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ABSTRACT: A Pd-catalyzed highly enantioselective three- a good enantiomeric excess, but a rather low yield (Figure 2a).
22 Yy ghly . . . >
23 component coupling of 1,3-dienes with aryl iodines and sodium AS a consequence, highly efficient and enantioselective 1,2-
dialkyl malonates has been successfully established by using a Hg- difunctionlization reactions of 1,3-dienes remain highly challeng-
24 BINOL-based phosphoramidite ligand. This reaction proceeded ing and are in great demand. Herein, we will describe a highly
25 via a palladium-catalyzed cascade arylation and asymmetric regioselective and stereoselective 1,2-difunctionalizaton of termi-
26 allyhc alkylaticn reaction, providing an efficient Strategy for the nal 1,3-dienes with iodoarenes and stabilized carbon nucleophiles
27 enantioselective 1,2-difunctionalization of 1,3-dienes. catalyzed by chiral palladium complexes (Figure 2b).
28 Figure 1. Pd-catalyzed Difunctionlization of 1,3-Dienes
29 © Pa0)
Nuy Nuy
30 Pd(ll) P, )
The difunctionalization of alkenes is able to provide a wide range RSN N o | R/\)\I or R)\/\I Q)
31 f structurally diverse functionalized chemicals, which hold LR o o
of structurally diverse functionalized chemicals, which hold great 1.2-Product 14.Prod,
32 ) ; > . : ,2-Produ ,4-Product
importance in organic synthesis, and has hence been considered a
33 powerful strategy in synthetic organic chemistry.' 1,3-Dienes are Pa0) ®p, Pd© Nu )Nuv\l
34 casily accessible chemicals® and basically able to participate in a RSN —— | }—L» RN or RN
. R' , @
35 wide spectrum of reactions by acting on the carbon-carbon double RX R N R R
36 bonds. Indeed, last several decades have witnessed that 1,3-diene N ) 1’2'P’°d,"“ TA4-Product
37 derivatives are versatile reagents to render the invention of a large As §h0vyn mn Fl.g'ure 2c, the Pd(II) intermediate I, generateq fr(,)m
38 number of fundamentally important and synthetically significant an oxidative addltlon'react%on ofa Pd(O) comp lex to an aryl 10‘,1‘“‘3
39 methodologies, as exemplified by stereoselective cycloaddition ,2’ undergpes a Heck. Insertion reaction to give an a}llyllc pallgdlum
reactions and polymerizations, which have shown widespread intermediate II, which will be able to undergo isomerization to
) L . 8-12 -
40 applications in the medicinal chemistry and material science.’ It form.a n-all'yl pallad}um 1ntel"medlz.ite I ) fmd then to partici-
41 has been recognized that the 1,3-dienes can undergo nucleopal- pate in allylic alkylation reaction with a stabilized carbon nucleo-
42 ladation with palladium (II) and one nucleophile (Nu;’) to gener- phile, principally giving rise to cither a 1,2-product 4 or a 1,4-
43 ate a m-allyl palladium intermediate, which can then be trapped by product' S. Alternat.lvely, . the 1ntermed1ate : H, wquld experience
44 another nucleophile (Nuy) to afford either 1,2- or 1,4-products, sequc?ntlal. events 'lncludlng B -hydrlde' ehm“,latlf)n’ remsertion
45 and releasing Pd(0) that is oxidized into catalytically active Pd(II) reaction via p a}lladlu.m complex IV and isomerization via p al}adl-
46 for the next catalytic cycle (eq. 1, Figure 1).*” Palladium(0) com- um species H, to yl%Lfigq% m-allyl palladium }ntermedlﬁate 1, as
47 plexes have also been identified to afford various 1,2- indicated by Sigman. . The ?t-allyl pzfllladlum Species I will
difunctionalization reactions upon undergoing oxidative addition also undergo the allylic alkylation reaction, to basically generate
48 with a high oxidation state compound and subsequent Heck inser- two regiome.rs 6 and 7. Apparept.ly, the simultaneous control of
49 tion of a 1,3-diene to form a n-allyl palladium species, which both the regio- gnd stereoselectivity regders the prqposed th'ree-
50 ultimately reacts with a nucleophile to generate a 1,2- or 1,4- component reactlongglluc}'l more cha.lleng.lng than ,Slm,llar reactions
51 addition-like product (eq. 2, Figure 1).*'2 However, among these established already. SIII'CG the ch¥ral ligands prlnc1pally COOI".dl-
52 transformations, highly enantioselective 1,2-difunctionlization nates to all of 'the palladium species .forrr?ed mn whole reaction
53 reactions of 1,3-dienes, in particular, the protocols for the for- process, we beheve that the use ,Of chiral hggnds WI,H be ablg t,O
£ mation of two carbon-carbon bonds, have rarely been report- pr0v1de solutions to formldable issues agsomgted with selectivi-
ed.""!" Very recently, Sigman and co-workers established a Pd(0)- ties. However, the requirement for the chiral ligands to allow the
55 catalyzed intermolecular 1,2-diarylation reaction of 1,3-dienes prpposed three-component reaction progeeding smoothly is quite
56 with aryldiazonium salts and aryl boronic acids, allowing the crltlcal.: they not only enable the palladium to smoothly undergo
57 installation of two different aryl groups.'? In the presence of a the oxidative addition to aryl iodine and the subsequent insertion
58 chiral bicyclo[2.2.2]octadiene ligand, the reaction was able to give reaction, but also are able to efficiently control the stereoselectivi-
59 ty of the asymmetric allylic alkylation.
60
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Figure 2. Pd-catalyzed Asymmetric 1,2-Difunctionlization of
1,3-Dienes
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Table 1. Optimization of the Reactlon Conditions”

