1.0 mL/min, $t_R(3S)$ -**2b**- d_2 14.0 min (99.51%), $t_R(3R)$ -**2b**- d_2 23.5 min (0.49%); Opt. Rot:: $[\alpha]_D^{25}$ = +1.94 (*c* 3.1, CHCl₃), *lit.*³⁵ for preteo analog $[\alpha]_D^{25}$ = +1.92 (*c* = 2.61, MeOH); IR (neat): 3070, 3028, 2956, 2930, 2853, 1746, 1729, 1465, 1426, 1370, 1301, 1249, 1151, 1032, 817 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 0.32 (*s*, 3H, CH₃Si), 0.33 (*s*, 3H, CH₃Si), 0.85 (*t*, *J* = 6.6 Hz, 3H, CH₂CH₃), 1.16–1.26 (m, 10H, 2×CH₂ and 2×CH₃CH₂OCO), 1.35–1.46 (m, 2H, CH₂), 2.08–2.22 (m, 2H, COCH₂), 2.26–2.31 (m, 1H, SiCH), 3.49 (*d*, *J* = 5.8 Hz, 1H, CHCHSi), 4.00–4.11 (q, *J* = 7.2 Hz, 4H, 2×CH₃CH₂OCO), 7.30–7.34 (m, 3H, Ph), 7.47–7.52 (m, 2H, Ph); ¹³C NMR (50 MHz, CDCl₃): δ –3.5, –3.2, 13.8 13.9 (2C), 20.0, 22.4, 23.4, 31.3, 42.4, 51.8, 61.0, 61.3, 127.6 (2C), 129.1, 134.2 (2C), 137.0, 169.5, 169.9, 210.0; El-MS: *m/z* 407 (M⁺-CH₃, 12%), 345 (18), 246 (14), 135 (100), 75 (35).

Ethyl (3*S*)-3-dimethylphenylsilyl-4,4-dideutero-2ethoxycarbonyl-5-oxoundecanoate 2c-*d*₂

Yield: 175 mg, 80%; HPLC: Daicel chiralpak AD-H, 2-propanol/ hexane (0.7/99.3), flow rate = 1.0 mL/min, $t_{\rm R}(3S)$ -**2**c- d_2 7.41 min (92.91%), $t_{\rm R}(3R)$ -**2**c- d_2 11.4 min (7.09%); Opt. Rot:: $[\alpha]_D^{25}$ = +1.92 (*c* 2.61, CHCl₃); IR (neat): 3070, 3029, 2957, 2931, 2855, 1747, 1729, 1465, 1427, 1370, 1301, 1250, 1152, 1032, 817 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 0.31 (s, 3H, CH₃Si), 0.33 (s, 3H, CH₃Si), 0.85 (t, *J* = 6.4 Hz, 3H, CH₂CH₃), 1.16–1.23 (m, 12H, 3×CH₂ and 2×CH₃CH₂OCO), 1.31–1.45 (m, 2H, CH₂), 2.08–2.23 (m, 2H, COCH₂), 2.26–2.31 (m, 1H, SiCH), 3.50 (d, *J* = 5.6 Hz, 1H, CHCHSi), 4.00–4.11 (m, 4H, 2×CH₃CH₂OCO), 7.28–7.33 (m, 3H, Ph), 7.47–7.52 (2H, m, Ph); ¹³C NMR (50 MHz, CDCl₃): δ –3.5, –3.2, 13.9 (2C), 20.0, 20.1, 22.4, 23.6, 28.8, 31.5, 42.5, 51.8, 61.1, 61.2, 127.6 (2C), 129.1, 134.2 (2C), 137.3, 169.5, 169.8, 209.9; El-MS: *m/z* 421 (M⁺-CH₃, 12%), 359 (17), 261 (12), 199(18) 135 (100), 144(24) 75 (35).

