R value was 0.063 (weighted $\equiv 0.057$). The final ΔF map contained no peaks higher than $0.5 \text{ e}/\text{Å}^3$. For the drawing (Figure

 the SCHAKAL program²⁸ was employed.
 MO Calculations. The following program systems were employed: ACIWERTE²⁹ and ACMORS;³⁰ CNDO/2 and QCPE No. 91; MINDO/3 and QCPE No. 279.

Parameters for overlap calculations: bond distances, d(C = C)= 117, d(C-H) = 90, d(C-P) = 175 pm; bond angles in $P(C = CH)_3$, idealized $C_{3\nu}$ symmetry, 101° (adapted from ref 13); atomic orbital coefficients for valence orbitals, H(s), C(s), C(p), P(s), and P(p) Clementi's double-5's³¹ and P(d) Richardson's 3d coefficients for V(0).³² The overlap matrices for C=CH⁻ and P(C=CH)₃ are given in Tables VII and VIII. To calculate the overlap integrals for P(C=CH)₃, collective C=CH⁻ orbitals were used: $\sigma[\dot{H}(s), \ddot{C}_{s}(s),$ $C_{b}(s), C_{a}(p_{z}), (C_{b}(p_{z})]; \pi_{v}^{*}[C_{a}(p_{v}), C_{b}(p_{v})]; \pi_{h}^{*}[C_{a}(p_{x}), C_{b}(p_{x})]$ (the indices a and b refer to the carbon carrying the negative charge, C_a , and the hydrogen, C_b). Bonding $\pi(C = CH^-)$ orbitals were excluded on the grounds of negligible interaction with P orbitals.

For the SCCC calculations on $C = CH^{-}$, valence orbital ionization potentials (VOIPs) of Basch, Viste, and Gray¹⁴ for two limiting configurations (2s²p² and 2sp³ in the case of C) and the

 (31) Clementi, E. IBM Research Paper RJ-256, 1963.
 (32) Richardson, J. W.; Nieuwpoort, W. C.; Powell, R. R; Edgell, W. F. J. Chem. Phys. 1962, 36, 1057.

electron distributions were fed into the program. The program first caculates Coulomb integrals and exchange integrals (on the basis of Cusachs' approach³³) and then eigenvectors and eigenvalues, and finally a Mulliken population analysis is undertaken. This procedure is maintained until self-consistency is achieved. For the results, see Table VII. In the case of $P(C=CH)_3$, the following starting parameters were employed: P(3s) and P(3p), VOIPs by Basch, Viste, and Gray; P(3d), -0.7945 aJ (-40×10^3 cm⁻¹; this is the mean value of the VOIPs for the 3d orbitals of Ti(0) and V(0)); C=CH⁻, -1.0927 (σ) and -0.5265 aJ (π) (cf. Table VII).

Spectra. Instruments: IR, Perkin-Elmer 325 and 225 spectrophotometers in cyclohexane (ν (CO) region) and CsI; FIR, Digilab FTS 14 spectrophotometer in polyethylene; Raman, Cary 82 (Varian) spectrophotometer, fitted with Kr or Ar laser (Spectra Physics), neat samples. For a complete set of all of the IR and Raman data of $P(C = CPh)_3$ and the complexes see ref 23. ³¹P NMR of W(CO)₅P(C=CPh)₃: bruker WH 90 spectrometer in 7.5-mm vials at 306 K relative to 80% H_3PO_4 , ca. 0.02 M THF solution; $\delta(^{31}P)$ -41.2 (central line and ^{183}W satellite doublet, intensity ratio 7.1/1).

Registry No. 1, 83136-71-4; W(CO)₅P(C=CPh)₃, 83152-07-2.

Supplementary Material Available: Tables of thermal parameters, best planes, and structure factor amplitudes for $Cr(CO)_5P(C = CPh)_3$ (75 pages). Ordering information is given on any current masthead page.

Oxidative Demethylation of Methylcobalamin by Hexachloroiridate(IV)

Yueh-Tai Fanchiang*

Gray Freshwater Biological Institute, College of Biological Sciences, University of Minnesota, Navarre, Minnesota 55392

