

# Synthesis of Mono-, Di-, and Tripalladated 1,3,5-Benzenetricarboxaldehyde Complexes

José Vicente,\* Rashmi V. Shenoy, and Eloísa Martínez-Viviente

Grupo de Química Organometálica, Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, E-30071 Murcia, Spain

Peter G. Jones

Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023, Braunschweig, Germany

Received July 9, 2009

The oxidative addition of 2,4,6-tribromo-1,3,5-benzenetricarboxaldehyde (C<sub>6</sub>(CHO)<sub>3</sub>Br<sub>3</sub>) to 1, 2, or 3 equiv of [Pd(dba)<sub>2</sub>] ([Pd<sub>2</sub>(dba)<sub>3</sub>]·dba) and N<sup>N</sup>N affords, respectively, the mono-, di-, or trinuclear complexes [Pd{C<sub>6</sub>(CHO)<sub>3</sub>Br<sub>2</sub>}Br(N<sup>N</sup>N] (N<sup>N</sup> = tmeda = *N*,*N*,*N'*,*N'*-tetramethylethylenediamine (**1a**), tbbpy = 4,4'-di-*tert*-butyl-2,2'-bipyridine (**1b**), bpy = 2,2'-bipyridine, (**1c**)); [{PdBr(N<sup>N</sup>N}<sub>2</sub>{ $\mu_2$ -C<sub>6</sub>(CHO)<sub>3</sub>Br}] (N<sup>N</sup> = tmeda (**2a**), tbbpy (**2b**)); or [{PdBr(N<sup>N</sup>N}<sub>3</sub>{ $\mu_3$ -C<sub>6</sub>(CHO)<sub>3</sub>}] (N<sup>N</sup> = tmeda (**3a**), tbbpy (**3b**)). The reactions of C<sub>6</sub>(CHO)<sub>3</sub>Br<sub>3</sub> with a mixture of [Pd(dba)<sub>2</sub>] and PR<sub>3</sub> lead, depending on the nature of the phosphine and the molar ratio of the reagents, to the mononuclear *trans*-[Pd{C<sub>6</sub>-(CHO)<sub>3</sub>Br<sub>2</sub>}Br(PR<sub>3</sub>)<sub>2</sub>] (R = Ph (**1d**), R<sub>3</sub> = Me<sub>2</sub>Ph (**1e**)) or the dinuclear [{*trans*-PdBr(PMe<sub>2</sub>Ph)<sub>2</sub>}<sub>2</sub>{ $\mu_2$ -C<sub>6</sub>(CHO)<sub>3</sub>Br}] (**2e**) complex. All attempts to prepare trinuclear phosphine complexes using this method of synthesis have been unsuccessful. However, displacement of the tbbpy ligand in **3b** by an excess of PMe<sub>3</sub> affords the trinuclear complex [{*trans*-PdBr(PMe<sub>3</sub>)<sub>2</sub>]<sub>3</sub>{ $\mu_3$ -C<sub>6</sub>(CHO)<sub>3</sub>}] (**3f**). The crystal structures of **1b**, **1d**, **2a**·CDCl<sub>3</sub>, and **2e** have been determined by X-ray diffraction studies.

#### Introduction

The chemistry of arylpalladium complexes is a topic of great interest because of the involvement of these compounds in many important palladium-catalyzed carboncarbon and carbon-heteroatom bond-forming reactions.<sup>1</sup> Suitable substituents ortho to the Pd atom may lead to cyclopalladated compounds,<sup>2–7</sup> influence the reactivity of the complexes,<sup>4–6,8–11</sup> or participate in the formation of organic compounds.<sup>2,4,5,10–13</sup> Consequently, there have been intensive studies of the synthesis of Pd(II) aryl complexes<sup>14,15</sup> and of their reactivity,<sup>2,5–7,9,11,12,15,16</sup> to understand the mechanism of such catalytic or stoichiometric reactions. This rich chemistry of ortho-substituted aryl Pd(II) complexes has prompted us to explore the possibility of synthesizing polypalladated benzene derivatives with functionalized organic substituents ortho to each Pd.

(7) Vicente, J.; Arcas, A.; Gálvez-López, M. D.; Juliá-Hernández, F.; Bautista, D.; Jones, P. G. *Organometallics* **2008**, *27*, 1582.

<sup>\*</sup>To whom correspondence should be addressed. For the synthesis and properties of compounds, E-mail: jvs1@um.es (J.V.); eloisamv@ um.es (E.M-V.); rashmi@um.es (R.V.S.). Web: http://www.um.es/gqo/. For X-ray diffraction studies, E-mail: p.jones@tu-bs.de (P.G.J.).

<sup>(1)</sup> Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457. Tsuji, J. Palladium Reagents and Catalysts; John Wiley: Chichester, U. K., 1995. Hartwig, J. F. Acc. Chem. Res. 1998, 31, 852. Hartwig, J. F. Angew. Chem., Int. Ed. 1998, 37, 2047. Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L. Acc. Chem. Res. 1998, 31, 805. Mann, G.; Baranano, D.; Hartwig, J. F.; Rheingold, A. L.; Guzei, I. A. J. Am. Chem. Soc. 1998, 120, 9205. Whitcombe, N. J.; Hii, K. K.; Gibson, S. E. Tetrahedron 2001, 57, 7449. Li, G. Y.; Zheng, G.; Noonan, A. F. J. Org. Chem. 2001, 66, 8677. Muci, A. R.; Buchwald, S. L. Top. Curr. Chem. 2002, 219, 131. Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 4176. Zeni, G.; Larock, R. C. Chem. Rev. 2004, 104, 2285. Espinet, P.; Echavarren, A. M. Angew. Chem., Int. Ed. 2004, 43, 4704. Barluenga, J.; Fernández, M. A.; Aznar, F.; Valdés, C. Chem. Eur. J. 2005, 11, 2276. Campeau, L. C.; Fagnou, K. Chem. Commun. 2006, 1253. Larock, R. C.; Zeni, G. Chem. Rev. 2006, 106, 4644. Heck, R. F. Synlett 2006, 2855. Buchwald, S. L.; Mauger, C.; Mignani, G.; Scholz, U. Adv. Synth. Catal. 2006, 348, 23. Fernández-Rodríguez, M. A.; Shen, Q.; Hartwig, J. F. Chem. Eur. J. 2006, 12, 7782. Corbet, J. P.; Mignani, G. Chem. Rev. 2006, 106, 2651. Solé, D.; Serrano, O. J. Org. Chem. 2008, 73, 9372. Fors, B. P.; Watson, D. A.; Biscoe, M. R.; Buchwald, S. L. J. Am. Chem. Soc. 2008, 130, 13552. Sergeev, A. G.; Spannenberg, A.; Beller, M. J. Am. Chem. Soc. 2008, 130, 15549. Eichman, C. C.; Stambuli, J. P. J. Org. Chem. 2009, 74, 4005. Hayashi, S.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc. 2009, 131, 2052. Fernandez-Rodriguez, M. A.; Hartwig, J. F. J. Org. Chem. 2009, 74, 1663. Alacid, E.; Najera, C. J. Org. Chem. 2009, 74, 2321.

<sup>(2)</sup> Wu, G.; Rheingold, A. L.; Geib, S. J.; Heck, R. F. Organometallics 1987, 6, 1941. Vicente, J.; Abad, J. A.; Shaw, K. F.; Gil-Rubio, J.; Ramírez de Arellano, M. C.; Jones, P. G. Organometallics 1997, 16, 4557. Chengebroyen, J.; Linke, M.; Robitzer, M.; Sirlin, C.; Pfeffer, M. J. Organomet. Chem. 2003, 687, 313. Vicente, J.; Saura-Llamas, I. Comments Inorg. Chem. 2007, 28, 39. Vicente, J.; Saura-Llamas, I.; García-López, J.-A.; Bautista, D. Organometallics 2009, 28, 448.

<sup>(3)</sup> Vicente, J.; Saura-Llamas, I.; Palin, M. G.; Jones, P. G. J. Chem. Soc., Dalton Trans. 1995, 2535. O'Keefe, B. J.; Steel, P. J. Organometallics 1998, 17, 3621. Stoccoro, S.; Soro, B.; Minghetti, G.; Zucca, A.; Cinellu, M. A. J. Organomet. Chem. 2003, 679, 1. Fernández, A.; Vázquez-García, D.; Fernández, J. J.; López-Torres, M.; Suárez, A.; Vila, J. M. J. Organomet. Chem. 2005, 690, 3669.

<sup>(4)</sup> Spencer, J.; Pfeffer, M. Tetrahedron: Asymmetry 1995, 6, 419.

<sup>(5)</sup> Vicente, J.; Abad, J. A.; López-Peláez, B.; Martínez-Viviente, E. Organometallics 2002, 21, 58.

<sup>(6)</sup> Vicente, J.; Chicote, M. T.; Martínez-Martínez, A. J.; Jones, P. G.; Bautista, D. *Organometallics* **2008**, *27*, 3254.

Although the synthesis and applications of polymetalated derivatives of benzene ( $C_6 R_{6-n} M_n$ , n = 3-6) are well-documented, most of them involve representative elements. The

(8) Vicente, J.; Abad, J. A.; Gil-Rubio, J.; Jones, P. G.; Bembenek, E. Organometallics 1993, 12, 4151. Vicente, J.; Arcas, A.; Bautista, D.; Shul'Pin, G. B. J. Chem. Soc., Dalton Trans. 1994, 1505. Vicente, J.; Abad, J. A.; Bergs, R.; Jones, P. G.; Bautista, D. J. Chem. Soc., Dalton Trans. 1995, 3093. Vicente, J.; Abad, J. A.; Bergs, R.; Jones, P. G.; Ramírez de Arellano, M. C. Organometallics 1996, 15, 1422. Vicente, J.; Abad, J. A.; Rink, B.; Hernández, F.-S.; Ramírez de Arellano, M. C. Organometallics 1997, 16, 5269. Dunina, V. V.; Golovan, E. B. Inorg. Chem. Commun. 1998, 1, 12. Vicente, J.; Saura-Llamas, I.; Turpín, J.; Ramírez de Arellano, M. C.; Jones, P. G. Organometallics 1999, 18, 2683. Vicente, J.; Abad, J. A.; Frankland, A. D.; Ramírez de Arellano, M. C. *Chem. Eur. J.* **1999**, *5*, 3066. Yagyu, T.; Hamada, M.; Osakada, K.; Yamamoto, T. Organometallics **2001**, *20*, 1087. Vicente, J.; Abad, J. A.; Förtsch, W.; Jones, P. G.; Fischer, A. K. Organometallics 2001, 20, 2704. Bosque, R.; Benito, M.; Lopez, C. New J. Chem. 2001, 25, 827. Vicente, J.; Abad, J. A.; Frankland, A. D.; López-Serrano, J.; Ramírez de Arellano, M. C.; Jones, P. G. Organometallics 2002, 21, 272. Vicente, J.; Abad, J. A.; Hernández-Mata, F. S.; Jones, P. G. J. Am. Chem. Soc. 2002, 124, 3848. Vicente, J.; Abad, J. A.; Hernández-Mata, F. S.; Rink, B.; Jones, P. G.; Ramírez de Arellano, M. C. Organometallics 2004, 23, 1292. Vicente, J.; Abad, J. A.; López-Sáez, M. J.; Jones, P. G. Angew. Chem., Int. Ed. 2005, 44, 6001.