Ethyl (3*S*)-3-dimethylphenylsilyl-4,4-dideutero-2ethoxycarbonyl-5-oxotetradecanoate 2d-*d*₂

Yield: 210 mg, 88%; HPLC: Daicel chiralpak AD-H, 2-propanol/ hexane (0.7/99.3), flow rate = 1.0 mL/min, $t_{\rm R}(3S)$ -**2d**- d_2 9.1 min (98.11%), $t_{\rm R}(3R)$ -**2d**- d_2 15.5 min (1.89%); Opt. Rot:: $[\alpha]_D^{24}$ + +2.0 (*c* 1.49, CHCl₃), *lit*.³⁵ for preteo analog $[\alpha]_D^{28}$ + 4.81 (*c* = 2.91, MeOH); IR (neat): 3070, 3028, 2956, 2930, 2853, 1746, 1729, 1465, 1426, 1370, 1301, 1249, 1151, 1032, 817 cm⁻¹; H NMR (500 MHz, CDCl₃): δ 0.41 (s, 3H, CH₃Si), 0.42 (s, 3H, CH₃Si), 0.96 (t, *J* = 7 Hz, 3H, CH₂[CH₂]₃CH₃), 1.25–1.36 (m, 18H, [CH₂]₆CH₃ and 2×CH₃CH₂OCO), 1.49–1.52 (m, 2H, CH₂CH₂[CH₂]₆CH₃) 2.21–2.34 (m, 2H, COCH₂[CH₂]₄CH₃), 2.37 (d, *J* = 5.5 Hz, 1H, SiCH), 3.57 (d, *J* = 5.5 Hz,1H, CHCHSi), 4.13–4.17 (m, 4H, 2×CH₃CH₂OCO), 7.34–7.42 (m, 3H, Ph), 7.59–7.60 (2H, m, Ph); ¹³C NMR (125 MHz, CDCl₃): δ –3.4, –3.1, 13.9 (2C), 14.0, 20.1, 22.6, 23.7, 29.1, 29.2, 29.3 29.4, 31.8, 42.5, 51.8, 61.1, 61.3, 127.6 (2C), 129.1,

134.2 (2C), 137.3, 169.4, 169.8, 209.9; El-MS: *m/z* 343 (M⁺-SiMe₂Ph, 13%), 327 (19), 249 (17), 181 (20) 135 (100), 75 (34).

Ethyl (3S)-3-dimethylphenylsilyl-4,4-dideutero-2ethoxycarbonyl-5-oxohexadecanoate 2e-d₂

Yield: 240 mg, 95%; HPLC: Daicel chiralpak AD-H, 2-propanol/ hexane (0.7/99.3), flow rate = 1.0 mL/min, tR(35)-**2e**- d_2 19.7 min (94.99%), tR(3*R*)-**2e**- d_2 26.19 min (5.01%); Opt. Rot: $[a]_D^{22} = +1.67$ (c 1.9, CHCl₃), *lit*.³² for preteo analog $[a]_D^{23} +4.67$ (c 1.07, MeOH); IR (neat): 3070, 3028, 2956, 2930, 2853, 1746, 1729, 1465, 1426, 1370, 1301, 1249, 1151, 1032, 817 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 0.32 (s, 3H, CH₃Si), 0.33 (s, 3H, CH₃Si), 0.87 (t, *J* = 6Hz, 3H, [CH₂]₈CH₃), 1.16–1.24 (m, 22H, CH₂[CH₂]₈CH₃, 2 × CH₃CH₂OCO), 1.38–1.45 (m, 2H, CH₂CH₂[CH₂]₈CH₃), 2.08–2.22 (m, 2H, COCH₂[CH₂]₉CH₃) 2.26–2.31 (m, 1H, SiCH), 3.48 (d, *J* = 5.8 Hz, 1H, CHCHSi), 4.00–4.12 (m, 4H, 2 × CH₃CH₂OCO), 7.30–7.33 (m, 3H, Ph), 7.47–7.52 (m, 2H, Ph); ¹³C NMR (50 MHz, CDCl₃): δ -3.5, -3.1, 13.9, 14.0 (2C), 20.0, 22.6, 23.7, 29.1, 29.2, 29.3, 29.4, 29.5 (2C) 31.8, 42.5, 51.8, 61.1, 61.2, 127.6 (2C), 129.1, 134.2 (2C), 137.3, 169.4, 169.8, 209.9; EI-MS: *m/z* 491 (M⁺-CH₃, 4%), 429 (10), 249 (12), 135 (100), 75 (14).