Received May 17, 1982

The stoichiometries and kinetics of the demethylation of CH₃-B₁₂ by IrCl₆²⁻ in aqueous solution have been examined. In the presence of excess $IrCl_6^{2-}$, this reaction $Cr_3 C_{12} C_3$ with a 2:1 $(IrCl_6^{2-}:CH_3-B_{12})$ stoichiometry, producing $H_2O-B_{12}^+$, CH_3Cl , and $IrCl_6^{3-}/IrCl_5(H_2O)^{2-}$. With deficient $IrCl_6^{2-}$, the reaction occurs with a ~1.3:1 $(IrCl_6^{2-}:CH_3-B_{12})$ stoichiometry, producing $H_2O-B_{12}^+$, $IrCl_6^{3-}$, and C_2H_6 (the major demethylation with a ~1.3:1 $(IrCl_6^{2-}:CH_3-B_{12})$ stoichiometry, producing $H_2O-B_{12}^+$, $IrCl_6^{3-}$, and C_2H_6 (the major demethylation $H_2O-B_{12}^+$). product). The demethylation follows a second-order rate expression: first order in CH3-B12 and first order in IrCl₆²⁻. This second-order rate constant is pH dependent in acidic solution, which is interpreted in terms of protonation of the 5,6-dimethylbenzimidazole moiety and its resulting base-on to base-off conversion. $IrCl_6^{3-}$ inhibits the demethylation, while Cl^- pronouncedly enhances the rate. The mechanism is described as a one-electron transfer from CH_3 - B_{12} to $IrCl_6^{2-}$ (rate-determining step), yielding a transient CH_3 - B_{12}^+ intermediate. This intermediate rapidly releases a methyl radical which either abstracts a chlorine atom from a second $IrCl_6^{2-}$ molecule to produce CH_3Cl or combines to yield C_2H_6 .

Introduction

The cleavage of the Co-C bonds in organocobalt compounds is a subject of considerable interest in B₁₂-dependent biological reactions,¹ as well as in various homo-geneous catalytic processes.² Several modes of reagent-induced cleavage of the Co-C bond of methylcobalamin (CH_3-B_{12}) have already been described.³ The reactions between CH₃-B₁₂ and the electrophile are generally characterized as a direct displacement of the Co atom. However, some recent experiments on the methyl transfer from CH₃-B₁₂ to platinum,⁴ gold,⁵ and tetracyanoethylene⁶ in-

⁽²⁷⁾ Main, P.; Hull, S. E.; Lessinger, L.; Germain, G.; Declerq, J. P.; Woolfson, M. M. MULTAN 78, A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data, University of York, England, 1978. (28) Keller, E. SCHAKAL, University of Freiburg, 1980.

 ⁽²⁹⁾ Schnidt, J. Actwerte, University of Hamburg, 1973.
 (30) Dorn, W. L. ACMORS, University of Hamburg, 1973.

⁽³³⁾ Cusachs, L. C. J. Chem. Phys. 1965, 43, S157 L.C. Cusachs, L. C.; Cusachs, B. B. Ibid. 1967, 71, 1060.

^{*}To whom correspondence should be addressed at the Department of Biochemistry, Medical School, University of Minnesota, Minneapolis, Minnesota 55455.

^{(1) (}a) Hogenkamp, H. P. C. Annu. Rev. Biochem. 1968, 37, 225. (b) Abeles, R. H. Adv. Chem. Ser. 1900, No. 100, 346. (c) Barker, H. A., Annu. Rev. Biochem. 1972, 41, 55.

⁽²⁾ Halpern, J. Adv. Chem. Ser. 1968, No. 70, 1.
(3) Wood, J. M.; Fanchiang, Y.-T. "Vitamin B₁₂"; Zagalak, B., Friedrich, W., Eds.; Walter de Gruyer and Co.: Berlin, 1979; p 539.

^{(4) (}a) Taylor, R. T.; Hanna, M. L. Bioinorg. Chem. 1976, 6, 281. (b) Fanchiang, Y.-T.; Ridley, W. P.; Wood, J. M. J. Am. Chem. Soc. 1979, 101, 1442. (c) Fanchiang, Y.-T.; Pignatello, J. J.; Wood, J. M., to be submitted for publication.

dicate that an electron transfer may be involved in these reactions. It is important, therefore, to explore electrontransfer reactions of CH₃-B₁₂.

Hexachloroiridate(IV) is well-known as a one-electron oxidant capable of participating in both outer-sphere and inner-sphere processes.⁷ More recently, Halpern et al. have shown that organobis(dioximato)cobalt(III) complexes can be oxidized to organocobalt(IV) by $IrCl_6^{2-}$ followed by a nucleophile-induced heterolytic cleavage of the Co-C bond to yield Co(II) ions.⁸ Oxidative cleavage of metal-carbon bonds of organometals such as R'HgR, R_4Pb , and R_2PtL_2 by $IrCl_6^{2-}$ has also been described by Kochi et al.⁹ A remarkable and noteworthy point lies in the fact that the oxidized organocobaloxime intermediate undergoes a nucleophilic displacement, while R_2Hg^+ or R_4Pb^+ releases an organic radical.

We report here the reaction of CH_3 - B_{12} with $IrCl_6^{2-}$. It is described in terms of a one-electron oxidative demethylation. However, unlike alkylcobaloximes, the oxidized CH_3 - B_{12} intermediate releases a methyl radical which undergoes further reactions.

