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Abstract: The aim of this study is to obtain new unsaturated piperazine compounds by the reactions of piperazine
(1a) and piperazine derivatives (1b-1d) with acylation reactive groups (2a—2j). Methacryloyl piperazine (1b) was
synthesized from the reaction of methacrylic anhydride with piperazine (1a). Acyl chlorides (2b-2d) were prepared
from the reaction of thionyl chloride with carboxylic acids (3a-83c) obtained as a result of the reaction with malonic
acid and suitable aldehyde (5-methylfuran-2-carbaldehyde for 3a, cinnamaldehyde for 3b, and thiophene-2-carbaldehyde
for 3c), respectively, by literature methods. Acyl chlorides 2e and 2f were obtained from the reaction of commercially
purchased carboxylic acids 3d and 3e with thionyl chloride. Acyl chlorides (2g-2j) were synthesized from the reaction
of thionyl chloride with carboxylic acids (3d—3g) transformed from hydrolyzation of esters (4a—4d) obtained as a result
of the reaction of triethyl phosphonoacetate with a suitable ketone (acetophenone for 4a, benzophenone for 4b, 1-
(5-methylfuran-2-yl)ethan-1-one for 4c, and 1-(thiophen-2-yl)ethan-1-one for 4d), respectively, by literature methods.
Unsaturated piperazine derivatives 5a and 5b were obtained from the reaction of 1b with 2b and 2e, respectively.
In addition, from the reaction of 1b and acyl chlorides (2b-2j), unsaturated piperazines (5¢-5k) were synthesized in
medium to good yields (63%—84%). Also, 51-5g and 5r-5w were obtained from the reaction of allyl piperazine (2c) and
cinnamyl piperazine (2d) with acyl chlorides (2a—2f).
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1. Introduction
Heterocycles are organic molecules that have great importance both biologically and industrially. Many synthetic
and naturally occurring drugs contain heterocyclic moieties [1-3]. Heterocycles bearing nitrogen (piperazine,
thiazole, imidazole, etc.) have drawn much attention due to their biological properties [4,5]. In medicinal
chemistry the piperazine scaffold is considered a privileged structure for its capability of binding to multiple
receptors with high affinity [6] and it can be found in drugs such as imatinib [7], sildenafil [8], indinavir [9],
and gatifloxacin [10] (Figure 1). Piperazine is also a useful linker for bioactive structures. Many biological
activity studies were performed on piperazine-containing structures, such as anticonvulsant [11], antibacterial
[12], antituberculosis [13], antiviral [14], anticancer [15], antimalarial [16], and acetylcholine esterase inhibition
[17].

Cinnamyl piperazine derivatives were reported to show anticonvulsant activity [18], monoacylglycerol

lipase inhibition [19], and antimicrobial [20] and antiinflammatory activity [21]. Some acrylamide piperazine
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Figure 1. Structure of imatinib, sildenafil, indinavir, and gatifloxacin.

derivatives were also reported to show antimycobacterial [22], antiischemic [23], and antiparasitic activities [24].
Additionally, some dienoyl-substituted piperazines were reported to show ~-aminobutyric acid receptor [25],
monoamine oxidase [26], and Staphylococcus aureus [27] inhibition. In this study, based on these properties of
piperazines, we obtained various unsaturated diacyl and alkyl-acyl cinnamyl, ally, and acrylamide piperazines
bearing unsaturated moieties, which are potential bioactive compounds and starting reagents for synthesizing
many other potential bioactive molecules. All new synthesized compounds were characterized by ' H NMR, '3C
NMR, HRMS, and FTIR spectroscopy. Other compounds that are available in the literature were characterized
by 'H NMR spectroscopy.

2. Results and discussion

Synthesis of methacryloyl piperazine (1b) was performed by the reaction of piperazine (1a) and methacryloyl
chloride as an acylating reagent in the literature [28]. However, we did not succeed in synthesizing 1b using this
method; dimethacryloyl piperazine was obtained instead. In this study, synthesis of 1b (77%) was achieved by

the reaction of methacrylic anhydride (2a) with piperazine (1a) in mild conditions (Figure 2).

6 0 N
HN\\//\\NH + - - HN\/_N\HJK
o CHCls, 0°C
1a 2a

Figure 2. Synthesis of methacryloyl piperazine (1b).

Unsaturated acyl chlorides (2b—2j) were prepared from the reaction of suitable carboxylic acid and
SOCly according to literature (see Section 3). Diacyl (5a—5k) and alkyl-acyl (51-5w) piperazine compounds
were obtained from the reactions of these acyl chlorides with piperazine (1a) and piperazine derivatives (1b-1d).

As can be seen in Table 1, symmetrical unsaturated piperazine derivatives 5a (84%) and 5b (66%) were
synthesized from the reactions of piperazine (1la) and (E)-3-(5-methylfuran-2-yl)acryloyl chloride (2b) and
(2E ,4 F)-hexa-2,4-dienoyl chloride (2e), respectively.

Reactions of 1b with (2 F,4 F)-5-phenylpenta-2,4-dienoyl chloride (2¢) and 2e gave 5¢ (72%) and 5d
(66%) in high yields, respectively. Additionally, reactions of 1b with 2b and ( E)-3-(thiophen-2-yl)acryloyl
chloride (2d) gave piperazine derivatives 5e (75%) and 5f (81%), respectively.

Diacyl piperazine compounds 5g (65%), 5h (79%), and 5i (70%) were obtained from the reaction of 1b
with cinnamoyl chloride (2f), ( E)-3-phenylbut-2-enoyl chloride (2g), and 3,3-diphenylacryloyl chloride (2h) in
medium to high yields, respectively (Table 2).

Similarly, 5j (65%) and 5k (63%) were synthesized from the reaction of 1b with ( F)-3-(5-methylfuran-
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Table 1. Synthesis diacyl piperazine compounds 5a-f.

. . . Diacyl piperazine Product and
Entry Piperazine Acylating reagent product Yield (%)®
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1a 2b O
o O
2 5b, 66
1a )J\/\/\ /\/\)J\ NN AN ’
- I~ X N \ﬂ/\/\/
2e o
o O
AN i N— N AN Ph
3 N~ —NH CIWPh TN Se, 72
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1b 2c
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2e o
@) e} \
5 = A~ | Se, 75
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2d S ©

a) Isolated yields are based on piperazine derivative (1a or 1b).

2-yl)but-2-enoyl chloride (2i) and (E)-3-(thiophen-2-yl)but-2-enoyl chloride (2j), respectively.

Synthesis of alkyl-acyl piperazine (51-5q) compounds obtained from the reactions of allyl piperazine (1c)
and suitable acyl chloride (2a-2f) can be seen in Table 3.