(9) Spencer, J.; Pfeffer, M.; Kyritsakas, N.; Fischer, J. Organometallics 1995, 14, 2214. Valk, J. M.; Boersma, J.; van Koten, G. Organometallics **1996**, *15*, 4366. Vicente, J.; Abad, J. A.; Bergs, R.; Ramírez de Arellano, M. C.; Martínez-Viviente, E.; Jones, P. G. *Organometallics* **2000**, *19*, 5597.

(10) Vicente, J.; Abad, J. A.; Martínez-Viviente, E.; Ramírez de Arellano, M. C.; Jones, P. G. Organometallics 2000, 19, 752. Biscoe, M. R.; Fors, B. P.; Buchwald, S. L. J. Am. Chem. Soc. 2008, 130, 6686.

(11) Sirlin, C.; Chengebroyen, J.; Konrath, R.; Ebeling, G.; Raad, I.; Dupont, J.; Paschaki, M.; Kotzyba-Hibert, F.; Harf-Monteil, C.;

Pfeffer, M. *Eur. J. Org. Chem.* 2004, 1724.
(12) Yamamoto, Y.; Yamazaki, H. *Synthesis* 1976, 750. Gehrig, K.; Klaus, A. J.; Rys, P. Helv. Chim. Acta 1983, 66, 2603. O'Sullivan, R. D.; Parkins, A. W. J. Chem. Soc., Chem. Commun. 1984, 1165. Albinati, A.; Pregosin, P. S.; Rüedi, R. Helv. Chim. Acta 1985, 68, 2046. Catellani, M.; Motti, E.; Ghelli, S. Chem. Commun. 2000, 2003. Vicente, J.; Abad, J. A.; López-Serrano, J.; Jones, P. G. Organometallics 2004, 23, 4711. Vicente, J.; Abad, J.-A.; López-Serrano, J.; Jones, P. G.; Nájera, C.; Botella-Segura, L. Organometallics 2005, 24, 5044.

(13) Vicente, J.; Abad, J. A.; Gil-Rubio, J. J. Organomet. Chem. 1992, 436, C9. Vicente, J.; Abad, J. A.; Gil-Rubio, J. Organometallics 1996, 15, 3509. Vicente, J.; Chicote, M. T.; MacBeath, C.; Fernández-Baeza, J.; Bautista, D. Organometallics 1999, 18, 2677. Vicente, J.; Saura-Llamas, I.; Grünwald, C.; Alcaraz, C.; Jones, P. G.; Bautista, D. Organometallics 2002, 21, 3587. Vicente, J.; Saura-Llamas, I.; García-López, J. A.; Calmuschi-Cula, B.; Bautista, D. Organometallics 2007, 26, 2768.

(14) Herrmann, W. A.; Brossmer, C.; Priermeier, T.; Ofele, K. *J. Organomet. Chem.* **1994**, *481*, 97. van Asselt, R.; Vrieze, K.; Elsevier, C. J. J. Organomet. Chem. **1994**, *480*, 27. Amatore, C.; Carre, E.; Jutand, A.; Mbarki, M. A.; Meyer, G. Organometallics 1995, 14, 5605. Wallow, T. I.; Goodson, F. E.; Novak, B. M. Organometallics 1996, 15, 3708. Widenhoefer, R. A.; Zhong, H. A.; Buchwald, S. L. J. Am. Chem. Soc. 1997, 119, 6787. Casado, A. L.; Espinet, P.; Gallego, A. M. J. Am. Chem. Soc. 2000, 122, 11771. Grushin, V. V.; Marshall, W. J. J. Am. Chem. Soc. 2006, 128, 12644. Wakioka, M.; Nakajima, Y.; Ozawa, F. Organometallics 2009, 28, 2527.

(15) Solé, D.; Díaz, S.; Solans, X.; Font-Bardia, M. Organometallics 2006, 25, 1995.

(16) Pfeffer, M. Recl. Trav. Chim. Pays-Bas 1990, 109, 567. Tanase, T.; Fukushima, T.; Nomura, T.; Yamamoto, Y.; Kobayashi, K. Inorg. Chem. 1994, 33, 32. Cavell, K. J. Coord. Chem. Rev. 1996, 155, 209. Diederen, J. J. H.; Fruhauf, H. W.; Hiemstra, H.; Vrieze, K.; Pfeffer, M. Tetrahedron Lett. 1998, 39, 4111. Kim, Y. J.; Song, S. W.; Lee, S. C.; Lee, S. W.; Osakada, K.; Yamamoto, T. J. Chem. Soc., Dalton Trans. 1998, 1775. Groen, J. H.; Vlaar, M. J. M.; Vanleeuwen, P.; Vrieze, K.; Kooijman, H.; Spek, A. L. J. Organomet. Chem. 1998, 551, 67. Bohm, A.; Polborn, K.; Sunkel, K.; Beck, W. Z. Naturforsch., B 1998, 53, 448. Reddy, K. R.; Surekha, K.; Lee, G. H.; Peng, S. M.; Liu, S. T. Organometallics 2001, 20, 5557. Vicente, J.; Abad, J. A.; Martínez-Viviente, E.; Jones, P. G. Organometallics 2002, 21, 4454. Vicente, J.; Abad, J. A.; Martínez-Viviente, E.; Jones, P. G. Organometallics 2003, 22, 1967. Vicente, J.; Abad, J. A.; López-Sáez, M. J.; Förtsch, W.; Jones, P. G. Organometallics 2004, 23, 4414. Vicente, J.; Abad, J. A.; López-Sáez, M. J.; Jones, P. G. Organometallics 2006, 25, 1851. Fujita, K.-I.; Yamashita, M.; Puschmann, F.; Alvarez-Falcon, M. M.; Incarvito, C. D.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 9044. Canovese, L.; Visentin, F.; Santo, C.; Levi, C.; Dolmella, A. Organometallics 2007, 26, 5590. Bai, T.; Xue, L. Q.; Xue, P.; Zhu, J.; Sung, H. H. Y.; Ma, S. M.; Wiliams, I. D.; Lin, Z. Y.; Jia, G. C. *Organometallics* **2008**, *27*, 2614. de Felice, V.; de Renzi, A.; Fraldi, N.; Panunzi, B. Inorg. Chim. Acta 2009, 362, 2015.

element best studied is Hg(II), for which examples with three,<sup>17</sup> four,<sup>18-20</sup> five,<sup>19,21,22</sup> and six<sup>22</sup> metal atoms around a benzene ring have been reported. Hexalithiobenzene has also been described and shown to possess excellent thermodynamic stability.<sup>23</sup> There are also many reports on 1,3,5-trilithiobenzene<sup>20,24</sup> (the use of which to prepare trimetalated Mg, Hg, and Sn derivatives has also been described<sup>24</sup>) and symmetrically 2,4,6-trisubstituted derivatives thereof.<sup>25</sup> 1,3,5-Tris(trimethylstannyl)benzene<sup>26</sup> has been obtained by several routes<sup>20,24,27,28</sup> and has been used in coordination,<sup>29</sup> transmetalation,<sup>20,30</sup> and C–C bond forming reactions.<sup>28,31</sup> 1,3,5-Tris(trimethylgermyl)benzene<sup>32</sup> and hexakis-(trimethylgermyl)benzene<sup>33</sup> have also been reported.

As regards transition metal derivatives, the research has been conducted on metal clusters with face-capping arene ligands  $\mu^3, \eta^2, \eta^2, \eta^2$  coordinated to three metal atoms such as Co,<sup>34</sup> Ru,<sup>35,36</sup> Rh,<sup>37</sup> and Os.<sup>35,38,39</sup> An unusual  $\mu^3, \eta^1, \eta^1, \eta^1$ 

(17) Poethke, W.; Furst, W. Arch. Pharm. 1961, 294, 524. (Chem. Abstr. 1962, 56, 1469f). Formanek, H.; Formanek, S. Eur. J. Biochem. 1970, 17, 78. Rothmaier, M.; Schaller, U.; Morf, W. E.; Pretsch, E. Anal. Chim. Acta 1996, 327, 17. Layeghi, H.; Tyrra, W.; Naumann, D. Z. Anorg. Allg. Chem. 1998, 624, 1601.

(18) Vecchiotti, L. *Gazz. Chim. Ital.* **1928**, *58*, 181. Malaiyandi, M.; Sawatzky, H.; Wright, G. F. *Can. J. Chem.* **1961**, *39*, 1827.

(19) Yagupol'skii, L. M.; Popov, V. I.; Kondratenko, N. V. Zh. Org. Khim. 1976, 12, 916.

(20) Rot, N.; de Kanter, F. J. J.; Bickelhaupt, F.; Smeets, W. J. J.; Spek, A. L. J. Organomet. Chem. 2000, 593-594, 369.

(21) Ragno, M. Gazz. Chim. Ital. 1938, 68, 738. Popov, V. I.; Lib, M.; Haas, A. Ukr. Khim. Zh. 1990, 56, 1115.

(22) Deacon, G. B.; Farquharson, G. J. J. Organomet. Chem. 1974, 67, C1. Deacon, G. B.; Farquharson, G. J. Aust. J. Chem. 1976, 29, 627. Deacon, G. B.; Farquharson, G. J. Aust. J. Chem. 1977, 30, 1701.

(23) Winter, C. H.; Seneviratne, K. N.; Bretschneiderhurley, A.

Comments Inorg. Chem. 1996, 19, 1. Baran, J. R. J.; Hendrickson, C.; Laude, D. A.; Lagow, R. J. J. Org. Chem. 1992, 57, 3759.

 (24) Rot, N.; Bickelhaupt, F. Organometallics 1997, 16, 5027.
 (25) Adamson, G. A.; Rees, C. W. J. Chem. Soc., Perkin Trans. 1 1996, 1535. Howells, R. D.; Gilman, H. Tetrahedron Lett. 1974, 14, 1319. Buck, P.; Köbrich, G. Chem. Ber. 1970, 103, 1420.

(26) Schultz, G.; Hargittai, I.; Rot, N.; Bickelhaupt, F. Struct. Chem. 1998, 9, 209.

(27) Córsico, E. F.; Rossi, R. A. Synlett 2000, 2000, 227. Chopa, A. B.; Lockhart, M. T.; Dorn, V. B. Organometallics 2002, 21, 1425.

(28) Córsico, E. F.; Rossi, A. R. Synlett 2000, 2000, 230. Córsico, E. F.; Rossi, A. R. J. Org. Chem. 2002, 67, 3311.

(29) Gibson, S. E.; Steed, J. W.; Sur, S. J. Chem. Soc., Perkin Trans. 1 2001. 636.

