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Abstract:A novel stereoselective synthesis of the key left-hand
fragment of (-)-octalactin A has been achieved from methyl (R)-3-
hydroxy-2-methylpropionate employing SmI2 promoted intramolecular
Reformatsky reaction of a δ-(bromoacetoxy)aldehyde as a key step.

 

Octalactin A (1) and octalactin B, a closely related congener, were
isolated from a marine actinomycete of the genus Streptomyces found
on the surface of a gorgonian octacoral.1 Octalactin A (1) displays
potent in vitro cytotoxicity against B-16-F10 murine melanoma and
HCT-116 human colon tumor cell lines.1 The unique structure
containing a characteristic eight-membered lactone moiety as well as
the above-mentioned intriguing biological activity has spurred much
research on the synthesis of octalactin A (1).2 Buszek2a and Clardy2b

have independently established an efficient convergent approach
involving coupling of a left-hand fragment 2 and a right-hand fragment
3. We describe herein a novel stereoselective synthesis of the key left-
hand fragment 2 (R = TBS), which constitutes a formal synthesis of
natural (–)-octalactin A (1).

The strategy we have employed to construct the eight-membered
lactone structure of 2 relies upon SmI2 promoted intramolecular
Reformatsky reaction3 of an δ-(bromoacetoxy)aldehyde which follows
the Inanaga’s protocol.4

The required δ-(bromoacetoxy)aldehyde 11 was prepared as shown in
Scheme 1. Commercially available methyl (R)-3-hydroxy-2-
methylpropionate (4) was first subjected to a conventional nine-step
straightforward chain-elongation to give (E)-allylic alcohol 75 in 52%
overall yield. Katsuki-Sharpless catalytic asymmetric epoxidation6 of 7
gave epoxide 8 which, upon nucleophilic opening with methyllithium in
the presence of a catalytic amount of CuCN followed by NaIO4
oxidation,7 gave diol 9 in 52% yield. Selective monobenzylation of 9
followed by bromoacetylation of the resulting secondary alcohol
afforded bromoacetate 10 in 74% yield. Upon sequential acidic
methanolysis and Swern oxidation, 10 gave δ-(bromoacetoxy)aldehyde
11 in 97% yield.

The crucial SmI2 promoted cyclization of 11 was carried out according
to the procedure reported by Inanaga and co-workers.4 Thus, treatment
of a diluted THF solution of 11 (2 x 10–3 mol·dm–3) with SmI2 at 0 °C
allowed intramolecular Reformatsky type of reaction to provide a 2:1
epimeric mixture of (3S)-hydroxylactone 12, [α]D

18 –28.7 (c 0.90,

CHCl3), and (3R)-hydroxylactone 13, [α]D
18 –23.7 (c 0.54, CHCl3), in

63% yield. The poor diastereoselectivity of this SmI2 promoted reaction
was not problematic, however, because the undesired isomer 12 could
be converted to the desired isomer 13 almost quantitatively by
sequential Dess-Martin oxidation8,9 and NaBH4 reduction.10 Protection
of 13 as its tert-butyldimethylsilyl ether followed by hydrogenolytic
removal of the benzyl ether protecting group afforded alcohol 14,
[α]D

18 –61.9 (c 0.32, CHCl3) {antipode: 11 [α]D
20 +56.3 (c 1.05,

CHCl3)}, in 73% yield. Finally, Dess-Martin oxidation of 14 furnished
the key left-hand fragment 2 (R = TBS), [α]D

22 –94.0 (c 1.08, CHCl3)
{antipode:11 [α]D

24 +87.2 (c 1.02, CHCl3)}, in 95% yield. Both 14 and
2 (R = TBS) exhibited identical spectral properties (1H and 13C NMR,
IR, HRMS) with those of their antipodes synthesized by Clardy and
McWilliams.2b Since the antipode of 2 (R = TBS) has already been
converted to (+)-octalactin A by Clardy and McWilliams,2b the present
work provides a new route to natural (–)-octalactin A.

Acknowledgment. We gratefully thank Professor Jon Clardy (Cornell
University) for providing us with spectral data and specific rotations of
the antipode of 14 and 2 (R = TBS).
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