Piperazine compounds 51 (63%) and 5m (70%) were obtained from the reaction of 1c with 2b and 2d,
respectively. Treatments of 1c with 2f and 2a also gave piperazine derivatives 5n (90%) and 50 (76%) in high
yields, respectively. Moreover, reactions of 1c with 2c and 2e gave 5p (75%) and 5q (81%), respectively.

Syntheses of alkyl-acyl piperazines (5r-5w) were obtained from the reactions of cinnamyl piperazine (1d)
and suitable acyl chloride (2a-2f) (Table 4).

Reactions of 1d with 2b and 2d gave piperazine compounds 5r (87%) and 5s (81%) in high yields,
respectively. Additionally, 5t (87%) and 5u (94%) were obtained from the reactions of 1d with 2f and 2a.
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Table 2. Synthesis diacyl piperazine compounds 5g-k.

. . . Diacyl piperazine Product and
Entry Piperazine Acylating reagent product Yield (%)*
o) o Q
1 PN N—" X Ph 5g, 65
N N )
W})L \/_NH Cl )J\/\Ph \H)L ~ \”/\/
O
1b 2f

0O

O
2 N Sh, 79
Pl ey
9
@)

O Ph
N .
3 1b oA, \KLN\/_NW% 5i, 70
2h (@] Ph
4 1b 5§, 65
5 1b 5k, 63

a) Isolated yields are based on piperazine derivative (1b).

Moreover, 5v (75%) and 5w (81%) were synthesized from the reactions of 1d with 2c and 2e in high yields.

In conclusion, novel diacyl (5a—5k) and alkyl-acyl (51-5w) unsaturated piperazine compounds were
synthesized by the acylation reactions of piperazine (1a), methacryloyl piperazine (1b), allyl piperazine (1c),
and cinnamyl piperazine (1d) with suitable acyl chlorides and methacrylic anhydride in medium to high yields for
the first time. All new compounds were characterized by ' H NMR, '3 C NMR, HRMS, and FTIR spectroscopy.
The others were characterized by only ' H NMR.

Many piperazine derivatives are known for their bioactive properties and can be used as linkers for many
other bioactive structures like imatinib [7], sildenafil [8], indinavir [9], and gatifloxacin [10]. On the other hand,
these diacyl (5a—5k) and alkyl-acyl (51-5w) piperazine compounds bear unsaturated moieties and for that
reason they are potential starting reagents for many reactions such as Heck coupling, polymerizations, and «-
unsaturated Michael additions.

These compounds are also starting reagents for Mn(OAc)s mediated radical cyclization reactions for
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Table 3. Synthesis of allyl-acyl piperazine compounds (51-q).
Alkly-Acyl piperazine Product and

Entry Piperazine Acylating reagent product Yield (%)
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2a ©
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a) Isolated yields are based on piperazine derivative (1¢).

synthesizing acetylcholine esterase inhibitor dihydrofuran-piperazine molecules and this work is an ongoing
research interest of our group.

3. Experimental
3.1. Equipment and used chemicals

Melting points were determined on a Gallenkamp capillary melting point apparatus. IR spectra (ATR) were

1

obtained with a Bruker Tensor27 spectrophotometer in the 400-4000 cm ~! range with 2 cm ~! resolution. ! H

NMR and '3C NMR spectra were recorded on Varian Mercury-400 High Performance Digital FT-NMR and
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Table 4. Synthesis of cinnamyl-acyl piperazine compounds (5r-w).
Alkly-Acyl piperazine Product and
product Yield (%)?
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a) Isolated yields are based on piperazine derivative (1d).

Varian Oxford NMR300 spectrometers. High-resolution mass time-of-flight spectra (TOF) were measured on
an Agilent 1200/6210 LC/MS spectrophotometer. Thin-layer chromatography (TLC) was performed on Merck
aluminum-packed silica gel plates. Purification of products was performed by column chromatography on
silica gel (Merck silica gel 60, 40-60 pm) or preparative TLC on silica gel (Merck, PFos4_366 nm)- All sol-
vents (chloroform, methanol, ethyl acetate, hexane, THF, diethyl ether, ethanol, HCl) were of the highest pu-
rity and anhydrous. Malonic acid, 5-methyl-2-carbaldehyde, cinnamaldehyde, thiophene-2-carbaldehyde, pyri-
dine, piperidine, SOCly, NaH, triethyl phosphonoacetate, acetophenone, benzophenone, 2-acetyl-5-methylfuran,
2-acetyl-thiophene, NaOH, Na5;SO,, 2,4-hexadienoic acid, cinnamic acid, piperazine, l-allypiperazine, 1-

cinnamylpiperazine, and metacrylic anhydride were purchased from Sigma Aldrich. Please note that the 'H
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NMR spectra for known compounds and 'H NMR, '3C NMR, and HRMS spectra for all novel compounds can
be found in the Supplementary information.

3.2. General synthesis of unsaturated acyl chlorides (2b—2j)
Thionyl chloride (22 mL, 0.3 mol, freshly distilled) was added to a solution of suitable carboxylic acid (3a—3g)

(0.1 mol) in 100 mL of chloroform at room temperature. The mixture was allowed to stand for 12 h. Then
the solvent and excess SOCl, were distilled in vacuo. The residue was pure enough to be used as an acylating
reagent without further purification.

All necessary carboxylic acids (except 2,4-hexadienoic acid and cinnamic acid) were prepared according
to methods described in Sections 3.3 and 3.4.

3.3. General synthesis of (E)-3-(5-methylfuran-2-yl)acrylic acid (3a), (2E,4E)-5-phenylpenta-2,4-
dienoic acid (3b), and (E)-3-(thiophen-2-yl)acrylic acid (3c)

Molecular structures of carboxylic acids (3a—3c) are given in Figure 3.

(0]
= O

HO ~ IR o
oY HO™ N py HO

3a 3b 3c

Figure 3. Carboxylic acids (3a-3c).

Malonic acid (20 g, 0.2 mol), the corresponding aldehyde (0.1 mol), (5-methylfuran-2-carbaldehyde for
3a, cinnamaldehyde for 3b, and thiophene-2-carbaldehyde for 3c), 50 mL of freshly distilled pyridine, and 1
mL of piperidine were put into a two-necked reaction flask. The mixture was heated for 2 h to a temperature
not exceeding 90-95 °C and boiled for 5 min after that. The mixture was left to cool and diluted with water.
After cooling, concentrated HCl was added dropwise. Formed precipitates were filtered and crystallized in
EtOH-water.

( E)-3-(5-Methylfuran-2-yl)acrylic acid (3a) [29]: Yield: 13 g, 85%. Mp: 155-156 °C, (lit: 154-155 °C).
'H NMR (400 MHz, CDCl3), 6 (ppm): 7.43 (1H, d, J= 15.6 Hz), 6.56 (1H, d, J= 3.2 Hz), 6.22 (1H, d, J =
15.6 Hz), 6.10 (1H, d, J= 3.2 Hz), 2.35 (3H, s).