Experimental Section

Materials. Na₂IrCl₆·6H₂O and Na₂IrCl₆·12H₂O were obtained from Goldsmith Inc. Their purity was checked with the published molar absorptivities. ¹³CH₃I (90% enriched) was obtained from Stohler, Inc. CH₃-B₁₂ and ¹³CH₃-B₁₂ were synthesized in the dark from cyanocobalamin and CH₃I or ¹³CH₃I.¹⁰ Cob(II)alamin (B_{12r}) was generated by reducing $H_2O-B_{12}^+$ with equimolar amounts of Eu^{2+} under an atmosphere of Ar. Concentrations of CH_3 - B_{12} , $H_2O-B_{12}^+$, and B_{12r} were determined from their absorption spectra.¹¹ All other chemicals were reagent grade.

Base-On and Base-Off Equilibrium Constants of CH₃-B₁₂. Protonation of the 5,6-dimethylbenzimidazole moiety and the resulting base-on and base-off conversion can be expressed as in eq 1. pK_2 is taken as 4.7—the pK_a of free 5,6-dimethylbenz-

imidazole.¹² pK_1 at 1.0 M NaClO₄ and NaCl has been previously determined to be 0.90 and 1.74, respectively (23 °C).

Stoichiometries and Products. The consumption ratios of IrCl₆²⁻:CH₃-B₁₂ were determined by spectrophotometric titration with a Cary 15 or GCA/McPherson spectrophotometer. When the reaction was performed with a large ratio of IrCl₆²⁻ over CH_3 - B_{12} , the titration was done at 487.5 nm (absorbance maximum) for $IrCl_6^{2-}$) with an identical concentration of $H_2O-B_{12}^+$ in the reference cell to eliminate the B_{12} product absorption. When the

(10) Dolphin, D. Methods Enzymol. 1971, 18C, 34.
(11) Pratt, J. M. "Inorganic Chemistry of Vitamin B₁₂"; Academic Press: London, 1972, p 44. (12) Davies, M. T.; Mamalis, P.; Petrow, V.; Sturgeon, B. J. Pharm.

Pharmacol. 1951, 3, 420.

Figure 1. Spectrophotometric titration of 1.8×10^{-4} M IrCl₆²⁻ with deficient amounts of CH_3 - B_{12} at 487.5 nm (pH 2.91). An identical concentration of H_2O - B_{12}^+ was used in the reference cell to eliminate the absorbance of H_2O - B_{12}^+ produced during the reaction: (0), in 1.0 M NaCl; (•), in 1.0 M NaClO₄.

reaction was performed with excess CH₃-B₁₂, the titration was done at 351 nm (γ band for $H_2O-B_{12}^+$) with an identical concentration of $IrCl_6^{3-}$ in the reference cell. The B_{12} products were identified spectrophotometrically. Organic products were examined by a gas chromatograph or a Brüker 250-MHz ¹³C NMR at low temperature. The identity of the reduced Ir species was determined spectrophotometrically at pH 1. The reaction solution was oxidized with Cl_2 . After removal of the excess chlorine, the spectrum was recorded and analyzed with respect to the IrCl₆²⁻/IrCl₅(H₂O)⁻ composition by using published spectral data.¹³ An identical concentration of $H_2O-B_{12}^+$ (treated with Cl_2^{14} was used in the reference cell to eliminate the B_{12} spectrum.

Kinetic Measurements. The rates for demethylation of CH₃-B₁₂ by IrCl₆²⁻ were estimated by the absorption increase at 351 nm at 23 °C under a dim light. Ionic strength was maintained at 1.0 M with NaClO₄ and/or NaCl throughout. The pH was controlled in the range of 0-3 with HClO₄.

Results

Preliminary Observations of the Oxidative Demethylation of CH_3 - B_{12} . Similar to that of the B_{12} model compounds,⁸ CH₃-B₁₂ can be demethylated by a broad variety of oxidants. These include Fe^{3+} , $IrCl_6^{2-}$, Ce(IV), and Br2. Several noteworthy aspects of the oxidative demethylation of CH_3 - B_{12} were observed. (1) Fe³⁺ demethylates CH_3 - B_{12} extremely slowly in perchloric acid solution. However, rapid demethylation occurs in the presence of Cl⁻. This reaction is first order in both CH_3 - B_{12} and Fe^{3+} at low [Fe³⁺] but approaches zero order in Fe^{3+} as its concentration is increased. (2) Similarly, appreciable demethylation of CH_3 - B_{12} by Ce(IV) only occurs in the presence of Cl-. However, mixing 1 equiv of Ce(IV) with CH_3 - B_{12} at pH 7 (in the absence of Cl^{-}) results in a quantitative base-on to base-off conversion. (3) Br_2 rapidly demethylates CH_3 - B_{12} . This reaction is complicated by

⁽⁵⁾ Fanchiang, Y.-T. Inorg. Chem. 1982, 21, 2344.