(30) Fidelibus, P. M.; Silbestri, G. F.; Lockhart, M. T.; Mandolesi, S.

D.; Chopa, A. B.; Podestá, J. C. Appl. Organomet. Chem. 2007, 21, 682. (31) Lo Fiego, M. J.; Badajoz, M. A.; Silbestri, G. F.; Lockhart, M.

T.; Chopa, A. B. J. Org. Chem. 2008, 73, 9184. (32) Yamakawa, T.; Kagechika, H.; Kawachi, E.; Hashimoto, Y.;

Shudo, K. J. Med. Chem. 1990, 33, 1430. (33) Weissensteiner, W.; Schuster, I. I.; Blount, J. F.; Mislow, K. J.

Am. Chem. Soc. 1986, 108, 6664.

(34) Wadepohl, H.; Büchner, K.; Pritzkow, H. Angew. Chem., Int. Ed. Engl. 1987, 26, 1259. Wadepohl, H.; Büchner, K.; Herrmann, M.; Pritzkow, H. Organometallics 1991, 10, 861. Wadepohl, H.; Büchner, K.; Herrmann, M.; Metz, A.; Pritzkow, H. J. Organomet. Chem. 1998, 571, 267.

(35) Gomez-Sal, M. P.; Johnson, B. F. G.; Lewis, J.; Raithby, P. R.; Wright, A. H. J. Chem. Soc., Chem. Commun. 1985, 1682. Blake, A. J.; Dyson, P. J.; Johnson, B. F. G.; Martin, C. M.; Nairn, J. G. M.; Parisini, E.; Lewis, J. J. Chem. Soc., Dalton Trans. 1993, 981.
 (36) Johnson, B. F. J.; Lewis, J.; Martinelli, M.; Wright, A. H.; Braga, D.;

Grepioni, F. J. Chem. Soc., Chem. Commun. 1990, 364. Inagaki, A.; Takaya, , Takemori, T.; Suzuki, H.; Tanaka, M.; Haga, M. J. Am. Chem. Soc. 1997,

(37) Müller, J.; Gaede, P. E.; Qiao, K. Angew. Chem., Int. Ed. Engl.

**1993**, *32*, 1697. Müller, J.; Hirsch, C.; Guo, A.; Qiao, K. Z. Anorg. Allg. Chem. **2000**, *626*, 2069. Lee, K.; Song, H.; Kim, B.; Park, J. T.; Park, S.; Choi, M.-G. J. Am. Chem. Soc. 2002, 124, 2872

(38) Johnson, B. F. G.; Lewis, J.; Gallup, M.; Martinelli, M. Faraday Discuss. 1991, 92, 241.

(39) Gallop, M. A.; Gomez-Sal, M. P.; Housecroft, C. E.; Johnson, B. F. G.; Lewis, J.; Owen, S. M.; Raithby, P.; Wright, A. H. J. Am. Chem. Soc. 1992, 114, 2502.



coordination mode has been described as well.40 These compounds have been proposed as models for benzene adsorption at a 3-fold site on the surface of a close-packed metal lattice.<sup>38</sup> Very recently, a similar situation has been described for Pd in a  $\mu^3$ -tripalladium sandwich complex,<sup>41</sup> and there are also reports on Pd3 to Pd5 sheets between polycyclic aromatic hydrocarbon ligands.<sup>42</sup> However, there has been very little research on  $\sigma$ -bonded polymetalated derivatives of benzene with transition metals. Until recently the only examples were  $1,3,5-C_6H_3[Mn(CO)_5]_3$  (I),<sup>43</sup> 1,3,5- $C_6H_3[Fe(\eta^5-Cp)(CO)_2]_3$  (II),<sup>43,44</sup> and  $1,3,5-C_6H_3[Fe(\eta^5-C_5H_4Me)(CO)_2]_3$  (III),<sup>45</sup> prepared in two steps involving the reaction of Na[M] ([M] = [Mn(CO)<sub>5</sub>], [Fe( $\eta^{5}$ -Cp)(CO)<sub>2</sub>] or  $[Fe(\eta^{3}-C_{5}H_{4}Me)(CO)_{2}]$  with 1,3,5-C<sub>6</sub>H<sub>3</sub>(COCl)<sub>3</sub> and subsequent decarbonylation of the resulting 1.3.5-C<sub>6</sub>H<sub>3</sub>[C-(O)M<sub>3</sub> triacyl complexes. Complexes I and II were later prepared by reaction of 1,3,5-triiodobenzene with 3 equiv of [KMn(CO)<sub>5</sub>] or [Fe( $\eta^5$ -Cp)(CO)<sub>2</sub>]ZnCl, respectively.<sup>46</sup> In 2001 our group published the first tripalladated benzene derivative, prepared by oxidative addition of 1,3,5-triiodomesitylene to 3 equiv of [Pd(dba)<sub>2</sub>] in the presence of chelating N-donor ligands.<sup>47</sup> Shortly after that, another group reported the first 3-fold cyclopalladation of a single benzene

- (42) Murahashi, T.; Fujimoto, M.; Oka, M.; Hashimoto, Y.;
  Uemura, T.; Tatsumi, Y.; Nakao, Y.; Ikeda, A.; Sakaki, S.; Kurosawa,
  H. Science 2006, 313, 1104. Murahashi, T.; Kato, N.; Uemura, T.; Kurosawa,
  H. Angew. Chem., Int. Ed. 2007, 46, 3509.
  - (43) Hunter, D. J. B.; Szigety, A. B. Organometallics 1989, 8, 2670.
  - (44) Hunter, A. D. Organometallics 1989, 8, 1118.

ring, 1,3,5-tris(di-2-pyridylamino)benzene.<sup>48</sup> Since then there have been no further reports on the subject, in spite of its potential for the Pd-mediated synthesis of organic polycyclic compounds and in the field of metallodendrimers.<sup>49</sup> With the aim of pursuing these research lines, we decided to explore the possibility of synthesizing tripalladated benzene derivatives with functionalized ortho substituents, and we wish to report here our first successes, involving derivatives of 1,3,5-triformylbenzene.

## **Results and Discussion**

2,4,6-Tribromo-1,3,5-benzenetricarboxaldehyde (C<sub>6</sub>(CH- $O_{3}Br_{3}$  adds oxidatively to  $[Pd(dba)_{2}]$  ( $[Pd_{2}(dba)_{3}] \cdot dba$ ) in the presence of chelating nitrogen donor ligands ( $N^{\wedge}N$ ) to give mono-, di-, or trinuclear complexes (Scheme 1). Thus, the reaction of equimolecular amounts of the three reagents led to mononuclear complexes  $[Pd{C_6(CHO)_3Br_2}Br(N^N)]$  $(N^{N} = \text{tmeda} = N, N, N', N' - \text{tetramethylethylenediamine})$ (1a), tbbpy = 4,4'-di-*tert*-butyl-2,2'-bipyridine (1b), bpy = 2,2'-bipyridine (1c)) as the major products. However, 1a was obtained together with the dinuclear complex [{PdBr- $(\text{tmeda}_{2}\{\mu_{2}-C_{6}(\text{CHO})_{3}\text{Br}\}]$  (2a) and the starting arene, C<sub>6</sub>-(CHO)<sub>3</sub>Br<sub>3</sub> (6.5:1:1.8 molar ratio), while 1b was contaminated with C<sub>6</sub>(CHO)<sub>3</sub>Br<sub>3</sub> (3:1 molar ratio). 1c was obtained as a single product. Mixtures of products were also formed in most attempts to prepare dinuclear  $[{PdBr(N^N)}_2 \mu_2 - C_6 - C_$  $(CHO)_{3}Br$ ]  $(N^{N} = \text{tmeda } (2a), \text{ tbbpy } (2b))$  or trinuclear  $[{PdBr(N^N)}_{3} \{ \mu_{3} - C_{6}(CHO)_{3} \}]$  (N<sup>\(\Lambda\)</sup>N = tmeda (**3a**), tbbpy (3b)) complexes. Thus, the reaction of  $C_6(CHO)_3Br_3$ , [Pd(dba)<sub>2</sub>], and N<sup>A</sup>N in a ca. 1:2:2 molar ratio afforded the dipalladated complex 2a or 2b as the major product, together with the corresponding mononuclear and trinuclear complexes (2a:1a:3a = 7:4:1 and 2b:1b:3b = 8:3:1 molar ratios).

<sup>(40)</sup> Lau, J. P.-K.; Lin, Z.-Y.; Wong, W.-T. Angew. Chem., Int. Ed. 2003, 42, 1935.

<sup>(41)</sup> Murahashi, T.; Fujimoto, M.; Kawabata, Y.; Inoue, R.; Ogoshi, S.; Kurosawa, H. Angew. Chem., Int. Ed. 2007, 46, 5440.

<sup>(45)</sup> Hunter, A. D.; McLernon, J. L. Organometallics 1989, 8, 2679.

<sup>(46)</sup> Artamkina, G. A.; Shilova, E. A.; Shtern, M. M.; Beletskaya, I. P. Russ. J. Org. Chem. 2003, 39, 1282. Artamkina, G. A.; Beletskaya, I. P. Mendeleev Commun. 2003, 13, 43.

<sup>(47)</sup> Vicente, J.; Lyakhovych, M.; Bautista, D.; Jones, P. G. Organometallics 2001, 20, 4695.