(2E 4 E)-5-Phenylpenta-2,4-dienoic acid (3b) [30]: Yield: 12 g, 70%. Mp: 164-166 °C, (lit: 164-166
°C). 'H NMR (400 MHz, CDCl3), 6 (ppm): 7.57-7.46 (3H, m), 7.39-7.30 (3H, m), 6.98-6.87 (2H, m), 6.00
(1H, d, J= 15.2 Hz).

(E)-3-(Thiophen-2-yl)acrylic acid (3¢) [31]: Yield: 13.8 g, 90%. Mp: 140-141 °C, (lit: 140-142 °C).
'H NMR (400 MHz, CDCl3), § (ppm): 7.88 (1H, d, J = 15.6 Hz), 7.42 (1H, d, J = 4.8 Hz), 7.30 (1H, d, J
= 3.2 Hz), 7.07 (1H, dd, J = 4.8, 3.2 Hz), 6.24 (1H, d, J = 15.6 Hz).

3.4. General synthesis of substituted carboxylic acids (3d—3g)

Carboxylic acids (3d-3g) were prepared from the hydrolysis of esters (4a—4d) synthesized from the reaction of
suitable ketones and triethyl phosphonoacetate in NAH/THF (Figure 4).
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Figure 4. Synthesis of unsaturated esters (4a—4d) and carboxylic acids (3d-3g).

3.4.1. General synthesis of unsaturated esters (4a—4d)

To a suspension of NaH (60%, 8.3 g, 0.12 mol) in THF, a solution of triethyl phosphonoacetate (34.5 mL, 0.12
mol) in THF was added dropwise in an ice bath. After instillation the mixture was stirred for 30 min at room
temperature and a solution of corresponding ketone (0.1 mol) (acetophenone for 4a, benzophenone for 4b,
1-(5-methylfuran-2-yl)ethan-1-one for 4c, and 1-(thiophen-2-yl)ethan-1-one for 4d) in THF was poured into the
reaction mixture and stirred for 2-3 h. The reaction was monitored with TLC, and in the case of remaining
ketone, the mixture was heated until no more ketone remained. THF was evaporated and water was added.
The mixture was extracted with diethyl ether. The combined organic phase was dried with Na;SO4 and ether
was evaporated. The crude product was purified with column chromatography with hexane/ethyl acetate (5:1)
as eluent.

(E)-Ethyl 3-phenylbut-2-enoate (4a) [32]: Yield: 17.81 g, 94%. Oily product.'H NMR (400 MHz,
CDCl3), ¢ (ppm): 7.51 (2H, m), 7.40 (3H, m), 6.17 (1H, m), 4.25 (2H, q, J= 7.2 Hz), 2.62 (3H, d, J= 1.2
Hz), 1.36 (3H, t, J= 7.2 Hz).

Ethyl 3,3-diphenylacrylate (4b) [32]: Yield: 23.5 g, 93%. Oily product. *H NMR (400 MHz, CDCl3), &
(ppm): 7.27-7.45 (10H, m), 6.44 (1H, s), 4.11 (2H, q, J= 7.2 Hz), 1.17 (3H, t, J= 7.2 Hz).

Ethyl ( E)-3-(5-methylfuran-2-yl)but-2-enoate (4c): Yield: 17.9, g 92%. Oily product.!' H NMR. (400
MHz, CDCl3), ¢ (ppm): 6.52 (1H, d, J= 3.6 Hz), 6.28 (1H, d, J= 1.2 Hz), 6.03 (1H, d, J = 3.6 Hz), 4.17
(2H, q, J = 7.2 Hz), 2.40 (3H, d, J = 1.2 Hz), 2.30 (3H, s), 1.28 (3H, t, J = 7.2 Hz). 3C NMR (100 MHz,
CDCI3), ¢ (ppm): 167.35, 154.35, 152.78, 142.24, 112.71, 110.82, 108.36, 59.57, 14.48, 14.33, 13.74.

Ethyl ( E)-3-(thiophen-2-yl)but-2-enoate (4d) [33]: Yield: 16 g, 93%. Oily product. ' H NMR (400 MHz,
CDCl3), ¢ (ppm): 7.34 (2H, d, J= 4.2 Hz), 7.06 (1H, t, J= 4.2 Hz), 6.22 (1H, d, J= 1.2 Hz), 4.22 (2H, q,
J= 7.2 Hz), 2.63 (3H, d, J= 1.2 Hz), 1.34 (3H, t, J= 7.2 Hz).
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3.4.2. General synthesis of unsaturated carboxylic acids (3d—3g)

Unsaturated esters (4a—4d) obtained by the method described above were transformed into their corresponding
carboxylic acids (3d-3g) by the method described below.

Unsaturated ester (4a-4d) (0.1 mol) was boiled with 5 N NaOH under a reflux condenser for 2-3 h and
left to stir at room temperature overnight. The formed carboxylate salt was dissolved in water and diluted HC1
was added. The obtained solid product was filtered and crystallized with EtOH-water.

( E)-3-Phenylbut-2-enoic acid (3d) [34]: Yield: 15 g, 94%. Mp: 90-92 °C, (lit: 90-92 °C). 'H NMR
(400 MHz, CDCl3), § (ppm): 7.51-7.49 (3H, m), 7.40-7.38 (2H, m), 6.18 (1H, s), 2.61 (3H, s).

3,3-Diphenylacrylic acid (3e) [35]: Yield: 14.5 g, 65%. Mp: 159-161 °C (lit: 161-162°C). 'H NMR
(400 MHz, CDCl3), § (ppm): 7.38-7.19 (10H, m), 6.33 (1H, s).

( E)-3-(5-Methylfuran-2-yl)but-2-enoic acid (3f): Yield: 10 g, 60%. Mp: 138-140 °C. 'H NMR (400
MHz, CDCl3), ¢ (ppm): 6.08 (1H, d, J= 3.2 Hz), 6.33 (1H, d, J = 1.2 Hz), 6.07 (1H, d, J = 3.2 Hz), 2.43
(3H, d, J = 1.2 Hz), 2.43 (3H, s). ¥C NMR (100 MHz, CDCI3), § (ppm): 172.3, 155, 152.6, 144.5, 113.7,
109.8, 108.6, 14.8, 13.8.

(E)-3-(Thiophen-2-yl)but-2-enoic acid (3g) [36]: Yield: 11 g, 65%. Mp: 113-115 °C (lit: 114-114.8 °C).
'H NMR (400 MHz, CDCl3), 6 (ppm): 7.37 (2H, d, J = 4.4 Hz), 7.07 (1H, t, J = 4.4 Hz), 6.29 (1H, s), 2.63
(3H, s).