⁽⁶⁾ Fanchiang, Y.-T., unpublished results. A mixture of CH₃-B₁₂ and tetracyanoethylene (TCNE) in CH₃OH/H₂O solution displays a sharp new absorption band at 420 nm, with $\epsilon 1.1 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1}$ and formation constant = $3.9 \times 10^2 \text{ M}^{-1}$ (23 °C). This band indicates the formation of a charge-transfer complex between corrin π orbitals and TCNE.

^{(7) (}a) Halpern, J.; Legare, R. J.; Lumry, R. J. Am. Chem. Soc. 1963 85, 680. (b) Halpern, J.; Pribanic, M. Ibid. 1968, 90, 5942. (c) Abley, P.; Halpern, J. Chem. Commun. 1971, 1238.

^{(8) (}a) Abley, P.; Dockal, E. R.; Halpern, J. J. Am. Chem. Soc. 1972, 94, 659. (b) Halpern, J.; Chan, M. S.; Hanson, J.; Roche, T. S.; Topich, 94, 559. (b) Halpern, J.; Chan, M. S.; Hanson, J.; Roche, T. S.; Toplen, J. A. *Ibid.* 1975, 97, 1606. (c) Halpern, J.; Chan, M. S.; Roche, T. S.; Toplen, G. M. Acta Chem. Scand., Ser. A 1979, 33A, 141. (d) Topich, J.; Halpern, J. *Inorg. Chem.* 1980, 18, 1339. (e) Halpern, J. "B₁₂", Dophin, D., Ed.; Wiley: New York, 1982; Vol. 1, p 501.
(9) (a) Gardner, H. C.; Kochi, J. K. J. Am. Chem. Soc. 1975, 97, 1855.
(b) Chen, J. Y.; Gardner, H. C.; Kochi, J. K. *Ibid.* 1976, 98, 6150. (c) Kochi, J. K. "Organometals and Organometalloids"; Brinkman, F. E., Pallome, L. M. Eda, Wachiston DC. 1072, 4025 Supp. Soc. No. 29, 29

Bellama, J. M., Eds.; Washington, DC, 1978; ACS Symp. Ser. No. 82, p

⁽¹³⁾ Chang, J. C.; Garner, C. W. Inorg. Chem. 1965, 4, 209. (14) Treatment of H_2O - B_{12}^+ with Cl_2 results in an immediate color change from red to orange and in some cases the decomposition of cobalamin.

Figure 2. Spectrophotometric titration of 3.81×10^{-5} M CH₃-B₁₂ with deficient amounts of $IrCl_6^{2-}$ at 351 nm (pH 2.91). An identical concentration of $IrCl_6^{3-}$ was used in the reference cell to eliminate the absorbance of $IrCl_6^{3-}$ produced during the reaction: (O), in 1.0 M NaCl; (\bullet), in 1.0 M NaClO₄.

the Br_2 oxidation of the corrin ring.¹⁵ Detailed stoichiometric and kinetic data of the oxidative demethylation of CH_3 - B_{12} by $IrCl_6^{2-}$ are presented below.

Stoichiometries and Reaction Products. CH_3 - B_{12} (3.5 × 10⁻⁵ M) was quantitatively demethylated to H_2O - B_{12}^+ by a sixfold excess of $IrCl_6^{2-}$ in 1.0 M NaClO₄ solution. This reaction proceeded with a half-life of ~13 min (pH 3; 23 °C) with isosbestic points at 515, 364, and 335 nm. Reactions performed under Ar yielded the same B_{12} product with no significant change in the demethylation rate. H_2O - B_{12}^+ was produced under all experimental conditions (i.e., with $IrCl_6^{2-}$ in excess over CH_3 - B_{12} or vice versa, aerobic or anaerobic). No B_{12r} was detected. $IrCl_6^{2-}$ rapidly oxidized B_{12r} to H_2O - B_{12}^+ . H_2O - B_{12}^+ does not react with $IrCl_6^{2-}$.

In 1.0 M NaCl solution, consumption ratio of $[IrCl_6^{2-}]$: $[CH_3-B_{12}]$ was determined to be 1.95:1 when $IrCl_6^{2-}$ used was in large excess over CH_3-B_{12} (Figure 1).¹⁶ Spectrophotometric titration in perchlorate solution with excess $IrCl_6^{2-}$ is also shown in Figure 1. The results in perchlorate solution are less satisfactory, with $[IrCl_6^{2-}]$: $[CH_3-B_{12}] \approx 2.7$:1. We failed to identify the cause. The results of spectrophotometric titration with CH_3-B_{12} in excess over $IrCl_6^{2-}$ are shown in Figure 2. The consumption ratios of $[IrCl_6^{2-}]$: $[CH_3-B_{12}]$ measured under this condition are considerably smaller than 2. As shown in Figure 2, $[IrCl_6^{2-}]$: $[CH_3-B_{12}]$ was found to be ~1.3:1 in both the Cl^- and ClO_4^- media.