(35,45,65)-5,5-Dideutero-4-dimethyl(phenyl)silyl-3ethoxycarbonyl-6-undecyl-tetrahydro-2*H*-pyran-2-one 12-d₂

Sodium borohydride (29 mg, 0.76 mmol) was added portion wise to a stirring solution of 2e-d₂ (190 mg, 0.38 mmol) in EtOH (2.0 mL) at 0 °C. After 5 h, the mixture was guenched with saturated NH₄Cl solution and extracted with CH₂Cl₂. The organic extract was washed with brine, dried (Na₂SO₄), and evaporated under reduced pressure. The residue was purified by column chromatography to give lactone $12-d_2$ (91 mg, 52%). IR (film): 3069, 3048, 2926, 2853, 1751, 1736, 1465, 1427, 1371, 1041, 776, 735 cm⁻¹; Opt. Rot.: $[\alpha]_D^{25} = -10.7$ (c 3.38, CHCl₃); ¹H NMR (200 MHz, CDCl₃): δ 0.32 (s, 3H, CH₃Si), 0.33 (s, 3H, CH₃Si), 0.87 (t, J = 6.4 Hz, 3H, CH_2CH_3), 1.21–1.29 (m, 21H, $9 \times CH_2$ and $CO_2CH_2CH_3$), 1.38-1.54 (m, 2H, CH₂), 1.92-2.02 (m, 1H, SiCH), 3.34 (d, J=11.4 Hz, 1H, CHCO2CH2CH3), 3.79-3.81 (m, 1H, CHOCO), 4.00-4.17 (m, 2H, CHCO₂CH₂CH₃), 7.34–7.40 (m, 3H, Ph), 7.46–7.51 (m, 2H, Ph); ¹³C NMR (50 MHz, CDCl₃): δ -5.1, -4.8, 13.9, 14.1, 17.7, 22.6, 24.9, 29.2, 29.3, 29.4, 29,5, 29.6 (2C), 31.8, 34.7, 47.3, 61.6, 78.6, 128.1 (2C), 129.8, 134.0 (2C), 135.1, 169.3, 169.8; EI-MS: m/z 462 (M⁺ 4), 429 (15), 135 (100), 75 (18).

(4*S*,6*S*)-5,5-Dideutero-4-dimethyl(phenyl)silyl-6-undecyltetrahydro-2*H*-pyran-2-one 1-*d*₂

Solid LiOH.2H₂O (11 mg, 0.26 mmol, 2 equiv) was added portion wise to a stirred solution of **12**- d_2 (60 mg, 0.13 mmol) in 95% aqueous methanol (1.0 mL) at room temperature. The mixture was stirred overnight, and the solvent was evaporated under reduced pressure. The residue was diluted with water, acidified with dil HCl, and extracted with EtOAc. The organic extract was dried (Na₂SO₄) and evaporated under reduced pressure to give the crude acid, which was dissolved in toluene (5 mL) and heated under reflux under nitrogen. After 2 h, the solvent was removed under reduced pressure, and the residue was purified by column chromatography to give lactone **1**- d_2 (49 mg, 97%).