<sup>(48)</sup> Sumby, C. J.; Steel, P. J. Organometallics 2003, 22, 2358.
(49) Newkome, G. R.; He, E.; Moorefield, C. N. Chem. Rev. 1999, 99, 1689.

| Table 1. Crystal Data for ( | Complexes 1b | , 1d, 2a · CDC | $_{3}$ , and $2e \cdot 1^{1}$ | $^{1}/_{2}CH_{2}Cl_{2}$ |
|-----------------------------|--------------|----------------|-------------------------------|-------------------------|
|-----------------------------|--------------|----------------|-------------------------------|-------------------------|

|                                      | 1b                                                                               | 1d                         | $2a \cdot CDCl_3$                                                                                              | $\mathbf{2e}\boldsymbol{\cdot}1^{1}/_{2}CH_{2}Cl_{2}$                                                           |
|--------------------------------------|----------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| formula                              | C <sub>27</sub> H <sub>27</sub> Br <sub>3</sub> N <sub>2</sub> O <sub>3</sub> Pd | C45H33Br3O3P2Pd            | C <sub>22</sub> H <sub>35</sub> DBr <sub>3</sub> Cl <sub>3</sub> N <sub>4</sub> O <sub>3</sub> Pd <sub>2</sub> | C <sub>42.5</sub> H <sub>50</sub> Br <sub>3</sub> Cl <sub>3</sub> O <sub>3</sub> P <sub>4</sub> Pd <sub>2</sub> |
| $M_{\rm r}$                          | 773.64                                                                           | 1029.78                    | 964.44                                                                                                         | 1291.59                                                                                                         |
| cryst size (mm <sup>3</sup> )        | $0.28 \times 0.16 \times 0.07$                                                   | 0.35 	imes 0.30 	imes 0.15 | 0.40 	imes 0.20 	imes 0.05                                                                                     | 0.35 	imes 0.10 	imes 0.05                                                                                      |
| cryst syst                           | monoclinic                                                                       | monoclinic                 | monoclinic                                                                                                     | triclinic                                                                                                       |
| space group                          | $P2_1/c$                                                                         | $P2_1/n$                   | $P2_1/c$                                                                                                       | $P\overline{1}$                                                                                                 |
| cell constants                       |                                                                                  |                            |                                                                                                                |                                                                                                                 |
| $a\left( \overset{\circ}{A} \right)$ | 9.0731(9)                                                                        | 13.6265(8)                 | 8.6227(8)                                                                                                      | 10.9157(11)                                                                                                     |
| b(A)                                 | 19.278(2)                                                                        | 20.8536(12)                | 21.058(2)                                                                                                      | 12.8369(12)                                                                                                     |
| $c(\mathbf{A})$                      | 16.026(2)                                                                        | 14.1963(8)                 | 18.147(2)                                                                                                      | 18.423(2)                                                                                                       |
| α (deg)                              | 90                                                                               | 90                         | 90                                                                                                             | 75.317(4)                                                                                                       |
| $\beta$ (deg)                        | 104.348(5)                                                                       | 102.804(4)                 | 98.719(4)                                                                                                      | 80.263(4)                                                                                                       |
| $\gamma$ (deg)                       | 90                                                                               | 90                         | 90                                                                                                             | 82.055(4)                                                                                                       |
| $V(A^3), Z$                          | 2715.7(5), 4                                                                     | 3933.7(4), 4               | 3256.8(6), 4                                                                                                   | 2448.8(4), 2                                                                                                    |
| $\lambda$ (Å)                        | 0.71073                                                                          | 0.71073                    | 0.71073                                                                                                        | 0.71073                                                                                                         |
| $\rho$ (calcd) (Mg m <sup>-3</sup> ) | 1.892                                                                            | 1.739                      | 1.967                                                                                                          | 1.752                                                                                                           |
| F(000)                               | 1512                                                                             | 2032                       | 1872                                                                                                           | 1274                                                                                                            |
| $T(\mathbf{K})$                      | 133                                                                              | 133                        | 133                                                                                                            | 133                                                                                                             |
| $\mu (\text{mm}^{-1})$               | 5.129                                                                            | 3.642                      | 5.061                                                                                                          | 3.513                                                                                                           |
| transmissions                        | 0.7153-0.4307                                                                    | 0.6111-0.4896              | 0.7860 - 0.4958                                                                                                | 0.8439-0.5590                                                                                                   |
| $\theta$ range (deg)                 | 1.68-28.28                                                                       | 1.77-30.52                 | 1.49-30.52                                                                                                     | 1.65-30.51                                                                                                      |
| limiting indices                     | $-12 \le h \le 12$                                                               | $-19 \le h \le 19$         | $-12 \le h \le 12$                                                                                             | $-15 \le h \le 15$                                                                                              |
|                                      | $-25 \le k \le 25$                                                               | $-29 \le k \le 29$         | $-30 \le k \le 30$                                                                                             | $-18 \le k \le 18$                                                                                              |
|                                      | $-21 \le l \le 21$                                                               | $-20 \le l \le 20$         | $-25 \le l \le 25$                                                                                             | $-26 \le l \le 26$                                                                                              |
| no. of rflns                         |                                                                                  |                            |                                                                                                                |                                                                                                                 |
| measd                                | 47839                                                                            | 94467                      | 70474                                                                                                          | 55883                                                                                                           |
| indep                                | 6730                                                                             | 12008                      | 9944                                                                                                           | 14874                                                                                                           |
| R <sub>int</sub>                     | 0.1032                                                                           | 0.0315                     | 0.0478                                                                                                         | 0.0478                                                                                                          |
| abs cor                              | multiscan                                                                        | multiscan                  | multiscan                                                                                                      | multiscan                                                                                                       |
| no. of data/restraints/params        | 6730/20/336                                                                      | 12008/0/487                | 9944/0/342                                                                                                     | 14874/51/543                                                                                                    |
| $S(F^2)$                             | 1.065                                                                            | 1.054                      | 1.122                                                                                                          | 1.028                                                                                                           |
| R1 $(I > 2(I))$                      | 0.0385                                                                           | 0.0222                     | 0.0287                                                                                                         | 0.0429                                                                                                          |
| wR2 (all reflns)                     | 0.0911                                                                           | 0.0506                     | 0.0563                                                                                                         | 0.1056                                                                                                          |
| largest diff peak (e $A^{-3}$ )      | 0.876                                                                            | 0.729                      | 1.083                                                                                                          | 2.043                                                                                                           |

Similarly, the reaction of  $C_6(CHO)_3Br_3$ , [Pd(dba)<sub>2</sub>], and tbbpy in a 1:3:3 molar ratio gave the trinuclear complex **3b**, together with a small amount of **2b** (5:1 molar ratio). The use of a ca. 1:4:4 molar ratio of the reagents afforded **3b** as a single product, while for tmeda a 9:1 mixture of **3a** and **2a** was obtained. With the ligand bpy, the oxidative addition reaction in a 1:3:3 or even 1:6:6 molar ratio afforded mixtures of two compounds, which according to their <sup>1</sup>H NMR data (in d<sup>6</sup>-DMSO) seem to be a dinuclear and a trinuclear complex, but their insolubility in common solvents prevented separation. All the other mixtures could be separated by preparative TLC on silica gel, using as eluent CH<sub>2</sub>Cl<sub>2</sub> or mixtures of EtOAc/hexane or CH<sub>2</sub>Cl<sub>2</sub>/ acetone. The order of elution was always, as expected,  $C_6(CHO)_3Br_3 > 1 > 2 > 3$ .

The behavior described above contrasts with that reported for 1,3,5-C<sub>6</sub>Me<sub>3</sub>I<sub>3</sub>,<sup>47</sup> which reacts with a mixture of [Pd(dba)<sub>2</sub>] and tbbpy or bpy to give tripalladated  $[{PdI(N^N)}_3(\mu_3-C_6Me_3)]$ , even when substoichiometric amounts of Pd and N<sup>N</sup> were used. In contrast, oxidative addition reactions with phosphines instead of chelating N<sup>^</sup>N ligands occurred in a very similar manner with both 1,3,5trihalo derivatives. Thus, in the reactions of C<sub>6</sub>(CHO)<sub>3</sub>Br<sub>3</sub> with [Pd(dba)<sub>2</sub>] and PPh<sub>3</sub> we could only isolate a mononuclear complex, *trans*- $[Pd{C_6(CHO)_3Br_2}Br(PPh_3)_2]$  (1d), when a 1:1:2 molar ratio was used. In this reaction, a ca. 1:1 mixture of cis (not observed in the reaction with 1,3,  $5-C_6Me_3I_3$ ) and trans isomers formed, from which the trans isomer could be separated by crystallization. Similar reactions in 1:2:4 or 1:3:6 molar ratios did not afford the corresponding di- or trinuclear complexes, but mixtures of 1d and OPPh<sub>3</sub>. However, the use of the more basic and less sterically demanding phosphine PMe<sub>2</sub>Ph allowed the synthesis of *trans*-[Pd{C<sub>6</sub>(CHO)<sub>3</sub>Br<sub>2</sub>}Br(PMe<sub>2</sub>Ph)<sub>2</sub>] (**1e**) or [{*trans*-PdBr(PMe<sub>2</sub>Ph)<sub>2</sub>}<sub>2</sub>{ $\mu_2$ -C<sub>6</sub>(CHO)<sub>3</sub>Br<sub>3</sub>] (**2e**) when the stoichiometric amounts of C<sub>6</sub>(CHO)<sub>3</sub>Br<sub>3</sub>, [Pd(dba)<sub>2</sub>], and PMe<sub>2</sub>Ph were used. With a 1:3:6 ratio of the reactants, a tripalladated species could not be obtained, but only mixtures of **2e** with other minor unidentified compounds. A final attempt to obtain a tripalladated derivative with phosphine ligands was carried out with the less bulky PMe<sub>3</sub>, but the reaction of C<sub>6</sub>(CHO)<sub>3</sub>Br<sub>3</sub> with [Pd(dba)<sub>2</sub>] and PMe<sub>3</sub> in a 1:3:6 ratio afforded a complicated mixture of compounds. Nevertheless, the trinuclear complex [{*trans*-PdBr(PMe<sub>3</sub>)<sub>2</sub>}<sub>3</sub>{ $\mu_3$ -C<sub>6</sub>-(CHO)<sub>3</sub>}] (**3f**) could be obtained by displacement of the tbbpy ligand by PMe<sub>3</sub>. Therefore, the failure to synthesize **3f** by an oxidative addition reaction does not seem to be due to thermodynamic but to kinetic effects.

Structure of Complexes. The <sup>1</sup>H, <sup>13</sup>C, and <sup>31</sup>P NMR data of complexes 1-3 agree with the structures proposed in Scheme 1. The mononuclear complexes (1a-e) show the expected spectra for the only possible isomer in 1a-c and for the presence in solution of only the trans isomer of complexes 1d-e (<sup>31</sup>P NMR). The dinuclear complexes 2a, 2b, and 2e show two 1:2 singlets for the CHO groups in their <sup>1</sup>H and <sup>13</sup>C NMR spectra, which is consistent with the presence of a  $C_2$ symmetry axis (confirmed to a reasonable approximation for 2a in the solid state). The trinuclear PMe<sub>3</sub> complex 3f shows a single resonance for the CHO groups (<sup>1</sup>H and <sup>13</sup>C NMR) and for the phosphine ligands (<sup>31</sup>P NMR), an indication that the molecule has an all trans geometry. In contrast, the other trinuclear complexes 3a and 3b show in their NMR spectra a 2:1 pattern for all resonances. This observation is consistent with the structure depicted for these complexes in Scheme 1, where two of the Br atoms lie on one side of the aryl plane, while the third Br atom points to the other side, and implies



**Figure 1.** Thermal ellipsoid plot (50% probability level) of **1b**. Selected bond lengths (Å) and angles (deg): Pd-C(1)=1.994(4), Pd-N(11) = 2.049(4), Pd-N(21) = 2.099(4), Pd-Br(1) =2.4234(6),  $Pd \cdots O(1) 2.832(2)$ ; C(1)-Pd-N(11) = 95.94(15), C(1)-Pd-Br(1) = 86.02(12), N(11)-Pd-N(21) = 79.59(14), N(21)-Pd-Br(1) = 98.30,  $C(1)-Pd \cdots O(1) = 72.0(1)$ .