3.5. Synthesis procedure for 2-methyl-1-(piperazin-1-yl)prop-2-en-1-one (1b) [28]

Piperazine (1a) (20 g, 0.232 mol) was dissolved in 50 mL of chloroform in a reaction flask. The solution was
stirred in an ice-salt bath for 15 min. Then a dilute solution of methacrylic anhydride (2a) (18 g, 0.116 mol)
was added. After instillation, the reaction was removed from the ice-salt bath and allowed to stir overnight.
Water was added and crude product was extracted with chloroform. Combined organic phases were dried over
anhydrous NaySO4 and evaporated. The crude product was purified by column chromatography on silica gel
using EtOAc-methanol (1:1) as eluent. Yield: 30 g, 77%. Oily product.'H NMR (400 MHz, CDCl3) 4 (ppm):
5.16 (1H, q, J= 1.6 Hz), 5.00 (1H, q, J= 1.2 Hz) 3.55 (4H, s) 2.84 (4H, s), 1.93 (3H, t, J= 1.2 Hz).

3.6. General synthesis procedure for symmetrical diacyl piperazine compounds (5a, 5b)

Piperazine (2a) (860 mg, 10 mmol) and EtsN (22 mmol) were dissolved in 10 mL of chloroform in a reaction
flask. The solution was stirred in an ice bath for 15 min. Then a dilute solution of the related acylating agent
(1a, 1b) (22 mmol) in CHCl; was added dropwise. After instillation, the reaction was removed from the
ice bath and allowed to stir overnight. Water was added and crude product was extracted with chloroform.
Combined organic phases were dried over anhydrous Nay SO 4 and evaporated. The crude product was purified
by column chromatography on silica gel using EtOAc-methanol (1:1) as eluent.

(2E,2’E)-1,1’-(Piperazine-1,4-diyl) bis(3-(5-methylfuran-2-yl)prop-2-en-1-one) (5a): Yield: 3.1
g, 84%. Mp: 275-277 °C. IR (ATR): 980, 1209, 1426, 1603, 1644, 1748, 2850, 2921, 3686 cm ~!. 'H NMR (400
MHz, CDCl3), 6 (ppm): 7.43 (2H, d, J = 14.8 Hz), 6.69 (2H, d, J = 14.8 Hz), 6.47 (2H, d, J = 2.8 Hz), 6.07
(2H, d, J = 2.8 Hz), 3.74 (8H, s), 2.35 (6H, s). ¥*C NMR (100 MHz, CDCl3), § (ppm): 165.80, 154.83, 150.09,
130.48, 116.06, 111.81, 108.75, 45.6, 42.3, 13.89. HRMS (ESI): (m/z) caled. for CoHaaN2Oy4, (M+Na)+
377.14717, found: 377.14695.
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(2E,2’E,4E,4’E)-1,1’-(Piperazine-1,4-diyl)bis(hexa-2,4-dien-1-one) (5b): Yield: 1.9 g, 66%.
Mp: 153-155 °C. IR (ATR): 938, 1207, 1236, 1426, 1620, 1648, 2336, 2912 cm~!. 'H NMR (400 MHz,
CDCl3), § (ppm): 7.28 (2H, dd, J = 14.8, 10 Hz), 6.25-6.07 (6H, m), 3.64 (SH, s), 1.85 (6H, d, J = 6.4 Hz).
13C NMR (100 MHz, CDCls), § (ppm): 166.02, 143.99, 138.40, 129.99, 117.07, 41.99, 38.70, 18.59. HRMS
(ESI): (m/z) caled. for C16Haa N2 Oy, (M+Na)t 297.15734, found: 297.15706.

3.7. General synthesis procedure for nonsymmetrical diacyl piperazine compounds (5c-k)

Methacryloyl piperazine (1b, 10 mmol) and Et3N (22 mmol) was dissolved in 10 mL of chloroform in a reaction
flask. The solution was stirred in an ice bath for 15 min. Then a dilute solution of the related acylating agent
(2¢-2j) (22 mmol) in CHCl3 was added dropwise. After instillation, the reaction was removed from the ice bath
and allowed to stir overnight. Water was added and crude product was extracted with chloroform. Combined
organic phases were dried over anhydrous Na5SO4 and evaporated. The crude product was purified by column
chromatography on silica gel using EtOAc-methanol (1:1) as eluent.

(2E,4F)-1-(4-Methacryloylpiperazine-1-yl)-5-phenylpenta-2,4-dien-1-one (5c): Yield: 2.2 g,
72%. Mp: 178-180 °C. IR (ATR): 759, 989, 1194, 1225, 1430, 1460, 1615, 2861, 2908 cm ~*. *H NMR (400
MHz, CDCl3), § (ppm): 7.51-7.44 (3H, m), 7.36-7.25 (3H, m), 6.89 (2H, t, J = 15.2 Hz), 6.43 (1H, d, J
= 15.2 Hz), 5.24 (1H, s), 5.06 (1H, s), 3.63 (8H, s), 1.96 (3H, s). 13C NMR (100 MHz, CDCls), & (ppm):
171.38, 165.71, 143.75, 139.71, 136.18, 128.78, 127.04, 126.52, 119.39, 116.12, 45.22, 41.56, 20.47. HRMS (ESI):
(m/z) caled. for C19gH22N2Og, HRMS (ESI): (m/z) caled. for C19gH2oN2Oo, (M+H)T 311.17540, found:
311.17543.

(2FE,4F)-1-(4-Methacryloylpiperazine-1-yl)hexa-2,4-dien-1-one (5d): Yield: 1.78 g, 66%. Mp:
110-112 °C. IR (ATR): 924, 1198, 1253, 1432, 1614, 1645, 2012 cm—'. 'H NMR (400 MHz, CDCl3), § (ppm):
7.30 (1H, t, J = 14.8 Hz), 6.24-6.09 (3H, m), 5.24 (1H, t, J = 1.6 Hz), 5.05 (1H, t, J = 1.2 Hz), 3.60 (SH,
s), 1.96 (3H, t, J = 1.6 Hz), 1.84 (3H, d, J = 6.4 Hz). 3C NMR (100 MHz, CDCls), § (ppm): 171.38,
166.03, 144.10, 139.97, 138.49, 129.97, 116.99, 116.08, 42, 46, 20.46, 18.60. HRMS (ESI): (m/z) caled. for
C14HoN202, (M+Na)™ 271.14169, found: 271.14216.

(E)-1-(4-Methacryloylpiperazine-1-yl)-3-(5-methylfuran-2-yl) prop-2-en-1-one (5€): Yield: 2.33
g, 75%. Mp: 142-144 °C IR (ATR): 977, 1196, 1247, 1426, 1606, 1644, 1705, 2859, 2919, 3047 cm~'. 'H NMR
(400 MHz, CDCl3), § (ppm): 7.40 (1H, d, J = 15.2 Hz), 6.66 (1H, d, J= 15.2), 6.45 (1H, d, J = 3.2 Hz),
6.05 (1H, m) 5.23 (1H, t, J= 1.2 Hz), 5.05 (1H, t, J = 1.2 Hz), 3.66 (SH, s), 2.33 (3H, s), 1.96 (3H, t, J = 1.2
Hz). ¥C NMR (100 MHz, CDCl3), § (ppm): 171.36, 165.75, 154.81, 150.05, 139.97, 130.49, 116.06, 111.75,
108.75, 45.47, 42.19, 20.46, 13.87. HRMS (ESI): (m/z) caled. for C16Ha0N2 03, (M+Na)*+ 311.13661, found:
311.13582.

