Novel Preparation of Polymer-Supported Iodobenzene and Its Synthetic Utility as a Recyclable Reagent with *m*-Chloroperbenzoic Acid

Yuhsuku Suzuki, Hideo Togo*

Graduate School of Science, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522, Japan Fax +81(43)2902792; E-mail: togo@faculty.chiba-u.jp Received 4 March 2010; revised 2 April 2010

Abstract: Three novel polymer-supported iodobenzene compounds A_0 , A_6 , and A_{10} were prepared from the reaction of commercially available cross-linked poly(*p*-chloromethyl)styrene with *m*iodobenzylalcohol, 6-(*m*-iodobenzyloxy)-1-hexanol, and 10-(*m*-iodobenzyloxy)-1-decanol. Their catalytic reactivity and reusability for the oxidative α -tosyloxylation of ketones and the cyclization of *N*-methoxy-2-arylethanesulfonamides in the presence of *m*-chloroperbenzoic acid (*m*CPBA) were confirmed to provide α -tosyloxyketones and *N*-methoxy-3,4-dihydro-2,1-benzothiazine-2,2-dioxides, respectively, in good yields.

Key words: polymer-supported PhI, recycle *m*CPBA, α -tosyloxyketone, ketone, *N*-methoxy-3,4-dihydro-2,1-benzothiazine-2,2-dioxide, catalyst

Many synthetic studies of hypervalent iodines have been Among them, [(hydroxy)(tosyloxy)ioundertaken.¹ do]benzene is highly efficient and is, so far, the sole reagent capable of direct α -tosyloxylation of ketones.^{2a,b} α -Tosyloxyketones are very important strategic precursors for the preparation of various heteroaromatics, such as thiazoles, imidazoles, oxazoles, selenazoles, pyrazoles, and benzofurans.² Therefore, we have been studying the synthetic uses of [(hydroxy)(tosyloxy)iodo]arenes, 1-(arenesulfonyloxy)benziodoxolones, and poly[4-(hydroxy)(tosyloxy)iodo]styrenes for the construction of thiazoles, imidazoles, imidazo[1.2-a]pyridines, and 2,1benzothiazines.³ On the other hand, the aromatic iodidecatalyzed oxidative conversions of substrates such as ketones, hydroquinones, and alcohols with m-chloroperbenzoic acid (mCPBA) or Oxone[®] has become very popular⁴ because it is a metal-free oxidative reaction and is thus environmentally benign. Recently, we also reported an efficient method to prepare various [(hydroxy)(sulfonyloxy)iodo]arenes directly from iodoarenes with mCPBA and sulfonic acids at room temperature.⁵ Such methods include the iodobenzene-catalyzed and the ion-supported iodobenzene-catalyzed α -tosyloxylation of ketones with mCPBA and p-toluenesulfonic acid monohydrate, and the iodobenzene-catalyzed and the ion-supported iodobenzene-catalyzed preparation of 3,4-dihydro-1H-2,1-benzothiazine 2,2-dioxides from N-methoxy-2-arylethanesulfonamides with mCPBA.⁶ Here, as part of our study on the catalytic use of iodoarenes for organic synthesis,⁶ we

SYNTHESIS 2010, No. 14, pp 2355–2360 Advanced online publication: 20.05.2010 DOI: 10.1055/s-0029-1218795; Art ID: F04110SS © Georg Thieme Verlag Stuttgart · New York would like to report the polymer-supported iodobenzenecatalyzed α -tosyloxylation of ketones and the cyclization of *N*-methoxy-2-arylethanesulfonamides to *N*-methoxy-3,4-dihydro-2,1-benzothiazine-2,2-dioxides.

First, *m*-iodobenzylalcohol was selected as the iodoaryl group for the polymer-supported iodobenzene, because *m*-iodobenzylalcohol could be efficiently prepared by the reduction of methyl *m*-iodobenzoate with diisobutylaluminum hydride (DIBAL-H). Methyl m-iodobenzoate was quantitatively obtained from commercially available miodobenzoic acid. Then, three novel polymer-supported iodobenzene compounds A_0 , A_6 , and A_{10} were prepared by the reactions of commercially available cross-linked poly(p-chloromethyl)styrene (loading rate: 1.87 mmol/g) with m-iodobenzylalcohol, 6-(m-iodobenzyloxy)-1-hexanol, and 10-(m-iodobenzyloxy)-1-decanol, respectively, as shown in Scheme 1. The loading rates of the iodobenzene group in the three polymer-supported materials A_0 (1.26 mmol/g), A₆ (1.09 mmol/g), and A₁₀ (0.99 mmol/g) were estimated from both the recovery of m-iodobenzylalcohol, 6-(m-iodobenzyloxy)-1-hexanol, and 10-(m-iodobenzyloxy)-1-decanol from the reactions with crosslinked poly(*p*-chloromethyl)styrene, respectively, and by the elemental analysis of A_0 , A_6 , and A_{10} . Peaks assignable to the iodobenzene groups in A_0 , A_6 , and A_{10} were readily observed by ¹H NMR measurement in CDCl₃. In particular, peaks of the iodobenzene group of A_6 and A_{10} were clearly observed. This indicates that the iodobenzene groups in A_0 , A_6 , and A_{10} are flexible and freely soluble in organic solvents. This observation suggests that A_0 , A_6 ,

Scheme 1 Preparation of polymer-supported iodobenzene

and A_{10} may not only have reactivities that are comparable to iodobenzene, but should also be reusable, unlike volatile iodobenzene.