Figure 2. Thermal ellipsoid plot (50% probability level) of 1d. Selected bond lengths (Å) and angles (deg): Pd-C(1)=2.0163(15), Pd-P(1)=2.3426(4), Pd-P(2)=2.3279(4), Pd-Br(1)=2.4865(2),  $Pd \cdots O(1) = 2.8561(13)$ ; C(1)-Pd-P(1) = 89.42(4), C(1)-Pd-P(2) = 91.02(4), P(1)-Pd-Br(1) = 91.999(11), P(2)-Pd-Br(1) = 87.891(12),  $C(1)-Pd \cdots O(1) = 71.29(5)$ .

that the rotation around the Pd-aryl bonds is hindered. No traces of a second isomer were detected, which is consistent with the geometry 2a and 2b.

A complete assignment of the aryl <sup>13</sup>C chemical shifts has been made (see Table 1 in the Supporting Information). As expected, the <sup>13</sup>CHO groups appear highly deshielded (190–202 ppm) and the <sup>13</sup>C–Pd nuclei are observed in the range 170–181 ppm for the complexes with N^N ligands and 184–189 ppm for the phosphino complexes. The increase in the number of Pd atoms ortho to a given CHO group (*n*) deshields the corresponding <sup>13</sup>C–CHO nucleus. Thus, for n = 2 this resonance appears in the range 147–150 ppm, for n = 1 at 137–141 ppm, and for n = 0 at values (134–135 ppm) similar to that in C<sub>6</sub>(CHO)<sub>3</sub>Br<sub>3</sub> (138.4 ppm). Finally, the <sup>13</sup>C–Br nuclei in complexes 2 (130–133 ppm) are slightly deshielded with respect to those in C<sub>6</sub>(CHO)<sub>3</sub>Br<sub>3</sub> (124.9 ppm), while in complexes 1 they do not shift significantly (124–129 ppm). In spite of the tendencies observed, a



Figure 3. Thermal ellipsoid plot (50% probability level) of 2a. CDCl<sub>3</sub>. Selected bond lengths (Å) and angles (deg): Pd(1)–C(1) = 1.984(3), Pd(1)–N(1) = 2.165(2), Pd(1)–N(2) = 2.109(2), Pd(1)– Br(1)=2.4311(4), Pd(1)···O(3)=2.772(2), Pd(2)–C(3)=1.971(3); Pd(2)–N(3) = 2.121(3); Pd(2)–N(4) = 2.164 (3), Pd(2)–Br(2) = 2.4313(4), Pd(2)···(O1) = 2.806(2), D(99)···(O2) = 2.35; C-(1)–Pd(1)–N(2) = 94.53(10), C(1)–Pd(1)–Br(1) = 87.02(8), N-(1)–Pd(1)–N(2) = 84.32(9), N(1)–Pd(1)–Br(1) = 94.47(7), C(1)– Pd(1)···O(3)=74.20(9), C(3)–Pd(2)–N(3)=93.79(11), C(3)–Pd-(2)–Br(2) = 86.97(8), N(3)–Pd(2)–N(4) = 84.33(10), N(4)– Pd(2)–Br(2) = 94.89(7), C(3)–Pd(2)···O(1) = 73.20(10), C(99)– D(99)···(O2) = 153.



Figure 4. Thermal ellipsoid plot (30% probability level) of 2e. Selected bond lengths (Å) and angles (deg): Pd(1)-C(1) = 2.023(4), Pd(1)-P(1) = 2.3162(11), Pd(1)-P(2) = 2.3152(11), Pd(1)-Br(1) = 2.5049(5),  $Pd(1)\cdots O(1) = 2.865(3)$ , Pd(2)-C(3) = 2.033(4), Pd(2)-P(3) = 2.3178(11), Pd(2)-P(4) = 2.3315(11), Pd(2)-Br(2) = 2.5080(6); C(1)-Pd(1)-P(1) = 90.41(11), C-(1)-Pd(1)-P(2) = 91.97(11), P(1)-Pd(1)-Br(1) = 89.78(3), P(2)-Pd(1)-Br(1) = 87.76(3),  $C(1)-Pd(1)\cdots O(1) = 70.3(1)$ , C(3)-Pd(2)-P(3) = 90.39(11), C(3)-Pd(2)-Pd(4) = 87.93(11), P(3)-Pd(2)-Br(2) = 91.23(3), P(4)-Pd(2)-Br(2) = 90.55(3).

simplistic interpretation of these <sup>13</sup>C chemical shifts in terms of the electron density should be avoided.<sup>50</sup>

The <sup>31</sup>P NMR spectra of the phosphine complexes 1d, 1e, 2e, 3f show a single <sup>31</sup>P resonance, in agreement with the trans geometry of the complexes. As usual, the <sup>31</sup>P chemical shift decreases in the order PPh<sub>3</sub> ( $\delta$  21.1 ppm for 1d) >

<sup>(50)</sup> Martínez-Viviente, E.; Pregosin, P. S.; Tschoerner, M. Magn. Reson. Chem. 2000, 38, 23.

PMe<sub>2</sub>Ph ( $\delta$  -7.5 ppm for **1e** and -10.7 ppm for **2e**) > PMe<sub>3</sub> ( $\delta$  -18.8 ppm for **3f**).

The crystal and molecular structures of the complexes **1b** (Figure 1), **1d** (Figure 2), **2a** · CDCl<sub>3</sub> (Figure 3), and **2e** · 1<sup>1</sup>/<sub>2</sub>CH<sub>2</sub>Cl<sub>2</sub> (Figure 4) have been determined by X-ray diffraction studies (Table 1). Crystals of apparently good optical quality were also obtained for the PMe<sub>3</sub> complex **3f** and gave diffraction patterns corresponding to a hexagonal cell. However, the structure could only be interpreted as a pseudomerohedral 3-fold twin in space group  $P2_1/c$  with  $\beta = 120^{\circ}$ . The refinement proved unsatisfactory, with poor *R* values, an impossibly irregular geometry, and considerable areas of residual electron density presumably corresponding to disordered solvent. The qualitative nature of the compound was thus confirmed, but the structure is quantitatively unreliable and we do not present it here.

The four structures solved show somewhat distorted square planar coordination around the Pd atoms. Mean deviations from the best plane through Pd and the four donor atoms are in the range 0.02-0.07 Å [0.021 Å for complex **1b**, 0.069 Å for **1d**, 0.069 Å (Pd1) and 0.023 Å (Pd2) for 2a, and 0.020 Å (Pd1) and 0.056 Å (Pd2) for 2e]. Additionally, all complexes show weak interactions between the Pd atoms and the O atoms of the ortho formyl groups, with the sole exception of Pd2 in the dinuclear complex 2e. The Pd···O distances for these weak interactions are in the range 2.77–2.86 Å (2.832(3) Å for 1b, 2.8561(13) Å for 1d, 2.772(2) Å (Pd1···O3) and 2.806(2) Å (Pd2···O1) for 2a, and 2.865(3) Å (Pd1 $\cdots$ O1) for **2e**), lower than the sum of the van der Waals radii (3.15 Å).<sup>51</sup> Clearly these Pd····O interactions do not cause significant deviation from planarity around the Pd atoms.

The Pd-C bond distances show the following order: 2e [2.033(4) Å (Pd2) and 2.023(4) Å (Pd1)] > 1d (2.0163(15) Å)> 1b (1.994(4) Å) > 2a [1.984(3) Å (Pd1) and 1.971(3) Å(Pd2)]. Although the differences are small, they follow the order of trans influence: Br > tbbpy/tmeda. The slightly longer Pd-C bonds in the dinuclear complex 2e compared with mononuclear 1d (both with Br trans to the aryl group) might be due to steric effects. In contrast, the Pd-Br bonds in phosphine complexes 1d and 2e are considerably longer [2.4865(2) Å for 1d, 2.5049(5) Å (Pd1) and 2.5080(6) Å (Pd2) for 2e] than those in tbbpy and tmeda complexes 1b (2.4234(6) Å) and 2a [2.4311(4) Å (Pd1) and 2.4313(4) Å (Pd2)], in agreement with the order of trans influence: aryl $\gg$ tbbpy/tmeda. Again, the larger Pd-Br distances in the dinuclear complexes 2e and 2a, compared with 1d and 1b, respectively, might be due to steric effects. Finally, the Pd-N bond distances in 1b (Pd-N trans to aryl, 2.099(4) Å, Pd-N trans to Br, 2.049(4) Å) and **2a** [Pd-N trans to aryl, 2.165(2)A (Pd1), 2.164(3) A (Pd2); Pd-N trans to Br, 2.109(2) A (Pd1), 2.121(3) Å (Pd2)] also show the order of trans influence aryl > Br and the possible influence of steric effects in the dinuclear complex.

#### Conclusion

We have synthesized and characterized a novel family of mono-, di-, and tripalladated benzene derivatives and proved that our previous report involving methyl ortho substituents can be extended to complexes with functionalized *ortho*formyl-benzene, although significant differences in reactivity between the two aryl groups have been established. The potential of the aldehyde functional groups for further synthesis will be investigated.

## **Experimental Section**

NMR spectra (<sup>1</sup>H, <sup>13</sup>C, and <sup>31</sup>P) were recorded on Bruker Avance 200, 300, 400, and 600 spectrometers at room temperature. Chemical shifts are given in ppm ( $\delta$ ) relative to TMS (<sup>1</sup>H, <sup>13</sup>C) or H<sub>3</sub>PO<sub>4</sub> (<sup>31</sup>P). Infrared spectra were recorded on a Perkin-Elmer 16F-PC-FT spectrometer with Nujol mulls between polyethylene sheets. Melting points were determined on a Reichert apparatus and are uncorrected. Elemental analyses were carried out with a Carlo Erba 1106 microanalyzer. All experiments were conducted under a N<sub>2</sub> atmosphere using Schlenk techniques. CH<sub>2</sub>Cl<sub>2</sub> was distilled before use. "[Pd(dba)<sub>2</sub>]"<sup>52</sup> and 1,3,5-tribromo-2,4,6-benzenetricarbaldehyde<sup>53</sup> were prepared according to literature procedures. tbbpy (Aldrich), tmeda (Fluka), bpy (Fluka), PPh<sub>3</sub> (Fluka), PMe<sub>2</sub>Ph (Aldrich), and PMe<sub>3</sub> (Aldrich) were used as received.