(E)-1-(4-Methacryloylpiperazine-1-yl)-3-(thiophen-2-yl)prop-2-en-1-one (5f): Yield: 2.5 g,
81%. Mp: 101-103 °C. IR (ATR): 967, 1202, 1271, 1433, 1606, 1642, 2190, 2860, 2923, 2997 cm~'. 'H
NMR (400 MHz, CDCl3), § (ppm): 7.84 (1H, d, J = 15.2 Hz), 7.51 (1H, dd, J = 5.2, 3.6 Hz), 7.34 (1H, d, J =
5.2 Hz), 7.24 (1H, d, J = 3.6 Hz), 6.65 (1H, d, J = 15.2 Hz), 5.25 (1H, t, J = 1.6 Hz), 5.07 (1H, t, J = 1.6 Hz),
3.66 (8H, s), 1.98 (3H, t, J = 1.2 Hz). 3C NMR (100 MHz, CDCl3), 6 (ppm): 171.38, 165.33, 140.13, 139.94,
136.46, 130.67, 128,08, 127.57, 116.13, 114.96, 46, 42, 20.4. HRMS (ESI): (m/z) caled. for C15H1sN205S,
(M+Na)* 313.09811, found: 313.09941.
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(E)-1-(4-Cinnamoylpiperazine-1-yl)-2-methylprop-2-en-1-one (5g):

Yield: 1.9 g, 65%. Mp: 100-102 °C. IR (ATR): 748, 996, 1133, 1209, 1367, 1436, 1618, 1739, 2362, 3003
cm~!. 'H NMR (400 MHz, CDCl3), § (ppm): 7.71 (1H, d, J = 16 Hz), 7.54-7.52 (2H, m), 7.41-7.36 (3H, m),
6.86 (1H, d, J = 16 Hz), 5.26 (1H, s), 5.08 (1H, s), 3.60 (SH, s), 1.98 (3H, s). 13C NMR (100 MHz, CDCls),
§ (ppm): 171,38, 165.68, 143.66, 139.94, 134.97, 120.88, 128.85, 127.82, 116.39, 116.14, 42, 46, 20.47. HRMS
(ESI): (m/z) caled. for C17HooN2Oo, (M+Na)t 307.14169, found: 307.14038.

(E)-1-(4-Methacryloylpiperazine-1-yl)-3-phenylbut-2-en-1-one (5h):

Yield: 2.6 g, 79%. Mp: 84-86 °C. IR (ATR): 766, 910, 1208, 1433, 1460, 1612, 2867, 2917, 2995 cm ~!.
U NMR (400 MHz, CDCl3), § (ppm): 7.46-7.43 (2H, m), 7.38-7.33 (3H, m), 6.25 (1H, t, J = 1.2 Hz), 5.24
(1H, d, J = 1.2 Hz), 5.06 (1H, d, J = 1.2 Hz), 3.62 (8H, s), 2.28 (3H, d, J = 1.2 Hz), 1.96 (3H, t, J = 1.2
Hz). 3C NMR (100 MHz, CDCl3), § (ppm): 171.4, 167.3, 146.9, 141.4, 140, 128.54, 128.51, 125.9, 118.83,
116.1, 46.89, 42.29, 20.47, 18.05. HRMS (ESI): (m/z) caled. for C1sHaaN2Oo, (M+Na)™* 337.13129, found:
337.13041.

1-(4-Methacryloylpiperazine-1-yl)-3,3-diphenylprop-2-en-1-one (5i):

Yield: 2.7 g, 70%. Mp: 126-128 °C. IR (ATR): 760, 916, 1199, 1431, 1592, 1628, 2856, 2890, 2978 cm ~1.
L NMR (400 MHz, CDCl3), § (ppm): 7.37-7.27 (10H, m), 6.30 (1H, s), 5.171 (1H, s), 4.94 (1H, s), 3.5 (2H,
s), 3.30 (4H, s), 2.91 (2H, s), 1.88 (3H, s). *C NMR (100 MHz, CDCls), § (ppm): 171.09, 167.31, 147.68,
140.54, 139.84, 138.65, 129.50, 128.84, 128.77, 128.44, 128.40, 128.08, 120.11, 115.92, 46.20, 41.32, 20.39. HRMS
(ESI): (m/z) caled. for Co3HoyN2Oo, (M+Na)t 383.17300, found: 383.17366.

(E)-1-(4-Methacryloylpiperazine-1-yl)-2-methyl-3-(5-methylfuran-2-yl) prop-2-en-1-one (5j):

Yield: 2.1 g, 65%. Mp: 142-144 °C. IR (ATR): 988, 1195, 1219, 1421, 1441, 1611, 1631, 1738, 2854,
2023, 3013 cm~'. 'H NMR (400 MHz, CDCl;), § (ppm): 6.45 (1H, d, J = 1.2 Hz), 6.39 (11, d, J = 2.8
Hz), 6.00 (1H, m), 5.21 (1H, t, J = 1.6 Hz), 5.03 (1, t, J = 1.2 Hz), 3.62 (8H, s), 2.3 (3H, s), 2.19 (3H, d, J
= 1.2 Hz), 1.94 (3H, t, J = 1.2 Hz). 3C NMR (100 MHz, CDCl3), § (ppm): 171.33, 167.03, 153.45, 152.67,
140, 136.70, 115.98, 112.15, 111,12, 108.10, 46.66, 41.54, 20.46, 14.93, 13.78. HRMS (ESI): (m/z) caled. for
C17H23N203, (M+Na)™ 325.15226, found: 325.15113.

(E)-1-(4-Methacryloylpiperazine-1-yl)-2-methyl-3-(thiophen-2-yl)prop-2-en-1-one (5k):

Yield: 2 g, 63%. Mp: 102-104 °C. IR (ATR): 856, 1196, 1428, 1462, 1616, 2911, 2974 cm~'. 'H
NMR (400 MHz, CDCl3), § (ppm): 7.26 (1H, d, J = 1.2 Hz), 7.19 (1H, dd, J = 3.6, 1.2 Hz), 7.02 (1H, dd,
J =52 3.6 Hz), 637 (1H, d, J = 1.2 Hz), 5.24 (1H, t, J = 1.2 Hz), 5.06 (1, t, J =1.6 Hz), 3.61 (8H, s),
2.33 (3H, d, J = 1.2 Hz), 1.96 (3H, t, J = 1.2 Hz). ¥C NMR (100 MHz, CDCls), § (ppm): 171.37, 166.61,
145.17, 140.69, 139.96, 127.80, 125.82, 125.54, 116.2,3 116.09, 46, 42, 20.5, 17.8. HRMS (ESI): (m/z) caled. for
C16HaoN5 0,8, (M+Na)+ 327.11376, found: 327.11506.