The ¹³C resonance of methyl-transfer product appeared at 26.0 ppm (relative to external Me₄Si) when the reaction of ¹³CH₃-B₁₂ with a large ratio of $IrCl_6^{2-}$ was complete. This indicates that with a large excess of $IrCl_6^{2-}$, CH₃Cl is the main organic product generated under all experimental

Figure 3. Kinetic data for the demethylation of CH_3 - B_{12} by $IrCl_6^{2-}$ ($[CH_3$ - $B_{12}] = (1 \sim 3) \times 10^{-5}$ M; $\mu = 1.0$ M (HClO₄ + NaClO₄); temperature, 23 °C): (O), $[H^+] = 4.00 \times 10^{-3}$ M; (D), $[H^+] = 9.00 \times 10^{-3}$ M; (\bullet), $[H^+] = 1.80 \times 10^{-2}$ M; (Δ), $[H^+] = 1.80 \times 10^{-1}$ M.

conditions (i.e., in the presence and absence of Cl⁻ or pyridine, aerobic or anaerobic). No other organic products are detected either by gas chromatograph or by ¹³C NMR analyses. However, CH₃OH is not definitely ruled out. When reactions were carried out with deficient $IrCl_6^{2-}$ in perchlorate solution, C_2H_6 is the major organic product (¹³C resonance appeared at 6.027 ppm relative to external Me₄Si). A minor amount of CH₃Cl was also generated. The generation of C_2H_6 under this condition is confirmed by GC analysis of the vapor above the reaction solution (the reaction flask (2 cm³) was sealed with a serum cap and warmed to ~40 °C).¹⁷

With $IrCl_6^{2-}$ in excess over CH_3 - B_{12} , 1 equiv of $IrCl_6^{3-}$ and $IrCl_5(H_2O)^{2-}$ is generated for each equivalent of CH_3 - B_{12} consumed. With deficient $IrCl_6^{2-}$, $IrCl_6^{3-}$ is the main Ir product. No significant amount of $IrCl_5(H_2O)^{2-}$ was found under this condition.

In summary, the demethylation of CH_3 - B_{12} by an excess of $IrCl_6^{2-}$ can be expressed in eq 2. With deficient $IrCl_6^{2-}$, the main reaction is eq 3.

Kinetic Measurements. An excess of $\operatorname{IrCl}_6^{2-}$ over CH_3 - B_{12} was used in all the rate measurements so that $[\operatorname{IrCl}_6^{2-}]$ remained essentially constant. The range of $[\operatorname{CH}_3$ - $\operatorname{B}_{12}]$ was $(1-3) \times 10^{-5}$ M. Plots of log $(A_{\infty} - A_t)$ vs. time gave straight lines for more than 90% of the reactions. Reproducibility was found to be better than 7%. Kinetics data at various pH values are plotted in Figure 3. The

⁽¹⁵⁾ Bonnett, R.; Cannon, J. R.; Clark, U. M.; Johnson, A. W.; Parker, L. F. J.; Smith, E. L.; Todd, A. J. Chem. Soc. 1957, 1158.

⁽¹⁶⁾ The 2:1 stoichiometry was confirmed by calculation with $\epsilon 5.1 \times 10^3$ M⁻¹ cm⁻¹ for IrCl₆²⁻ at 487.5 nm.

⁽¹⁷⁾ Reaction of CH_3 - B_{12} with a deficient amount of $IrCl_6^{2-}$ in CH_3OH/H_2O media presaturated with $CHCl_3$ yields a small amount of CH_4 at the expense of C_2H_6 . However, CH_3OH production is not ruled out. Furthermore, we failed to obtain a quantitative measurement because of experimental difficulties.

Figure 4. Effect of addition of $IrCl_6^{3-}$ on the kinetic measurements of the demethylation of CH_3-B_{12} by $IrCl_6^{2-}$ ([$IrCl_6^{2-}$] = 1.55 × 10⁻³ M; [H⁺] = 0.18 M; μ = 1.0 M (HClO₄ + NaClO₄); temperature, 23 °C).