Synthesis of  $[Pd{C_6(CHO)_3Br_2}Br(tmeda)]$  (1a).  $[Pd(dba)_2]$ (144 mg, 0.25 mmol), tmeda (37 µL, 0.25 mmol), and  $C_6(CHO)_3Br_3$  (100 mg, 0.25 mmol) were mixed in dry degassed toluene (15 mL). The resulting mixture was stirred at 60 °C for 1 h until the dark red color of [Pd(dba)<sub>2</sub>] was no longer observed. The brownish suspension was then concentrated in vacuo, and the residue was extracted with CH<sub>2</sub>Cl<sub>2</sub> (20 mL). The extract was filtered over Celite, and the resulting solution was evaporated to dryness. Et<sub>2</sub>O (15 mL) was added to precipitate a bright yellow solid, which was filtered off and thoroughly washed with Et<sub>2</sub>O. The solid obtained is a mixture of complexes 2a, 1a, and C<sub>6</sub>(CHO)<sub>3</sub>Br<sub>3</sub> in ca. 1:6.5:2 molar ratio. The products were separated by preparative TLC on silica gel using a mixture of  $CH_2Cl_2$ /acetone (5:3) as eluent. The band with Rf = 0.91 was collected, and the product was extracted with acetone (30 mL). Evaporation of the acetone and addition of Et<sub>2</sub>O (15 mL) rendered a solid, which was filtered off, thoroughly washed with Et<sub>2</sub>O, and dried in vacuo to give **1a** as a yellow solid. Yield: 84 mg (54%). Mp: 214–215 °Č. IR: ν(CO) 1697 cm<sup>-1</sup> (sb). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 10.93 (s, 2H, CHO), 10.18 (s, 1H, CHO), 2.85–2.80 (m, 2H, CH<sub>2</sub>), 2.80 (s, 6H, Me), 2.72–2.67 (m, 2H, CH<sub>2</sub>), 2.31 (s, 6H, Me). <sup>13</sup>C{<sup>1</sup>H} NMR (50.3 MHz, CDCl<sub>3</sub>): δ 195.2 (2C, CHO), 191.6 (1C, CHO), 173.7 (1C, C1-Pd), 140.9 (2C, C2-CHO), 133.4 (1C, C4-CHO), 128.1 (2C, C3-Br), 63.1 and 59.4 (1C, CH<sub>2</sub>), 51.4 and 49.6 (2C, Me). Anal. Calcd for C<sub>15</sub>H<sub>19</sub>Br<sub>3</sub>N<sub>2</sub>O<sub>3</sub>Pd: C, 28.99; H, 3.08; N, 4.51. Found: C, 29.06; H, 2.84; N, 4.30

Synthesis of  $[Pd{C_6(CHO)_3Br_2}Br(tbbpy)]$  (1b).  $[Pd(dba)_2]$ (145 mg, 0.25 mmol), tbbpy (68 mg, 0.25 mmol), and  $C_{6}$ -(CHO)<sub>3</sub>Br<sub>3</sub> (100 mg, 0.25 mmol) were mixed under N<sub>2</sub> in dry degassed toluene (15 mL). The resulting mixture was stirred at 60 °C for 10 min until the dark red color of [Pd(dba)<sub>2</sub>] was no longer observed. Workup as for 1a, afforded a yellow solid, which was filtered off and thoroughly washed with Et<sub>2</sub>O. This solid is a mixture of complex 1b and C<sub>6</sub>(CHO)<sub>3</sub>Br<sub>3</sub> in 3:1 molar ratio. The products were separated by preparative TLC on silica gel using  $CH_2Cl_2$  as eluent. The band with Rf=0.3 was collected, and complex 1b (yellow solid) was isolated as for 1a. Yield: 111 mg (57%). Single crystals were grown by slow diffusion of Et<sub>2</sub>O into a CDCl<sub>3</sub> solution of **1b**. Mp: 268–270 °C dec. IR:  $\nu$ (CO): 1698 cm<sup>-1</sup> (sb). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  11.11 (s, 2H, CHO), 10.25 (s, 1H, CHO), 9.27 (d, 1H, tbbpy,  ${}^{3}J_{\text{HH}} = 6$ Hz), 7.96 (br s, 2H, tbbpy), 7.57 (dd, 1H, tbbpy,  ${}^{3}J_{HH} = 6$  Hz,  ${}^{4}J_{\rm HH} = 2$  Hz), 7.32–7.27 (m, 2H, tbbpy), 1.45 (s, 9H, tBu), 1.38

<sup>(51)</sup> Bondi, A. J. Phys. Chem. 1964, 68, 441.

<sup>(52)</sup> Takahashi, Y.; Ito, S.; Sakai, S.; Ishii, Y. J. Chem. Soc., Chem. Commun. **1970**, 1065. Heck, R. F. Palladium Reagents in Organic Synthesis; Academic Press: New York, 1985.

<sup>(53)</sup> Anthony, J. E.; Khan, S. I.; Rubin, Y. *Tetrahedron Lett.* **1997**, *38*, 3499. Bruns, D.; Miura, H.; Vollhardt, K. P. C. Org. Lett. **2003**, *5*, 549.

(s, 9H, tBu). <sup>13</sup>C{<sup>1</sup>H} NMR (100.6 MHz, CDCl<sub>3</sub>):  $\delta$  194.7 (2C, CHO), 191.9 (1C, CHO), 170.7 (1C, C1–Pd), 164.5 and 164.4 (1C, C14 and 14' tbbpy), 156.5 and 154.3 (1C, C12 and 12' tbbpy), 150.8 and 150.2 (1C, CH16 and 16' tbbpy), 141.3 (2C, C2–CHO), 134.0 (C3–CHO), 126.6 (2C, C3–Br), 124.6 and 124.3 (1C, CH15 and 15' tbbpy), 119.2 and 118.5 (1C, CH13 and 13' tbbpy), 35.8 (2C, CMe<sub>3</sub>), 30.6 and 30.4 (3C, CMe<sub>3</sub>). Anal. Calcd for C<sub>27</sub>H<sub>27</sub>Br<sub>3</sub>N<sub>2</sub>O<sub>3</sub>Pd: C, 41.92; H, 3.92; N, 3.62. Found: C, 42.30; H, 3.52; N, 3.38

Synthesis of [Pd{C<sub>6</sub>(CHO)<sub>3</sub>Br<sub>2</sub>}Br(bpy)] (1c). A mixture of [Pd(dba)<sub>2</sub>] (112 mg, 0.193 mmol), bpy (31 mg, 0.193 mmol), and  $C_6(CHO)_3Br_3$  (70 mg, 0.175 mmol) were mixed under N<sub>2</sub> in dry degassed toluene (15 mL). The resulting mixture was stirred at 60 °C for 30 min until the dark red color of [Pd(dba)<sub>2</sub>] was no longer observed. Workup as for 1a, afforded a yellow solid, which was filtered off, thoroughly washed with Et<sub>2</sub>O and  $CH_2Cl_2$ , and dried in vacuo to give 1c as a yellow solid. Yield: 78 mg (67%). Mp: 265–266 °C. IR:  $\nu$ (CO) 1684 (sb) cm<sup>-1</sup>. <sup>1</sup>H NMR (300 MHz, d<sup>6</sup>-DMSO): δ 11.01 (s, 2H, CHO), 10.16 (s, 1H, CHO), 9.13 (d, 1H, bpy,  ${}^{3}J_{HH} = 5$  Hz), 8.66–8.82 (m, 2H, bpy), 8.34 (t, 1H, bpy,  ${}^{3}J_{HH} = 8$  Hz), 8.3–8.24 (m, 1H, bpy), 7.87–7.82 (m, 1H, bpy), 7.56–7.5 (m, 2H, bpy).  ${}^{13}C{}^{1}H$  NMR (75.4 MHz, d<sup>6</sup>-DMSO): δ 193.7 (2C, CHO), 193.4 (1C, CHO), 170.2 (1C, C1-Pd), 155.9 and 154.1 (1C, C12 and 12' bpy), 150.6 and 149.6 (1C, CH16 and 14' bpy), 140.6 and 140.4 (1C, CH14 and 14' bpy), 140.4 (2C, C2-CHO), 135.0 (1C, C4-CHO), 128.0 and 127.5 (1C, CH15 and 15' bpy), 124.5 (2C, C3-Br), 123.9 and 123.3 (1C, CH13 and 13' bpy). Anal. Calcd for C19H11Br3N2O3Pd: C, 34.50; H, 1.68; N, 4.24. Found: C, 34.47; H, 1.51; N, 4.13

Synthesis of trans-[Pd{C<sub>6</sub>(CHO)<sub>3</sub>Br<sub>2</sub>}Br(PPh<sub>3</sub>)<sub>2</sub>] (1d). A mixture of [Pd(dba)<sub>2</sub>] (216 mg, 0.375 mmol) and C<sub>6</sub>(CHO)<sub>3</sub>Br<sub>3</sub> (150 mg, 0.375 mmol) was stirred for 2-3 min under N<sub>2</sub> in dry degassed toluene (20 mL) in an ice bath. Then PPh<sub>3</sub> (196 mg, 0.75 mmol) was added, and the resulting mixture was stirred for 50 min under the same conditions. The solvent was then evaporated to dryness, and the residue was extracted with  $CH_2Cl_2$  (20 mL). The extract was filtered over Celite, and the resulting solution was concentrated to a small volume. Et<sub>2</sub>O (15 mL) was added to precipitate a yellow solid, which was filtered off and thoroughly washed with Et2O. Recrystallization from CH<sub>2</sub>Cl<sub>2</sub>/Et<sub>2</sub>O gave 1d as yellow crystals. Yield: 145 mg (37%). Single crystals were grown by slow diffusion of ether into a CHCl<sub>3</sub> solution of 1d. Mp: 241-243 °C dec. IR: v(CO) 1699 cm<sup>-1</sup>(sb). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  10.29 (s, 2H, CHO), 9.85 (s, 1H, CHO), 7.63–7.5 (m, 12H, PPh<sub>3</sub>), 7.39–7.22 (m, 18H, PPh<sub>3</sub>). <sup>13</sup>C{<sup>1</sup>H}NMR (75.4 MHz, CDCl<sub>3</sub>): δ 192.8 (s, 2C, CHO), 191.1 (s, 1C, CHO), 188.6 (t, 1C, C1–Pd, <sup>2</sup>*J*<sub>PC</sub> = 5 Hz), 138.3 (s, 2C, C2–CHO), 134.7 (vt, 12C, ortho C's PPh<sub>3</sub>, <sup>2</sup>J<sub>PC</sub> +  ${}^{4}J_{PC} = 12$  Hz), 133.5 (s, 1C, C4–CHO), 130.8 (s, 6C, para C's PPh<sub>3</sub>), 130.1 (vt, 6C, *ipso* C's PPh<sub>3</sub>,  ${}^{1}J_{PC} + {}^{3}J_{PC} = 47$  Hz), 128.7 (s, 2C, C3–Br), 128.2 (vt, 12C, *meta* C's PPh<sub>3</sub>  ${}^{3}J_{PC} + {}^{5}J_{PC} = 10$  Hz).  ${}^{31}P{}^{1}H{}$  NMR (121.4 MHz, CDCl<sub>3</sub>):  $\delta$  21.1. Anal. Calcd for C<sub>45</sub>H<sub>33</sub>Br<sub>3</sub>O<sub>3</sub>P<sub>2</sub>Pd: C, 52.48; H, 3.23. Found: C, 52.43; H, 3.28.