3.8. General synthesis procedure for alkyl-acyl piperazine compounds (51-5w)

Ally piperazine (2¢) or cinnamyl piperazine (2d) (10 mmol) and Et3N (20 mmol) were dissolved in 10 mL
of chloroform. The solution was stirred in an ice bath for 15 min. Then a dilute solution of related acylating
reagents (13 mmol) in CHCl3 was added dropwise. After instillation, the reaction was removed from the ice bath

and allowed to stir overnight. Water was added and crude product was extracted with chloroform. Combined
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organic phases were dried over anhydrous Na5SO4 and evaporated. The crude product was purified by column

chromatography on silica gel using EtOAc-methanol (1:1) as eluent.

3.8.1. (E)-1-(4-Allylpiperazine-1-yl)-3-(5-methylfuran-2-yl)prop-2-en-1-one (51):

Yield: 1.7 g, 63%. Oily product. IR (ATR): 1001, 1220, 1367, 1428, 1647, 1739, 2360, 2799, 2943 cm~'. 'H
NMR (400 MHz, CDCl3), & (ppm): 7.39 (1H, d, J = 14.8 Hz), 6.69 (1H, d, J = 14.8 Hz), 6.44 (1H, d, J = 3.2
Hz), 6.05 (1H, d, J = 3.2 Hz), 5.87 (1H, ddt, J = 17.2, 10, 6 Hz), 5.24 (1H, dd, J = 17.2, 1.2 Hz), 5.20 (1H, dd,
J =10, 1.2 Hz), 3.73 (4H, s) 3.06 (2H, d, J = 6.8 Hz), 2.51 (4H, t, J = 5.2 Hz), 2.34 (3H, 5). >C NMR (100
MHz, CDCl3), & (ppm): 165.45, 154.47, 150.24, 133.94, 120.87, 118.90, 115.50, 112.40, 108.60, 61.42, 53.16,
52.58, 45.45, 41.88, 14. HRMS (ESI): (m/z) caled. for C15HogN2Oo, (M+Na) ™t 283.1417, found: 283.14169.

(E)-1-(4-Allylpiperazine-1-yl)-3-(thiophen-2-yl)prop-2-en-1-one (5m):

Yield: 1.9 g, 70%. Mp: 64-66 °C. IR (ATR): 971, 1223, 1366, 1441, 1582, 1630, 1739, 2359, 2818, 2941
em~1. 'H NMR (400 MHz, CDCl3), 6 (ppm): 7.80 (1H, d, J = 15.2 Hz), 7.31 (1H, d, J = 5.2 Hz), 7.20 (1H,
d, J =3.6 Hz), 7.03 (1H, dd, J = 5.2, 3.6 Hz), 6.67 (1H, d, J = 15.2 Hz), 5.87 (1H, ddt, J = 17.2, 10.8, 6 Hz),
5.21 (1H, dd, J = 17.2, 1.2 Hz), 5.19 (1H, dd, J = 10.8, 1.2 Hz), 3.70 (4L, s), 3.04 (2H, d, J = 6 Hz), 2.49
(4H, s). 3C NMR (100 MHz, CDCl3), & (ppm): 164.96, 140.42, 135.60, 134.13, 130.20, 127.96, 127.15, 118.73,
115.70, 61.45, 53.16, 52.62, 45.60, 42.02. HRMS (ESI): (m/z) caled. for C14H1sN5OS, (M+Na)* 285.10321,
found: 285.10448.

(E)-1-(4-Allylpiperazine-1-yl)-3-phenylprop-2-en-1-one (5n):

Yield: 2.5 g, 90%. Mp: 85-87 °C. IR (ATR): 987, 1221, 1436, 1590, 1643, 1739, 2360, 2943 cm—'. 'H
NMR (400 MHz, CDCls), & (ppm): 7.66 (1H, d, J = 15.2 Hz), 7.51 (2H, d, J = 1.6 Hz), 7.39-7.33 (3H, m),
6.87 (1H, d, J = 15.2 Hz), 5.86 (1H, ddt, J = 17.2, 10.4, 6.4 Hz), 5.23 (1H, dd, J = 17.2, 1.2 Hz), 5.18 (1H,
dd, J = 10.4, 1.2 Hz), 3.71 (4H, s), 3.03 (2H, dd, J= 6.4, 1.2 Hz) 2.48 (4H, s). '3C NMR (100 MHz, CDCl5),
5 (ppm): 165.39, 142.69, 135.29, 134.42, 129.56, 128.76, 127.71, 118.48, 117.12, 61.52, 53.24, 52.67, 45.79, 42.13,
29.66. HRMS (ESI): (m/z) caled. for C16Hoo N2 O, (M+Na) ™ 279.14678, found: 279.14752.

1-(4-Allylpiperazine-1-yl)-2-methylprop-2-en-1-one (50): Yield: 1.48 g, 76%. Mp: 128-130 °C.
IR (ATR): 791, 920, 998, 1207, 1368, 1435, 1624, 1739, 2360, 2967 cm~'. 'H NMR (400 MHz, CDCl;), &
(ppm): 5.82 (1H, ddt, J = 17.2, 10, 6 Hz), 5.20 (1H, d, J = 1.2 Hz), 5.16 (2H, m), 5.00 (1H, d, J = 1.2
Hz), 3.57 (4H, s), 2.9 (2H, dd, J = 6, 1.2 Hz), 2.41 (4H, s), 1.96 (3H, t, J = 1.2 Hz). 13C NMR (100 MHz,
CDCl3), § (ppm): 171.04, 140.42, 134.36, 118.37, 115.27, 61.49, 52.88, 42, 46, 20.44. HRMS (ESI): (m/z) caled.
for C11H1gN2 O, (M+H) ™ 195.14919, found: 195.14906.