IR (film): 2960, 2931, 2859, 2250, 1740, 1427, 1256, 1113, 1064, 834, 812, 701 cm⁻¹; Opt. Rot.: $[\alpha]_D^{25} = -30.8$ (*c* 2.6, CHCl₃), *lit.*³² for preteo analog $[\alpha]_D^{25} = -39.9$ (*c* 1.93, CHCl₃); ¹H NMR (200 MHz, CDCl₃): δ 0.32 (s, 6H, [CH₃]₂Si), 0.87 (t, *J* = 6.4 Hz, 3H, CH₂CH₃), 1.24 (s, broad, 18H, 9 × CH₂), 1.38–1.48 (m, 3H, CH₂ and SiCH), 2.21 (dd, *J* = 13.2, 15.8 Hz, 1H, CH_AH_BCO₂-), 2.42 (dd, *J* = 5.7, 15.8 Hz, 1H, CH_AH_BCO₂-), 3.97–4.09 (m, 1H, CHOCO), 7.35–7.39 (m, 3H, Ph), 7.44–7.49 (m, 2H, Ph); ¹³C NMR (50 MHz, CDCl₃): δ –5.5, –5.4, 14.2, 14.8, 22.7, 25.2, 29.4 (2C), 29.5, 29.6, 29.7 (2C), 30.1, 31.9, 35.0, 78.3, 128.2 (2C), 129.7, 133.9 (2C), 135.8, 173.9; EI-MS: *m/z* 390 (M⁺ 2), 235 (5), 135 (100), 116 (25), 75 (18).

Conflict of Interest

The authors did not report any conflict of interest.

Acknowledgement

Mr. Sandip J. Wagh is thankful to Council of Scientific and Industrial Research (CSIR), New Delhi for a fellowship.