Synthesis of *trans*-[Pd{C<sub>6</sub>(CHO)<sub>3</sub>Br<sub>2</sub>}Br(PMe<sub>2</sub>Ph)<sub>2</sub>] (1e). A mixture of [Pd(dba)<sub>2</sub>] (72 mg, 0.125 mmol) and C<sub>6</sub>(CHO)<sub>3</sub>Br<sub>3</sub> (50 mg, 0.125 mmol) was stirred for 2–3 min under N<sub>2</sub> in dry degassed toluene (15 mL) at RT. Then PMe<sub>2</sub>Ph (35.5  $\mu$ L, 0.25 mmol) was added, and the resulting mixture was stirred for 2 h under the same conditions. Workup as for 1d, afforded an orange solid, which was filtered off and thoroughly washed with Et<sub>2</sub>O. Recrystallization from CH<sub>2</sub>Cl<sub>2</sub>/Et<sub>2</sub>O gave 1e as orange crystals. Yield: 49 mg (50%). Mp: 108 °C. IR:  $\nu$ (CO) 1698 and 1688 cm<sup>-1</sup> (sb). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  10.36 (s, 2H, CHO), 9.90 (s, 1H, CHO), 7.2–7.1 (m, 6H, PMe<sub>2</sub>Ph), 7.0–6.95 (m, 4H, PMe<sub>2</sub>Ph), 1.78 (vt, 12H, PMe<sub>2</sub>Ph, <sup>2</sup>J<sub>PH</sub> + <sup>4</sup>J<sub>PH</sub> = 8 Hz). <sup>13</sup>C{<sup>1</sup>H}NMR (100.6 MHz, CDCl<sub>3</sub>):  $\delta$  193.4 (s, 2C, CHO), 190.9 (s, 1C, CHO), 185.8 (t, 1C, C1–Pd, <sup>2</sup>J<sub>PC</sub> = 6 Hz), 138.7 (s, 2C, C2–CHO), 133.2 (vt, 2C, *ipso* C's PMe<sub>2</sub>Ph, <sup>1</sup>J<sub>PC</sub> +

 ${}^{3}J_{PC} = 45$  Hz), 132.6 (1C, *C4*–CHO), 129.9 (s, 2C, *para* C's PMe<sub>2</sub>*Ph*), 129.5 (vt, 4C, *ortho* C's PMe<sub>2</sub>*Ph*,  ${}^{2}J_{PC} + {}^{4}J_{PC} = 10$  Hz), 128.5 (2C, C3–Br), 128.2 (vt, 4C, *meta* C's PMe<sub>2</sub>*Ph*,  ${}^{3}J_{PC} + {}^{5}J_{PC} = 9$  Hz), 13.4 (vt, 4C, *PMe*<sub>2</sub>Ph,  ${}^{1}J_{PC} + {}^{3}J_{PC} = 31$  Hz).  ${}^{31}P{}^{1}H{}$  NMR (121.4 MHz, CDCl<sub>3</sub>):  $\delta$  –7.5. Anal. Calcd for C<sub>25</sub>H<sub>25</sub>Br<sub>3</sub>O<sub>3</sub>P<sub>2</sub>Pd: C, 38.42; H, 3.22. Found: C, 38.80; H, 3.25.

Synthesis of  $[{PdBr(tmeda)}_2{\mu_2-C_6(CHO)_3Br}](2a)$ .  $[Pd(dba)_2]$ (332 mg, 0.57 mmol), tmeda (86 µL, 0.57 mmol), and C<sub>6</sub>(CHO)<sub>3</sub>Br<sub>3</sub> (100 mg, 0.25 mmol) were mixed in dry degassed toluene (15 mL). The resulting mixture was stirred at 65 °C for 40 min until the dark red color of [Pd(dba)<sub>2</sub>] was no longer observed. Workup as for 1a, afforded a bright yellow solid, which was filtered off and thoroughly washed with Et<sub>2</sub>O. The solid obtained is a mixture of complexes 3a, 2a, and 1a in a ca. 1:7:4 molar ratio. The products were separated by preparative TLC on silica gel using a mixture of CH2Cl2 /acetone (5:3) as eluent. The band with Rf = 0.70 was collected, and complex 2a (yellow solid) was isolated as in the case for 1a. Yield: 109 mg (40%). Single crystals of  $2a \cdot CDCl_3$  were grown by slow diffusion of hexane into a CHCl<sub>3</sub> solution of **2a**. Mp: 221–222 °C dec. IR:  $\nu$ (CO) 1697 (s) and 1676 (s) cm<sup>-1</sup>. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 12.11 (s, 1H, CHO), 10.93 (s, 2H, CHO), 2.82 (s, 6H, Me), 2.80 (s, 6H, Me), 2.82-2.75 (m, 4H, CH<sub>2</sub>), 2.70-2.65 (m, 4H, CH<sub>2</sub>), 2.30 (s, 6H, Me), 2.28 (s, 6H, Me).  ${}^{13}\tilde{C}\{{}^{1}H\}$  NMR (75.4 MHz, CDCl<sub>3</sub>): δ 200.1 (1C, CHO), 195.8 (2C, CHO), 179.5 (2C, C1-Pd), 150.3 (1C, C2-CHO), 137.4 (2C, C3-CHO), 132.3 (1C, C4-Br), 62.9 and 59.1 (2C, CH<sub>2</sub>), 51.3 and 51.1 (2C, Me), 49.2 (4C, Me). Anal. Calcd for C<sub>21</sub>H<sub>35</sub>Br<sub>3</sub>N<sub>4</sub>O<sub>3</sub>Pd<sub>2</sub>: C, 29.88; H, 4.18; N, 6.64. Found: C, 30.09; H, 4.22; N, 6.56.

Synthesis of  $[{PdBr(tbbpy)}_2 {\mu_2 - C_6(CHO)_3Br}](2b)$ .  $[Pd(dba)_2]$ (332 mg, 0.575 mmol), tbbpy (154 mg, 0.575 mmol), and C<sub>6</sub>(CHO)<sub>3</sub>Br<sub>3</sub> (100 mg, 0.25 mmol) were mixed under N<sub>2</sub> in dry degassed toluene (15 mL). The resulting mixture was stirred at 60 °C for 15 min until the dark red color of [Pd(dba)<sub>2</sub>] was no longer observed. Workup as for 1a, afforded a yellow solid, which was filtered off and thoroughly washed with Et<sub>2</sub>O. This solid is a mixture of the complexes 3b, 2b, and 1b in a ca. 1:8:2 molar ratio. The products were separated by preparative TLC on silica gel using a mixture of EtOAc/hexane (2:3) as eluent. The band with Rf = 0.7was collected, and complex 2b (yellow solid) was isolated as for 1a Yield: 140 mg (49%). Mp: 268 °C. IR:  $\nu$ (CO) 1678 cm<sup>-1</sup> (sb). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): δ 11.92 (s, 1H, CHO), 11.16 (s, 2H, CHO), 9.24 (d, 2H, tbbpy,  ${}^{3}J_{HH} = 6$  Hz), 7.92 (br s, 2H, tbbpy), 7.90 (br s, 2H, tbbpy), 7.59 (d, 2H, tbbpy,  ${}^{3}J_{HH} = 6$  Hz), 7.92 (br s, 2H, tbbpy), 7.59 (d, 2H, tbbpy,  ${}^{3}J_{HH} = 6$  Hz), 7.49 (dd, 2H, tbbpy,  ${}^{3}J_{HH} = 6$  Hz,  ${}^{4}J_{HH} = 1$  Hz), 1.40 (s, 18H, tBu), 1.34 (s, 18H, tBu).  ${}^{13}C{}^{1}H$ NMR (75.4 MHz, CDCl<sub>3</sub>):  $\delta$  199.1 (1C, CHO), 196.0 (2C, CHO), 176.1 (2C, C1-Pd), 163.9 and 163.6 (2C, C14 and 14' tbbpy), 156.0 and 154.4 (2C, C12 and 12' tbbpy), 151.1 and 150.6 (2C, CH16 and 16' tbbpy), 150.0 (1C, C2-CHO), 138.8 (2C, C3-CHO), 130.3 (1C, C4-Br), 124.8 and 123.9 (2C, CH15 and 15' tbbpy), 118.7 and 118.2 (2C, CH13 and 13' tbbpy), 35.7 (4C, CMe<sub>3</sub>), 30.6 and 30.4 (6C, CMe<sub>3</sub>). Anal. Calcd for C45H51Br3N4O3Pd2: C, 47.06; H, 4.48; N, 4.88. Found: C, 47.28; H, 4.72; N, 4.92.

Synthesis of  $[{trans-PdBr(PMe_2Ph)_2}_2{\mu_2-C_6(CHO)_3Br}]$ (2e). A mixture of  $[Pd(dba)_2]$  (144 mg, 0.25 mmol) and C<sub>6</sub>-(CHO)<sub>3</sub>Br<sub>3</sub> (50 mg, 0.125 mmol) was stirred for 2-3 min under  $N_2$  in dry degassed toluene (15 mL) at RT. Then PMe<sub>2</sub>Ph (71  $\mu$ L, 0.5 mmol) was added, and the resulting mixture was stirred for 2 h under the same conditions. Workup as for 1d, afforded a brick-red solid, which was filtered off and thoroughly washed with Et<sub>2</sub>O. This solid was purified by preparative TLC on silica gel using a mixture of acetone/n-hexane (4:1) as eluent. The band with Rf=0.92 was collected, and the product was extracted with acetone (30 mL). Evaporation of the acetone and recrystallization from  $CH_2Cl_2/Et_2O$  gave **2e** as yellow crystals. Yield: 73 mg (50%). Single crystals of  $2e \cdot 11/2CH_2Cl_2$  were grown by slow diffusion of Et<sub>2</sub>O into a CDCl<sub>3</sub> solution of 2e. Mp: 219 °C. IR:  $\nu$ (CO) 1674 (sb) cm<sup>-1</sup>. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  11.18 (t, 1H, CHO,  ${}^{5}J_{PH} = 11$  Hz), 10.54 (t, 1H, CHO,  ${}^{5}J_{PH} = 11$  Hz),

7.55–7.49 (m, 8H, PMe<sub>2</sub>*Ph*), 7.35–7.26 (m, 12H, PMe<sub>2</sub>*Ph*), 1.38 (vt, 12H, P*Me*<sub>2</sub>Ph, 12 H,  ${}^{2}J_{PH} + {}^{4}J_{PH} = 4$  Hz), 1.15 (vt, 12H, P*Me*<sub>2</sub>Ph, 12 H,  ${}^{2}J_{PH} + {}^{4}J_{PH} = 4$  Hz). 1<sup>3</sup>C{<sup>1</sup>H}NMR (50.3 MHz, CDCl<sub>3</sub>):  $\delta$  198.4 (s, 1C, CHO), 194.9 (s, 2C, CHO), 184.9 (t, 2C, C1–Pd,  ${}^{2}J_{PC} = 5$  Hz), 148.6 (br s, 1C, C2–CHO), 137.7 (br s, 2C, C3–CHO), 133.5 (vt, 4C, *ipso* C's PMe<sub>2</sub>*Ph*,  ${}^{1}J_{PC} + {}^{3}J_{PC} = 46$  Hz), 133.3 (s, 1C, C4–Br), 131.8 (vt, 8C, *ortho* C's PMe<sub>2</sub>*Ph*,  ${}^{2}J_{PC} + {}^{4}J_{PC} = 12$  Hz), 130.6 (s, 4C, *para* C's PMe<sub>2</sub>*Ph*), 128.7 (vt, 8C, *meta* C's PMe<sub>2</sub>*Ph*,  ${}^{3}J_{PC} + {}^{5}J_{PC} = 10$  Hz), 15.6 (vt, 4C, *PMe*<sub>2</sub>Ph,  ${}^{1}J_{PC} + {}^{3}J_{PC} = 30$  Hz), 14.1 (vt, 4C, *PMe*<sub>2</sub>Ph,  ${}^{1}J_{PC} + {}^{3}J_{PC} = 30$  Hz). 3<sup>1</sup>P{<sup>1</sup>H} NMR (121.4 MHz, CDCl<sub>3</sub>):  $\delta$  –10.7. Anal. Calcd for C<sub>41</sub>H<sub>47</sub>Br<sub>3</sub>O<sub>3</sub>P<sub>4</sub>Pd<sub>2</sub>: C, 42.30; H, 4.07. Found: C, 42.62; H, 4.12.

