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Both 6-chloro-a-pyrones and 3-chlorobenzopyran-1-ones react with malonates followed by a double
decarboalkoxylation to give the corresponding alkyl and alkenyl products.
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Bioactive 6-alkyl-a-pyrones such as 6-pentyl-o-pyrone (!

6-(1-pentenyl)-o-pyrone (2)? and viridepyronone (3)* are repre-
sentative of a growing class of a-pyrones (Fig. 1). They exhibit a
diverse portfolio of useful activities including the regulation of root
architecture, plant growth promotion, and antipathogenic fungal
activity. Several researchers have developed routes to 1, including
Dickschat, Schreiber and Pale.* The route described herein is
strategically distinct from previous approaches in that pyrones
1-3 can all be constructed from a common intermediate.

The route begins with 6-chloro-o-pyrone (4), easily available
from commercially available trans-glutaconic acid in one step.’
Although 4 has been reported to undergo Sonogashira reactions
with a number of acetylenes, there are no reports of successful
additions with organometallic reagents such as cuprates or Grig-
nard reagents.”® Although reports of nucleophilic substitutions of
6-halo pyrones with enolates of carbonyl compounds are rare,
Stoltz has recently shown that nucleophilic substitution of the
chlorine in 4 with dimethyl malonate affords malonate 5 in good
yield.” Based on this precedent, we reacted 5 with 1-iodobutane.
While the use of NaH in THF led to recovered starting material,
the use of cesium carbonate in boiling acetonitrile afforded 6 in
69% isolated yield. The reaction of 6 with standard Krapcho decar-
boalkoxylation protocols (NaCl, DMSO) led to the recovery of 6.
However, the reaction of 6 with magnesium chloride hexahydrate
in dimethylacetamide (DMA) at 140 °C produced pyrone 1 in 82%
yield.® Normally, Sy2 type decarboalkoxylations of malonates
afford the monoacid; however, the stabilization of the anion from
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the second decarboalkoxylation through the pyrone carbonyl led to
1. Reaction of 5 with 1-iodohexane followed by double decar-
boalkoxylation generated 10 in 58% yield over two steps. Reaction
of 5 with allyl bromide and crotyl bromide produced pyrones 11
and 12 in 45% and 51% yields, respectively. Pyrone 12 was treated
with chlorobis(cyclooctene)iridium(l) catalyst? to isomerize the
alkene to generate 2 in 86% yield based on recovered starting
material.

Alkyl malonates react with 4 as shown below in Scheme 2.
Double decarboalkoxylation then affords pyrone 13 in 43% overall
yield. In practice, the crude adduct was taken directly on to the
decarboalkoxylation reaction.

To demonstrate the scope of this reaction, 3-chlorobenzopyran-
1-one (14) was synthesized by treating homophthalic acid with
POCl5."° This compound has been employed in palladium mediated
couplings such as the Sonogashira and Suzuki reactions.' Using
the reaction conditions described in Scheme 1, benzopyran-1-ones
15 and 16! were synthesized in 52% and 57% yields, respectively
(Scheme 3).

Pyrone 17 was readily prepared from the reaction of 5 with
cesium carbonate and 4-bromo-1-butene. Wacker oxidation using
palladium acetate and oxygen'? followed by double decar-
boalkoxylation afforded viridepyronone (3) in 48% overall yield.
Alternatively, reaction of 5 with methyl vinyl ketone and cesium
carbonate followed by double decarboalkoxylation produced 3 in
38% yield over two steps. Viridepyronone showed excellent anti-
fungal activity against several different soil-borne pathogenic
fungi. The antifungal activity of this compound was comparable
to commercial fungicide Hexaconazole.>” Evidente and coworkers
have shown in vitro antifungal activity of this compound against
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Fig. 1. Representative of bioactive 6-alkyl-a-pyrones.
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Scheme 1. Preparation of 6-alkyl-a-pyrones.
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Scheme 2. 6-Chloro-a-pyrone reacts with alkyl malonate.
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Scheme 3. Synthesis of 3 alkylbenzopyran-1-ones.

S. rolfsii at a minimum inhibitory concentration of 196 pg/mL.>* To
the best of our knowledge, this is the first total synthesis of
viridepyronone to be reported (see Scheme 4).

Both 6-Chloropyrone (4) and 3-chlorobenzopyran-1-one (14)
provide direct access to bioactive pyrones. The routes are
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Scheme 4. Synthesis of viridepyronone 3.

operationally convenient and proceed in good overall yields. The
routes are scalable and will provide quantities of 1, 2 and 3 for
additional biological evaluation.
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