References

- [1] S. D. Nelson, W. F. Trager, Drug Metab. Dispos. 2003, 31, 1481.
- [2] L. R. Hall, R. P. Hanzlik, J. Biol. Chem. 1990, 265, 12349.
- [3] A. B. Foster, Trends Pharmacol. Sci. 1984, 5, 524.
- [4] J. Haesler, I. Schindelholz, E. Riguet, C. G. Bochet, W. Hug, Nature 2007, 446, 526.
- [5] D. MacDonald, P. Lu, J. Am. Chem. Soc. 2002, 124, 9722.
- [6] T. H. Lowry, K. S. Richardson. Mechanism and Theory in Organic Chemistry, Harper & Row, New York, 1987.
- [7] D. M. Marcus, M. J. Hayman, Y. M. Blau, D. R. Guenther, J. O. Ehresmann, P. W. Kletnieks, J. F. Haw, Angew. Chem. Int. Ed. 2006, 45, 1933.
- [8] D. M. Marcus, K. A. McLachlan, M. A. Wildman, J. O. Ehresmann, P. W. Kletnieks, J. F. Haw, Angew. Chem. Int. Ed. 2006, 45, 3133.
- [9] C. L. Perrin, Y. Dong, J. Am. Chem. Soc. **2007**, 129, 4490.
- [10] G. C. Lloyd-Jones, M. Pazmunoz, J. Label. Compd. Radiopharm. 2007, 50, 1072.
- [11] M. Takeda, J. Jee, M. A. Ono, T. Terauchi, M. Kainosho, J. Am. Chem. Soc. 2009, 131, 18556.
- [12] K. Sanderson, Nature, 2009, 458, 269.
- [13] N. A. Meanwell, J. Med. Chem. 2011, 54, 2529.
- [14] M. Murray, Curr. Drug Metab. 2000, 1, 67.
- [15] K. M. Bertelsen, K. Venkatakrishnan, L. L. von Moltke, R. S. Obach, D. J. Greenblatt, Drug Metab. Dispos. 2003, 31, 289.
- [16] Auspex Pharmaceuticals. Data release available at http://www. auspexpharma.com/auspex_SD254.html.
- [17] A. E. Mutlib, R. J. Gerson, P. C. Meunier, P. J. Haley, H. Chen, L. S. Gan, M. H. Davies, B. Gemzik, D. D. Christ, D. F. Krahn, J. A. Markwalder, S. P. Seitz, R. T. Robertson, G. T. Miwa, *Toxicol. Appl. Pharmacol.* 2000, 169, 102.
- [18] F. Maltais, Y. C. Jung, M. Chen, J. Tanoury, R. B. Perni, N. Mani, L. Laitinen, H. Huang, S. Liao, H. Gao, H. Tsao, E. Block, C. Ma, R. S. Shawgo, C. Town, C. L. Brummel, D. Howe, S. Pazhanisamy, S. Raybuck, M. Namchuk, Y. L. Bennani, J. Med. Chem. 2009, 52, 7993.
- [19] F. Echeverri, V. Arango, W. Quiñones, F. Torres, G. Escobar, Y. Rosero, R. Archbold, *Phytochemistry* **2001**, *56*, 881.
- [20] S. P. Gunasekera, J. Org. Chem. 1990, 55, 4912.
- [21] H. Yada, Nat. Prod. Lett. 1993, 2, 221.
- [22] G. E. Stokker, W. F. Hoffman, A. W. Alberts, E. J. Gragoe, A. A. Deana, J. L. Gilfilan, J. W. Huff, F. C. Novello, J. D. Prugh, R. L. Smith, A. K. Willard, J. Med. Chem. **1985**, 28, 347.
- [23] I. Fleming, R. Henning, D. C. Parker, H. E. Plaut, P. E. J. Sanderson, J. Chem. Soc., Perkin Trans. 1 1995, 317.
- [24] K. Tamao, N. Ishida, T. Tanaka, M. Kumada, Organometallics 1983, 2, 1694.
- [25] J. E. Baldwin, N. D. Ghatlia, J. Am. Chem. Soc. 1989, 111, 3319.
- [26] Y. Fujiwara, H. Iwata, Y. Sawama, Y. Monguchi, H. Sajiki, Chem. Commun. 2010, 46, 4977.
- [27] C. Sabot, K. A. Kumar, C. Antheaume, C. Mioskowski, J. Org. Chem. 2007, 72, 5001.
- [28] W. S. Lockley, J. R. Heys, J. Label. Compd. Radiopharm. 2010, 53, 635.
- [29] J. Atzrodt, V. Derdau, T. Fey, J. Zimmermann, Angew. Chem. Int. Ed. 2007, 46, 7744.
- [30] T. Maegawa, Y. Fujiwara, Y. Inagaki, H. Esaki, Y. Monguchi, H. Sajiki, Angew. Chem. Int. Ed. 2008, 47, 5394.
- [31] A. Barbero, D. C. Blackmore, I. Fleming, R. N. Weslry, J. Chem. Soc., Perkin Trans 1 1997, 1329.
- [32] R. Chowdhury, S. K. Ghosh, Synthesis 2011, 1936.
- [33] A. K. Ghosh, C. Liu, Chem. Commun. 1999, 1743.
- [34] S. Raina, V. K. Singh, Tetrahedron 1996, 52, 4479.
- [35] R. Chowdhury, S. K. Ghosh, Org. Lett. 2009, 11, 3270.
- [36] M. Asami, Bull. Chem. Soc. Jpn. 1990, 63, 721.
- [37] W. Notz, F. Tanaka, C. F. Barbas III, Acc. Chem. Res. 2004, 37, 580.
- [38] S. J. Blarer, D. Seebach, Chem. Ber. 1983, 116, 2250.
- [39] S. J. Blarer, W. B. Schweizer, D. Seebach, Helv. Chim. Acta 1982, 65, 1637.
- [40] J. M. Betancort, C. F. Barbas III, Org. Lett. 2001, 3, 3737.
- [41] O. Andrey, A. Alexakis, A. Tomassini, G. Bernarddinelli, Adv. Synth. Catal. 2004, 346, 1147.
- [42] S. Nahm, S. M. Weinreb, *Tetrahedron Lett.* **1981**, 3815.
- [43] S. M. Date, P. Iyer, S. K. Ghosh, Syn. Commun. 2004, 405.