Synthesis of [{PdBr(tmeda)}<sub>3</sub>{ $\mu_3$ -C<sub>6</sub>(CHO)<sub>3</sub>}] (3a). [Pd(dba)<sub>2</sub>] (588 mg, 1.0 mmol), tmeda (150  $\mu$ L, 1.0 mmol), and C<sub>6</sub>-(CHO)<sub>3</sub>Br<sub>3</sub> (100 mg, 0.25 mmol) were mixed in dry degassed toluene (15 mL). The resulting mixture was stirred at 60 °C for 2.5 h until the dark red color of [Pd(dba)<sub>2</sub>] was no longer observed. Workup as for 1a, afforded a bright yellow solid, which was filtered off and thoroughly washed with Et<sub>2</sub>O. The solid obtained is a mixture of complex 3a and 2a in a ca. 10:1 molar ratio. The products were separated by preparative TLC on silica gel using a mixture of  $CH_2Cl_2$ /acetone (5:3) as eluent. The band with Rf = 0.16 was collected, and complex **3a** (yellow solid) was isolated as for 1a. Yield: 235 mg (88%). Mp: 230 °C. IR:  $\nu$ (CO) 1655 cm<sup>-1</sup> (sb). <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  11.97 (s, 2H, CHO), 11.77 (s, 1H, CHO), 2.87-2.6 (m, 12H, CH<sub>2</sub>), 2.80, 2.78, 2.77, 2.34, 2.27, and 2.26 (s, 6H, Me), 2.75-2.6 (m, 12H, CH<sub>2</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (150.9 MHz, CDCl<sub>3</sub>): δ 201.0 (1C, CHO), 200.8 (2C, CHO), 180.3 (1C, C1-Pd), 180.4 (2C, C3-Pd), 147.9 (2C, C2-CHO), 147.6 (1C, C4-CHO), 63.2 (2C, CH<sub>2</sub>), 62.9 (1C, CH<sub>2</sub>), 59.1 (1C, CH<sub>2</sub>), 59.0 (2C, CH<sub>2</sub>), 51.6, 51.5, 50.8, 49.5, 49.2, and 49.1 (2C, Me). Anal. Calcd for C<sub>27</sub>H<sub>51</sub>Br<sub>3</sub>N<sub>6</sub>O<sub>3</sub>Pd<sub>3</sub>: C, 30.40; H, 4.82; N, 7.88. Found: C, 30.39; H, 5.0; N,7.51.

**Synthesis of** [{**PdBr**(**tbbp**)}<sub>3</sub>{ $\mu_3$ -C<sub>6</sub>(**CHO**)<sub>3</sub>] (**3b**). [Pd(dba)<sub>2</sub>] (562 mg, 0.975 mmol), tbbpy (260 mg, 0.975 mmol), and C<sub>6</sub>-(CHO)<sub>3</sub>Br<sub>3</sub> (100 mg, 0.25 mmol) were mixed under N<sub>2</sub> in dry degassed toluene (15 mL). The resulting mixture was stirred at 60 °C for 10 min, until the dark red color of [Pd(dba)<sub>2</sub>] was no longer observed. Workup as for **1a**, afforded a solid, which was filtered off, thoroughly washed with Et<sub>2</sub>O, and dried in vacuo to give **3b** as a yellow solid. Yield: 360 mg (94%). Mp: 250–251 °C dec. IR:  $\nu$ (CO): 1660 cm<sup>-1</sup> (sb). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ 11.94 (s, 2H, CHO), 11.88 (s, 1H, CHO), 9.36 (d, 2H, tbbpy, <sup>3</sup>J<sub>HH</sub> = 6 Hz), 9.25 (d, 1H, tbbpy, <sup>3</sup>J<sub>HH</sub> = 6 Hz), 8.02 (d, 1H, tbbpy, <sup>3</sup>J<sub>HH</sub> = 6 Hz), 7.93 (d, 1H, tbbpy, <sup>3</sup>J<sub>HH</sub> = 6 Hz), 7.51 (dd, 2H, tbbpy, <sup>3</sup>J<sub>HH</sub> = 6 Hz, <sup>4</sup>J<sub>HH</sub> = 2 Hz), 7.48 (dd, 1H, tbbpy, <sup>3</sup>J<sub>HH</sub> = 6 Hz, <sup>4</sup>J<sub>HH</sub> = 2 Hz), 7.47 (dd, 1H, tbbpy, <sup>3</sup>J<sub>HH</sub> = 6 Hz, <sup>4</sup>J<sub>HH</sub> = 2 Hz), 7.23 (dd, 2H, tbbpy, <sup>3</sup>J<sub>HH</sub> = 6 Hz, <sup>4</sup>J<sub>HH</sub> = 2 Hz), 1.42 (s, 9H, tBu), 1.41 (s, 18H, tBu), 1.38 (s, 9H, tBu), 1.35 (s, 18H, tBu).  $^{13}C{^{1}H}$  NMR (100.6 MHz, CDCl<sub>3</sub>):  $\delta$  200.5 (1C, CHO), 199.7 (2C, CHO), 179.8 (1C, C1–Pd), 179.6 (2C, C3–Pd), 163.4 (1C), 163.3 (2C), 162.9 (1C) and 162.9 (2C) (C14 and 14' tbbpy), 156.3 (2C), 155.5 (1C), 154.6 (1C) and 154.0 (2C) (C12 and 12' tbbpy), 152.6 (1C), 150.6 (2C), 150.6 (2C) and 150.3 (1C) (CH16 and 16' tbbpy), 148.2 (1C, *C4*–CHO), 148.0 (2C, *C2*–CHO), 125.4 (1C), 123.8 (2C), 123.6 (2C) and 123.4 (1C) (CH15 and 15' tbbpy), 118.5 (2C), 118.3 (1C), 117.9 (2C) and 117.9 (1C) (CH13 and 13' tbbpy), 35.6 (4C, *CMe*<sub>3</sub>), 35.5 (2C, *CMe*<sub>3</sub>), 30.5 (6C, *CMe*<sub>3</sub>), 30.5 (3C, *CMe*<sub>3</sub>), 30.4 (6C, *CMe*<sub>3</sub>), 30.4 (3C, *CMe*<sub>3</sub>). Anal. Calcd for C<sub>63</sub>H<sub>75</sub>Br<sub>3</sub>N<sub>6</sub>O<sub>3</sub>Pd<sub>3</sub>: C, 49.67; H, 4.96; N, 5.52. Found: C, 49.42; H, 5.08; N, 5.31.

Synthesis of [{*trans*-PdBr(PMe<sub>3</sub>)<sub>2</sub>}<sub>3</sub>{ $\mu_3$ -C<sub>6</sub>(CHO)<sub>3</sub>}] (3f). Complex 3b (100 mg, 0.065 mmol) and PMe<sub>3</sub> (787  $\mu$ L of a 1 M solution in toluene, 0.787 mmol) were mixed under N<sub>2</sub> in degassed CH<sub>2</sub>Cl<sub>2</sub> (15 mL) and stirred at RT for 20 h. The reaction mixture was then filtered over Celite, and the resulting solution was evaporated to dryness. Et<sub>2</sub>O (15 mL) was added to precipitate a pale green solid, which was filtered off and thoroughly washed with Et<sub>2</sub>O. Recrystallization from CH<sub>2</sub>Cl<sub>2</sub>/Et<sub>2</sub>O afforded pale green crystals of 3f. Yield: 58 mg (75%). Mp: 269 °C. IR:  $\nu$ (CO) 1658 cm<sup>-1</sup> (sb). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  11.36 (s, 3H, CHO), 1.23 (t, 54H, PMe<sub>3</sub>, 54H, <sup>2</sup>J<sub>PH</sub> + <sup>4</sup>J<sub>PH</sub> = 4 Hz). <sup>13</sup>C{<sup>1</sup>H}NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  200.2 (s, 3C, CHO), 187.6 (t, 3C, C1-Pd, <sup>2</sup>J<sub>PC</sub> = 5 Hz), 147.1 (s, 3C, C2-CHO), 15.7 (vt, 18C, PMe<sub>3</sub>, <sup>1</sup>J<sub>PC</sub> + <sup>3</sup>J<sub>PC</sub> = 30 Hz). <sup>31</sup>P{<sup>1</sup>H}NMR (121.4 MHz, CDCl<sub>3</sub>):  $\delta$  -18.8. Anal. Calcd for C<sub>27</sub>H<sub>57</sub>Br<sub>3</sub>O<sub>3</sub>P<sub>3</sub>Pd<sub>3</sub>: C, 27.61; H, 4.89. Found: C, 27.60; H, 4.99.

**X-ray Structure Determinations.** Intensities were registered at low temperature on a Bruker SMART 1000 CCD diffractometer using monochromated Mo K $\alpha$  radiation ( $\lambda = 0.71073$  Å). Absorption corrections were based on multiscans (program SADABS). Structures were refined anisotropically using SHELXL-97.<sup>54</sup> Hydrogen atoms were included using rigid methyl groups or a riding model. *Special features:* In **1b** the atom O(2) is disordered over two positions. For **2e**, both dichloromethane sites are disordered (one over an inversion center).

Acknowledgment. We thank the Ministerio de Educación y Ciencia (Spain), FEDER (Project CTQ2007-60808/ BQU), and Fundación Séneca (04539/GERM/06) for financial support. R.V.S. is grateful to the Fundación Séneca for a grant and to the European Commission for a Marie Curie Individual Fellowship (IIF).

**Supporting Information Available:** Table with <sup>13</sup>C NMR data of complexes **1–3**. This material is available free of charge via the Internet at http://pubs.acs.org.

<sup>(54)</sup> Sheldrick, G. M. Acta Crystallogr., Sect. A 2008, 64, 112.