PN Phl Pd(OAC)z(5m0|% MeO,C._COMe MeO2C._CO:Me

+ 2a (10 mol% /\L I/y
1a ® Ph
@Na solvents 80°C,72h

5a
MeOQC Cone 1,2- addltlon 1,4-addition

L1R=H,R'=H

ON,
R
L2R=Ph,R'=H ‘O
OO L3R = 2,4,6-(iPr)sCqHp R'= H o.
L4R = 9-anthracenyl, R' = H "™
L5 R = 3,5-(CF3),CeH3, R'=H ‘O
L6 R = 3,5-(CF3),CgHs, R = CF3 R

L7 R =35-(CF3),Cet3, R'=NO; L8 R =35-(CFs),CqHs.

entry ligand  solvent }(I;; ;‘3 (;:)C ( 4:1/2(;)0,
1 L1 THF 77 0 >15:1
2 L2 THF 84 5 >15:1
3 L3 THF 21 11 >15:1
4 L4 THF 74 9 >15:1
5 L5 THF 82 74 >15:1
6 L6 THF 90 79 >15:1
7 L7 THF 73 81 >15:1
8 L8 THF 90 83 >15:1
9 L8 MTBE 89 87 >15:1
10 L8 DMF trace - -
11 L8 DCM 5 74 >15:1
12 L8 MeCN 27 87 >15:1
13¢ L8 MTBE 38 88 >15:1
14/ L8 MTBE 89 87 >15:1

“Unless indicated otherwise, reactions of 1a (0.10 mmol), 2a (0.15
mmol), 3a (0.50 mmol), Pd(OAc), (0.005 mmol), and L (0.010
mmol) were carried out in a solvent (2 mL) at 80 °C for 72 h.
"Isolated yields. “Determined by HPLC analysis. “Determined by
"H NMR analysis. “The reaction was carried out at 60 °C. ‘The
reaction was carried out at 100 °C.