reaction was found to be first order in CH_3 - B_{12} and first order in $IrCl_6^{2-}$ according to eq 4 at all pH values. The

$$\frac{d[H_2O-B_{12}^+]}{dt} = k[IrCl_6^{2^-}][CH_3-B_{12}]$$
(4)

values of k are pH dependent. Considering eq 1, rate law 5 is obtained. Here k' represents the reaction path of

$$k = \frac{k'K_2 + k'K_1[\mathrm{H}^+]}{K_2 + K_1K_2 + K_1[\mathrm{H}^+]}$$
(5)

base-on CH₃-B₁₂, while k'' represents the path of the protonated base-off form. We have neglected the unprotonated base-off form, since its concentration is extremely small. Under the present experimental conditions, rate law 5 can be simplified into rate law 6. Plots of k vs. $[H^+]^{-1}$ yielded $k' = 83 \text{ M}^{-1} \text{ s}^{-1}$ and $k'' = 1.1 \text{ M}^{-1} \text{ s}^{-1} (\mu = 1.0 \text{ M} (\text{HClO}_4 + \text{NaClO}_4); 23 ^{\circ}\text{C}).$

$$\frac{d[H_2O-B_{12}^+]}{dt} = \frac{k'K_2 + k''K_1[H^+]}{K_1[H^+]} [IrCl_6^{2-}][CH_3-B_{12}]$$
(6)

Addition of large amounts of $IrCl_6^{3-}$ inhibits the demethylation at low pH. This is plotted in Figure 4. Addition of $IrCl_6^{3-}$ ((1.56~7.84) × 10⁻³ M) at [H⁺] = 0.0040 M does not affect the kinetic measurements. The Cl⁻ effect on the reaction rates at a constant ionic strength is shown in Figure 5. This experiment was carried out at pH 0.74 so that rate law 6 can be simplified into eq 7. This is nec-

$$\frac{d[H_2O-B_{12}^+]}{dt} = k' [IrCl_6^{2-}][CH_3-B_{12}]$$
(7)

essary because Cl⁻ anion has a pronounced effect on the value of K_1 . The Cl⁻ effect can be expressed in eq 8. Plots of k'' vs. [Cl⁻] yield $k''_1 = 0.97 \text{ M}^{-1} \text{ s}^{-1}$ (i.e., perchlorate path) and $k''_2 = 24 \text{ M}^{-1} \text{ s}^{-1}$ (i.e., chloride path).

$$k'' = k''_{1} + k''_{2}[Cl^{-}]$$
(8)

Discussion

The reactions of $IrCl_6^{2-}$ with $RCo(DH)_2H_2O^8$ and with R_2Hg or R_4Pb^9 have been described in terms of a oneelectron transfer mechanism. A similar mechanism is adopted here for the reaction between CH_3 - B_{12} and $IrCl_6^{2-}$, which is depicted in Scheme I. Fanchiang

$$CH_{3}-B_{12} + IrCl_{6}^{2-} \stackrel{k}{\longrightarrow} CH_{3}-B_{12}^{+} + IrCl_{6}^{3-} \qquad (9)$$
with excess $IrCl_{6}^{2-}$

Scheme I

$$CH_{3}-B_{12}^{+} + IrCl_{6}^{2-} + 2H_{2}O \xrightarrow{\text{nu}} H_{2}O-B_{12}^{+} + CH_{3}Cl + IrCl_{5}(H_{2}O)^{2-}$$
 (10)
with deficient $IrCl_{6}^{2-}$

 $CH_3-B_{12}^+ + H_2O \xrightarrow{fast} H_2O-B_{12}^+ + \frac{1}{2}C_2H_6$ (11)

An alternative path for the demethylation is a direct electrophilic attack at the carbon atom. However, this mechanism is not likely to occur. Electrophilic attack is essentially a one-step reaction. The stoichiometry and $IrCl_6^{3-}$ inhibition on the demethylation of CH_3-B_{12} virtually eliminate this mechanism.

The IrCl₆³⁻ inhibition on the IrCl₆²⁻ oxidation of RCo- $(DH)_2(H_2O)$ and the redox potential measurements have allowed Halpern et al. to estimate rates of the electron transfer and of the cleavage of Co-C bonds for these reactions.⁸ Although a similar IrCl₆³⁻ effect was observed on the reaction of IrCl₆²⁻ with CH₃-B₁₂ at low pH, this effect cannot be interpreted in terms of the reverse reaction of electron transfer from CH₃-B₁₂ to IrCl₆²⁻. This is because the 2:1 stoichiometry at the experimental conditions of kinetic measurements and the high flux of C_2H_6 when the reactions were performed with deficient IrCl6²⁻ demand that the rate of cleavage of Co-C of CH₃-B₁₂⁺ to be much larger than the electron-transfer rate under all experimental conditions. The retardation by IrCl₆³⁻ is also unlikely due to an inverse salt effect, because all the rate measurements were performed in 1.0 M ClO₄⁻ media $(HClO_4 + NaClO_4)$. Therefore, we propose that the $IrCl_6^{3-1}$ retardation can be interpreted in the framework of Scheme II, which involves a preequilibrium between CH_3 - B_{12} and

Scheme II

$$CH_3-B_{12} + IrCl_6^{2-} \underset{a}{\overset{K}{\longleftrightarrow}} CH_3-B_{12}, IrCl_6^{2-}$$
 (12)

$$CH_3-B_{12} + IrCl_6^{3-} \xleftarrow{K'} CH_3-B_{12}, IrCl_6^{3-}$$
(13)

$$CH_3-B_{12}, IrCl_6^{2-} \xleftarrow{k_{et}} CH_3-B_{12}^+ + IrCl_6^{3-}$$
(14)
a

 $IrCl_6^{2-}$. In the presence of stoichiometric amounts of $IrCl_6^{3-}$, complex **b**, which is inert to the electron-transfer reaction, would compete with complex **a** and retardation by $IrCl_6^{3-}$ would result.