(2E,4E)-1-(4-Allylpiperazine-1-yl)-5-phenylpenta-2,4-dien-1-one (5p):

Yield: 2.1 g, 76%. Oily product. IR (ATR): 758, 1009, 1227, 1447, 1595, 1636, 1739, 2360, 2792, 3005
em~'. 'H NMR (400 MHz, CDCls), & (ppm): 7.48-7.42 (3H, m), 7.36-7.26 (3H, m), 6.88 (2H, q, J = 14.4
Hz), 6.44 (1H, d, J = 14.4 Hz), 5.85 (1H, ddt, J = 17.2, 10.4, 6.4 Hz), 5.22 (1H, dd, J = 17.2, 1.2 Hz), 5.19 (1H,
dd, J = 10.4, 1.2 Hz), 3.73 (2H, s), 3.61 (2H, s), 3.03 (2H, d, J = 6.4 Hz), 2.47 (4H, t, J = 5.2 Hz). 13C NMR
(100 MHz, CDCl3), 6 (ppm): 165.42, 142.88, 138.99, 136.35, 134.39, 128.74, 128.66, 126.97, 126.81, 120.19,
118.53, 61.53, 53.21, 52.68, 45.68, 41.99. HRMS (ESI): (m/z) caled. for C15HaoN2O, (M+H)* 283.18049,

found: 283.18153.
(2E,4E)-1-(4-Allylpiperazine-1-yl)hexa-2,4-dien-1-one (5q):
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Yield: 2 g, 84%. Mp: 62-64 °C. IR (ATR): 923, 1228, 1266, 1421, 1621, 1648, 1739, 2360, 2810, 2958
em~'. 'H NMR (400 MHz, CDCls), & (ppm): 7.25 (1H, dd, J = 14.8, 10.4 Hz), 6.23-6.04 (3H, m), 5.85
(1H, ddt, J = 17.2, 10.4, 6.4 Hz), 5.23-5.16 (2H, m), 3.70 (2H, s), 3.58 (2H, s), 3.01 (2H, d, J = 6.4 Hz),
2.45 (4H, t, J = 5.2 Hz), 1.83 (3H, d, J = 6.4 Hz). 3C NMR (100 MHz, CDCl3), § (ppm): 165.71, 143.17,
137.55, 134.27, 130.12, 118.56, 117.68, 61.49, 53.14, 52.66, 45.51, 41.86, 18.53. HRMS (ESI): (m/z) caled. for
C13HoN20, (M+Na)™t 243.14678, found: 243.14626.

(E)-1-(4-Cinnamylpiperazine-1-yl)-3-(5-methylfuran-2-yl)prop-2-en-1-one (5r):

Yield: 3.1 g, 87%. Mp: 122-124 °C. IR (ATR): 969, 1212, 1366, 1432, 1647, 1739, 2360, 2801, 2944
em~'. 'H NMR (400 MHz, CDCl3), & (ppm): 7.39 (1H, d, J = 14.8 Hz), 7.37-7.21 (5H, m), 6.69 (1H, d, J =
14.8 Hz), 6.53 (1H, d, J = 16 Hz), 6.42 (1H, d, J = 3.2 Hz), 6.26 (1H, dt, J = 16, 6.8 Hz), 6.04 (1H, d, J = 3.2
Hz), 3.75 (2H, s), 3.60 (2H, s), 3.18 (2H, d, J = 6.8 Hz), 2.52 (4H, t, J = 4.8 Hz), 2.33 (3H, s). 13C NMR (100
MHz, CDCl3), § (ppm): 165.46, 154.44, 150.29, 136.70, 133.51, 129.82, 128.59, 127.64, 126.33, 115.44, 112.53,
108.60, 60.89, 53.44, 52.86, 45.66, 42.11, 13.86. HRMS (ESI): (m/z) caled. for CayHoyNoOy, (M+Na)*
359.173, found: 359.17447.

(E)-1-(4-Cinnamylpiperazine-1-yl)-3-(thiophen-2-yl)prop-2-en-1-one (5s): Yield: 2.9 g, 81%.
Mp: 111-113 °C. IR (ATR): 965, 1208, 1230, 1421, 1587, 1629, 2152, 2041 cm~'. 'H NMR (400 MHz,
CDCl3), & (ppm): 7.80 (1H, d, J = 14.8 Hz), 7.38-7.20 (7H, m), 7.02 (1H, dd, J = 5.2, 3.6 Hz), 6.67 (1H, d, J
= 14.8 Hz), 6.53 (1H, d, J = 16.4 Hz), 6.25 (1H, dt, J = 16.4, 7.2 Hz), 3.70 (2H, s), 3.60 (2H, s), 3.18 (2H, d, J
= 7.2 Hz), 2.53 (4H, t, J = 4.8 Hz). 3C NMR (100 MHz, CDCl3), § (ppm): 165.01, 140.47, 136.70, 135.60,
133.52, 130.20, 128.60, 127.98, 127.64, 127.14, 126.33, 125.89, 115.76, 60.88, 53.44, 52.86, 44.1. HRMS (ESI):
(m/z) caled. for CooHoa N2 OS, (M+Na)*t 361.13451, found: 361.13598.

(E)-1-(4-Cinnamylpiperazine-1-yl)-3-phenylprop-2-en-1-one (5t):

Yield: 3 g, 87%. Mp: 104-106 °C. IR (ATR): 978, 1226, 1428, 1648, 1738, 2358, 2949 cm—'. 'H NMR
(400 MHz, CDCly), & (ppm): 7.67 (1H, d, J = 15.2 Hz), 7.51 (2H, dd, J = 7.6, 2 Hz), 7.39-7.22 (8H, m), 6.87
(1H, d, J = 15.2 Hz), 6.54 (1H, d, J = 16 Hz), 6.26 (1H, dt, J = 16, 6.8 Hz), 3.73 (2H, s), 3.62 (2H, s), 3.19
(2H, d, J = 6.8 Hz), 2.54 (4H, t, J = 4.8 Hz). 3C NMR (100 MHz, CDCly), § (ppm): 165.40, 142.75, 136.70,
135.29, 133.50, 129.57, 128.77, 128.60, 127.73, 127.65, 126.33, 125.91, 117.11, 60.89, 53.40, 52.86, 45.85, 42.17.
HRMS (ESI): (m/z) caled. for CaoHay N2 O, (M+Na)* 355.17918, found: 355.17952.

(E)-1-(4-Cinnamylpiperazine-1-yl)-2-methylprop-2-en-1-one (5u):

Yield: 2.7 g, 94%. Mp: 100-102 °C. IR (ATR): 748, 996, 1133, 1209, 1367, 1436, 1618, 1739, 2362, 3003
em~!t. 'H NMR (400 MHz, CDCl3), § (ppm): 7.36-7.35 (2H, m), 7.34-7.19 (3H, m), 6.5 (1H, d, J = 16 Hz),
6.22 (1H, dt, J = 16, 6.8 Hz), 5.15 (1H, t, J = 1.6 Hz), 5.00 (1H, t, J = 1.2 Hz), 3.60 (4H, s), 3.15 (2H, dd, J
= 6.4, 1.2 Hz), 2.46 (4H, s), 1.93 (3H, t, J = 1.6 Hz). 3C NMR (100 MHz, CDCl3), § (ppm): 171.09, 140.33,
136.64, 133.53, 128.57, 127.64, 126.32, 125.78, 115.40, 60.87, 53.45, 52.78, 46.85, 41.30, 20.5. HRMS (ESI):
(m/z) caled. for C17Hoa N2 O, (M+Na) ™ 293.16243, found: 293.16291.