The feasibility of the hypothesis was initially explored by
screening chiral ligands for the three-component reaction of (£)-
1-phenylbutadiene (1a) with iodobenzene (2a) and sodium dime-
thyl malonate (3a) (Table 1). The chiral ligands commonly em-
ployed in the asymmetric allylic alkylation, including Trost lig-
ands," chiral phosphinooxazoline-type P,N ligands'* and others,
which were reported to deliver excellent levels of enantioselec-
tivity in palladium catalysis,'® were initially evaluated. However,
they were unable to give good results (Table S1, in Supporting
Information). Then, chiral phosphoramidite ligands that perform
well in controlling the stereoselectivity of allylic substitutions'®
were examined. In the presence of 10 mol % of BINOL-based
phosphoramidite L1,'® Pd(OAc), was indeed able to catalyze the
three-component reaction in THF at 80 °C and the desired 1,2-
arylalkylation product 4a was isolated in 77% yield and with ex-
cellent regioselectivity, but without enantioselectivity (entry 1).
Finely tuning the structure of BINOL-derived phosphoramidites
found that ligands L2-L7 bearing substituents at the 3,3’-positions
of the binaphthyl backbone and 7-position of 1,2,3,4-
tetrahydroquinoline, enabled the reaction to deliver even more
promising levels of asymmetric induction (up to 81 % ee, entries
2-7). A little higher enantiomeric excess was provided by Hg-
BINOL-based phosphoramidite L8 (83% ee, entry 8). The exami-
nation of solvents found that the reaction performed well in ether
solvents (entries 9-12) and the highest enantioselectivity of 87%
ee was observed in MTBE (entry 9). The variation of reaction
temperature was unable to significantly alter the stereoselectivity
(entries 13 and 14), but a much diminished yield was given at
lower temperature (entry 13). The palladium source did not show
significant effect on the reaction (Table S2, in Supporting Infor-
mation).

After the optimal reaction conditions were established, the gen-
erality of the asymmetric transformation was subsequently exam-
ined. A variety of arylbutadienes (1b-h) and aryliodides (2b-h),
possessing same aryl groups, were firstly examined in the pres-
ence of 5 mol % of Pd(OAc), and 10 mol % of L8 in MTBE at
80 °C (Figure 3). It is necessary to mention that the structures of 4
and 5 are respectively identical to those of 6 and 7 (Figure 2¢) in
these cases, and thus only two different regiomers are generated.
The presence of either electron-releasing or deficient substituent
at the para-position was nicely tolerated and highly regioselec-
tively generated the target products in high yields and enantiose-
lectivity (4b-4d). Obviously, the substitution pattern had consid-
erable effect on both regio- and stereoselectivities (4b, 4e and 4f).
For instance, an excellent enantiomeric excess, but a moderate
regioselection was obtained in the reaction involving 2-
methylphenylbutadiene and 2-methyliodobenzene (4f). In contrast,
a little lower ee value, but an excellent regioselection was given to
the case with either meta- or ortho-methylphenyl substrate (4b or
4e). Comparing with the results of the substrate with a methyl
group at the ortho-position (4f), the presence of an electron-
withdrawing group such as chloride at the ortho-position of ar-
yldiene and aryliodine led to a high regio- and enantioselectivities,
together with a good yield (4g). Further, the sterically hindered
naphthyl substrates also underwent a smooth three-component
coupling reaction in a satisfactory yield and with high levels of
regio- and enantioselectivities (4h). Moreover, different malo-
nates were also examined, providing excellent yields (4i, 90%
yield and 4j, 88% yield) and high levels of enantioselectivities (4i,
83% ee and 4j, 85% ee).

Next, the generality for a number of arylbutadienes 1 and ar-
yliodides 2, which contain different aryl substituents, was investi-
gated (Figure 4). Basically, four different regiomers are generated
from the reaction, and hence will bring even more challenges to
the simultaneous control of both the regio- and stereoselectivities.
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catalyzed asymmetric three-component reaction for the difunc-
tionalization of 1,3-dienes with aryl iodines and sodium dialkyl
malonate, resulting in high yields and excellent levels of regio-
and enantioselectivities. The Hg-BINOL-based phosphoramidite
turned out to be the optimal ligand, which not only provides high
catalytic activity, but also is able to efficiently control the regio-
and stereoselectivity. The reaction proceeds via a palladium-
catalyzed cascade arylation and asymmetric allylic alkylation,
capable of tolerating a broad scope of substrates, including 1,3-
dienes and iodoaryl compounds. Two different types of m-allyl
palladium intermediates, respectively generated from migratory
insertion of the 1,3-diene to aryl Pd(II) and sequential events,
including Heck insertion, f-hydride elimination and reinsertion
reactions, are both involved in the whole reaction process. Nota-
bly, this protocol actually provides an important alternative strate-
gy for the enantioselective difunctionalization of 1,3-dienes, lead-
ing to synthetically useful chiral chemicals that were hardly pre-
pared from the classical asymmetric allylic alkylation.
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