In a recent paper,⁵ we have demonstrated that the reaction between CH_3 - B_{12} and AuX_4^- is zero order in $AuX_4^$ at high gold concentration. This kinetic behavior is interpreted as "complexation" between CH_3 - B_{12} and $AuX_4^$ prior to the electron-transfer reaction. "Complexation" has also been demonstrated in the methyl transfer from CH_3 - B_{12} to Pt^{IV}/Pt^{II} systems (in which an electron transfer is involved) by kinetic and spectroscopic methods.⁴ On the basis of these experiences, the suggestion of "complexation" between CH_3 - B_{12} and $IrCl_6^{2-}$ in Scheme II seems to be reasonable. It is noteworthy that the reaction rates of $IrCl_6^{2-}$ with organometals such as R_4 Sn were found to be faster than that estimated from an outer-sphere model.¹⁸

It has been shown that the base-on CH_3 - B_{12} has a much larger formation constant than the base-off form when

⁽¹⁸⁾ Wong, C. L.; Kochi, J. K. J. Am. Chem. Soc. 1979, 101, 5593.

Figure 5. Cl⁻ effect on the kinetic measurements of demethylation of CH₃-B₁₂ by IrCl₆²⁻ ([CH₃-B₁₂] = $(1 \sim 3) \times 10^{-5}$ M; [IrCl₆²⁻] = 3.2×10^{-4} M; [H⁺] = 0.18 M; μ = 1.0 M (maintained with NaClO₄); 23 °C).

complexing with platinum or gold complexes.^{4,5} Similarly, $k' (= k_{\rm et}K)$ is found to be ~80-fold larger than k". This suggests that K for the base-on CH_3 - B_{12} is larger than that for the base-off form. However, since k_{et} is not separated from K in the present study, this suggestion should remain tentative for the $IrCl_6^{2-}$ oxidation of CH_3-B_{12} .

Figure 5 shows that Cl⁻ has a pronounced effect on the IrCl₆²⁻ oxidation rate, with $k''_{Cl'}/k''_{ClO_4} = 24$. Indeed. the Cl⁻assisted demethylation of CH₃-B₁₂ by electrophile has been frequently observed. This includes Fe³⁺, Ce(IV), Pt(IV)/Pt(II),⁴ and Au(III).⁵ In cases of platinum and gold complexes in which k_{et} and K can be separated,¹⁹ it is found that [Cl⁻] does not affect k_{et} , while K is significantly larger at high Cl⁻ concentration.

Anion-assisted outer-sphere electron-transfer reactions between $Co(en)_3^{3+}$, $Co(NH_3)_6^{3+}$, $Co(phen)_3^{3+}$, and Cr^{2+} or V^{2+} and between Fe³⁺ and Co(phen)_3²⁺ have been thoroughly investigated.²⁰ This assistance is interpreted in terms of the orbital symmetries of the electron donor, electron acceptor, and the anion. More recently, Burdett has developed a molecular orbital model to rationalize the counterion effect.²¹ This effect is suggested to be threefold: (i) acting as an electrostatic glue, (ii) reducing the barrier to reaction, and (iii) ensuring adiabatic behavior. This argument can be applied to the bridging inner-sphere reactions as well. The accelerating effect of Cl⁻ on the electron transfer between CH_3 - B_{12} and $IrCl_6^{2-}$ can be readily interpreted by this molecular orbital model. However, it should be noted that CH_3 - B_{12} is basically a neutral molecule. Thus, we suggest that the Cl⁻ anion interacts with the π orbitals of corrin ring to increase the formation constant (K) of the "complex" between CH_3 - B_{12} and IrCl₆²⁻. It should also be noted that the chloride acceleration is unlikely due to the reversibility in eq 14 in competition to nucleophilic attack of Cl⁻ on CH₃-B₁₂⁺,⁸

(20) Przystas, T. J.; Sutin, N. J. Am. Chem. Soc. 1973, 95, 5545.
 (21) Burdett, J. K. Inorg. Chem. 1978, 17, 2537.

because CH_3 - B_{12} ⁺ undergoes a homolytic scission of the Co-C bond to generate a CH₃ radical, even the reaction was performed in 1.0 M Cl⁻ media (vide infra).