(2E,4E)-1-(4-Cinnamylpiperazine-1-yl)-5-phenylpenta-2,4-dien-1-one (5v):

Yield: 2.8 g, 75%. Mp: 120-121 °C. IR (ATR): 787, 1000, 1241, 1437, 1596, 1640, 1738, 2359, 2803,
2945 cm~!. 'H NMR (400 MHz, CDCl3), 6 (ppm): 7.49-7.22 (11H, m), 6.91 (1H, d, J = 14.8 Hz), 6.87 (1H,
d, J = 14.8 Hz), 6.53 (1H, d, J = 15.6 Hz), 6.44 (1H, d, J = 14.8 Hz), 6.26 (1H, dt, J = 15.6, 7.2 Hz), 3.68
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(4H, s), 3.18 (2H, d, J = 7.2 Hz), 2.52 (4H, t, J = 5.2 Hz). ¥C NMR (100 MHz, CDCl3), § (ppm): 165.44,
142.94, 139.03, 136.68, 136.35, 133.57, 128.76, 128.68, 128.61, 127.68, 126.99, 126.81, 126.35, 125.82, 120.17,
60.88, 53.33, 52.85, 45.68, 42.03. HRMS (ESI): (m/z) caled. for Coy4HogNoO, (M+Na)T 381.19373, found:
381.19241.

(2E,4E)-1-(4-Cinnamylpiperazine-1-yl)hexa-2,4-dien-1-one (5w):
Yield: 2.5 g, 81%. Mp: 85-87 °C. IR (ATR): 787, 1048, 1242, 1433, 1617, 1734, 2359, 2764, 2907 cm ~1.

IH NMR (400 MHz, CDCl3), § (ppm): 7.36-7.18 (6H, m), 6.49 (1H, d, J = 15.6 Hz), 6.22 (1H, dt, J = 15.6,
7.2 Hz), 6.18-6.00 (3H, m), 3.61 (4H, s), 3.13 (2H, d, J = 7.2 Hz), 2.46 (4H, t, J = 5.2 Hz), 1.80 (3H, d, J = 6.8

Hz).

13C NMR (100 MHz, CDCl3), § (ppm): 165.70, 143.15, 137.50, 136.69, 133.40, 130.16, 128.57, 127.61,

126.31, 125.96, 117.75, 60.85, 53.31, 52.85, 45.61, 41.97, 18.55. HRMS (ESI): (m/z) caled. for C19Hay N O,
(M+Na)* 319.17808, found: 319.17952.
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%103 |[+Mixed Scan [1.004 min] Frag=250.00 SaMPLE 11.d
24 32711506
1.8
1.6
1.4
1.2
14
0.8
06 327.22370
0.4
0.2

327.05 3271 32715 327.2 32725 3273 327.35 327.4

Counts ws. Mass-to-Charge [miz)

w104 |+Mixed Scan [0.475 min) Frag=250.00 SAMPLE 06.d
24 28314169

06+ 204.14485

263 2831 283.2 2933 2934 2825 2036 2097 2028 2839 254 2841 2842 2843 204.4 2945 2045 2947 2848 2849 285
Counts wz. Mass-to-Charge (mdz)

35



5m

w10 %
1

1.4
1.2

0.8
0.6
0.4
0.2

5n

285.10448

+ived Scan [0.254 min) Frag=250.0% SAMPLE 09.d

28610671

2848 285 2052 2854 2055 2058 2

Counts we. Mage-to-Charge [m/z)

95 2862 2864 20666 2865 287 262 2874 2006 2808

288

%103

+ixed Scan [0.270-0.523 min,

2791

17 geans) Frag=250.00 SAMFLE 05.d
4752

28015013

278 2785

2795

280

280.5 281 2815

Counts vs. Mass-to-Charge [m/z)

262

2825

0.e

0.6

0.4+

0.2

+ESI Scan [0.220-0.4E3 min, 16 gcans) Frag=250.0W SAMFLE 02.d

195.14306

196.14323

1951 1952 195.3 1954 1955 1956 1957 195.8 1953 1395 1951 1962 1963 195.4 1965 1966 1957 196.8 1963 197
Counts ve. Mazs-to-Charge [mfz)




+&4PCl Scan (0,226 min) Frag=100.0v SAMPLEES.d
28318153

28418234

5q

2815 282 2825 283

. L L | . .
2835 284 2845 285 2855 286 2865 267

Counts we. Mage-to-Charge [m/z)

2875

#10% [+Mized Scan [0.376 min] Frag=250.00 SAMPLE 18.d

2.5
2,25

1.754
151
1.25
14
0,75
05-
0,25

24314626

24414383

5r

243 2432

243.4

M3E 2438 244 242 2444
Counts vs. Mass-to-Charge [m/z)

244.6

2448

245

+ived Scan [0.377 min) Frag=250.0% SAMPLE 07.d

3531

7447

3E0.17802

A5 3565 IFATS /I 35925 3505 35975 360 K025 605 3B0TS 1 36125 W5 WIS W2 225 3625

Counts we. Mage-to-Charge [m/z)

37



5s

5t

w104 |+E5] Scan (0.503 min) Frag=250.0 SAMPLE 03.d

361.13538
2.2

1.8
1.6+

1.2

14
0.8
0.6
0.4+
0.2

36213323

36313548

3605 1 3615 62 3625 63 3635 64 3645 5
Counts we. Mage-to-Charge [m/z)

#1075 [+ES] Scan [0.229-1.377 min, 72 scang] Frag=250.00 SAMPLE 01.d

1.8 355 {7352
164

1.44
1.2

0.8
0.6
0.4
0.2
o, .

35613264

N N - . N | .
E WE2 364 IHE B WG BE2 /64 WEE WES W7 3572 Be4 BeE BrS W3 3582
Counts vs. Mass-to-Charge [m/z)

w107 [+ESI Scan (0.185-0.525 min, 22 scans) Frag=250. 0 SaMPLE 04-1.d
29316291

0.3 7934, 1E561

2926 2928 293 2932 2934 2936 2938 294 2042 2044 2946 2948 295 2952 2954 2956
Counts we. Mage-to-Charge [m/z)

38



w104 [+Mixed Scan [0.251 min] Frag=250.00 SAMPLE 08.d
381.19241

38219472

|05 3 |5 3|2 |5 3|3 35 384 3645

38 3B5 3
Counts we. Mage-to-Charge [m/z)
Sw
«10 4 [+Mixed Scan (0916 min) Frag=250.00 SAMPLE 11.d
a9.qrae2

2
2.5

2
1.5

14

32018410

0.5

i} : . A |

e 3848 39 31495 320 3208 3 321.5 322 3228

Counts ws. Masgs-to-Charge [m/z)

39