A key question that should be asked about the oxidation of organometals is how does the metal-carbon bond of the oxidized intermediate cleave? Two modes are readily available for CH_3 - B_{12}^+ . One is a nucleophilic displacement resulting in the production of B_{12r} , $IrCl_6^{3-}$ and CH_3OH (with H_2O as the nucleophile) or CH_3Cl (with Cl^- as the nucleophile), or N-methylated pyridine (with pyridine as the nucleophile). Two lines of evidence are against this mechanism. First, when a large excess of $IrCl_6^{2-}$ is used, CH₃Cl is the only detectable organic product generated under all experimental conditions. Second, $IrCl_5(H_2O)^{2-1}$ is produced with excess $IrCl_6^{2-}$. We have shown that the reaction between B_{12r} and $IrCl_6^{2-}$ yields $H_2O-B_{12}^+$ and $IrCl_6^{3-}$, thus the production of $IrCl_5(H_2O)^{2-}$ can be considered as a compelling evidence for the generation of CH₃. radical as described below.

The other mode of cleavage is for CH_3 - B_{12} ⁺ to release a transient CH₃, radical, which then quickly abstracts a chlorine atom from a second IrCl₆²⁻ molecule to form CH_3Cl and $IrCl_5(H_2O)^{2-}$. The rate of the CH_3 extraction of a chlorine atom from IrCl₆²⁻ in aqueous solution has been determined to be $1.15 \times 10^9 \text{ M}^{-1} \text{ s}^{-1} (22 \pm 2 \text{ °C, pH})$ 4-6).²² In the absence of excess IrCl₆²⁻, CH₃ combines to generate C_2H_6 . This mode is remarkably similar to the homolytic scission of CH₃-Co bonds in cations derived from the macrocyclic complexes (CH₃)₂Co(DpnH).²³ In this respect, (CH₃)₂Co(DpnH) is more closely related to CH_3 - B_{12} than that of methylcobaloximes. It should be noted that photolysis of CH_3 - B_{12} in the presence of O_2 yields $H_2O-B_{12}^+$ and HCHO as the major products; traces of CH_3OH , CH_4 and C_2H_6 are also formed.²⁴ This photolysis is generally believed to involve homolysis of Co-C bond to yield CH_3 and B_{12r} as the initial products. The remarkable point that should be stressed in the IrCl₆²⁻ oxidation of CH_3 - B_{12} is that it generates a high flux of C_2H_6

with deficient $IrCl_6^{2-}$. The high flux of C_2H_6 can be interpreted in terms of the relative ease of electron transfer from CH₃-B₁₂ to IrCl₆²⁻ and the very fast cleavage of Co–C bond of CH_3 - B_{12}^+ . In particular, our recent discovery that CH_3 - B_{12} forms a head-to-head dimer in aqueous solution at a $[CH_3-B_{12}] >$ 10^{-3} M²⁵ greatly enhances the chance of generating C₂H₆ from CH_3 by confining them close together. The high flux of C_2H_6 has also been observed in the cations derived from (CH₃)₂Co(DpnH).²³

In summary, IrCl₆²⁻ oxidation of CH₃-B₁₂ involves a one-electron transfer from CH_3 - B_{12} to $IrCl_6^{2^{-1}}$ as the rate-determining step. The transient CH_3 - B_{12}^+ intermediate then releases a CH3. radical which either abstracts a chlorine atom from a second IrCl₆²⁻ molecule or combines with another CH_3 radical to generate C_2H_6 . $IrCl_6^{3-}$ inhibits the IrCl₆²⁻ oxidation, while Cl⁻ significantly enhances the rate of reaction.

Acknowledgment. This research was performed during my postdoctoral period at Gray Freshwater Biological Institute, University of Minnesota. It was supported by a grant from NIH, No. AM 18101.

Registry No. Na₂IrCl₆, 16941-25-6; Na₃IrCl₆, 15702-05-3; CH₃-B₁₂, 13422-55-4; ¹³CH₃-B₁₂, 43184-67-4.

⁽¹⁹⁾ These reactions all involve an electron-transfer mechanism.

 ⁽²²⁾ Steenken, S.; Neta, P. J. Am. Chem. Soc. 1982, 104, 1244.
 (23) Tamblyn, W. H.; Klingler, R. J.; Hwang, W. S.; Kochi, J. K. J.

Am. Chem. Soc. 1981, 103, 3161.

^{(24) (}a) Hogenkamp, H. P. C. Biochemistry 1966, 5, 417. (b) Hogenkamp, H. P. C. "B₁₂" Dolphin, D., Ed.; New York, 1982; Vol. 1, p 295. (25) Pignatello, J. J.; Fanchiang, Y.-T., to be submitted for publication.