Entry 1 in Table 1 shows the effect of A_0 , A_6 , and A_{10} on the yield of α -tosyloxyacetophenone in the reaction of acetophenone with mCPBA and p-toluenesulfonic acid monohydrate in chloroform or acetonitrile at 50 °C. As shown in entries 1, 7, and 8, A_6 and A_{10} showed better reactivity than A_0 . Propiophenone, *m*-nitroacetophenone, 3pentanone, 6-undecanone, ethyl benzoylacetate, and methyl acetoacetate were treated with mCPBA and p-toluenesulfonic acid monohydrate in the presence of A_6 and A_{10} to provide the corresponding α -tosyloxyketones in good to moderate yields under the same conditions (entries 9-14). After the reaction, A_6 and A_{10} were recovered quantitatively and could be reused for the same α -tosyloxylation of *p*-nitroacetophenone, maintaining good to moderate yields of the product (entries 2–5). The reason why the yields of α -tosyloxy-*p*-nitroacetophenone from *p*-nitroacetophenone decreased using polymer-supported material A_6 and A_{10} that was recovered after the second and third run, was that the iodobenzene groups of A_6 and A_{10} were partly oxidized to inert PhI(V) groups by mCPBA. Practically, the yield of α -tosyloxy-*p*-nitroacetophenone from *p*-nitroacetophenone could be markedly increased when the PhI(V) groups of polymer-supported material A_{10} recovered after the third run were reduced to PhI(I) groups by treatment with NaBH₄, before the reaction with *p*-nitroacetophenone, mCPBA, and p-toluenesulfonic acid (entry 6). The advantages of using polymer-supported iodobenzene are the simple isolation of α -tosyloxyketones by filtration, and the reusability of the polymer-supported material. Thus, when the filtrate from the reaction mixture was poured into chloroform and washed with aqueous sodium bicarbonate, α -tosyloxylketones were obtained in high purity (>90%) after removal of the solvent. The cyclization of N-methoxy-2-phenylethanesulfonamide with A_0 , A_6 , and A_{10} , in the presence of *m*CPBA, was carried out to provide N-methoxy-3,4-dihydro-2,1-benzothiazine-2,2-dioxide in good yields, as shown in Table 2 (entries 1–4). Although the reactivities of A_0 , A_6 , and A_{10} were the same, the polymer-supported material could be recovered quantitatively and reused for the same reaction, maintaining good yields of the product. The same treatment of other N-methoxy-2-arylethanesulfonamides with A_0 , A_6 and A_{10} in the presence of *m*CPBA provided the corresponding 7-substituted N-methoxy-3,4-dihydro-2,1benzothiazine-2,2-dioxides in good to moderate yields, depending on the substrates (entries 5-8).

In conclusion, various α -tosyloxyketones were prepared in good yields from the reaction of ketones with *m*CPBA and *p*-toluenesulfonic acid monohydrate in the presence of polymer-supported iodobenzene compounds A_0 , A_6 , and A_{10} , especially the latter two. The cyclization of *N*methoxy-2-arylethanesulfonamides with A_0 , A_6 , and A_{10} in the presence of *m*CPBA and *p*-toluenesulfonic acid monohydrate occurred efficiently to provide *N*-methoxy-3,4-dihydro-2,1-benzothiazine-2,2-dioxides in good to

Synthesis 2010, No. 14, 2355–2360 © Thieme Stuttgart · New York

moderate yields. The advantages of using these polymersupported iodobenzene compounds are easy isolation of the products by filtration and their reusability in the same reactions.

Table 1 α -Tosyloxylation of Ketones with *m*CPBA and*p*-TsOH·H₂O in the Presence of A₀, A₆, or A₁₀

	R ²	r A₁₀ , <i>m</i> CPB H ₂ O , time, 50 °C	€A, ►		R ²	
Ar-I mCPBA p-TsOH·H time solvent	A ₀ (1.3 equiv) 1.1 4 ₂ O 1.1 16 h CHCl ₃	A 6 (0.5 equ 2.5 5.0 9 h MeCN	iiv)	A ₁₀ (0.5 eq 2.5 3.0 9 h MeCN	uiv)	
Entry	y Product		Yields (%)			
			A ₀		A ₆	A ₁₀
1		DTs	28		71	85
2	(۰ ۲	-		77	88
3 4		,OTs	_		77 ^a 69 ^b	80 ^a 73 ^b
5		\checkmark	_		64°	51°
6	O ₂ N		-		-	86 ^d
7	CI	OTs	30		72	85
8		OTs	29		64	70
9		DTs	_		81	83
10	0 ₂ N	OTs	-		77	86
11	OTs		-		46	68 ^e
12	OTs 0	\sim	-		54	77 ^e
13		OEt	-		70 ^f	75 ^f

^a Yield with the first recovered polymer.

^b Yield with the second recovered polymer.

^c Yield with the third recovered polymer.

^d Yield with the fourth recovered polymer, which was reduced by

 $NaBH_4$ in dioxane, before reuse.

^e Reaction time was 1.5 h.

^f Reaction time was 3 h.

^g Reaction time was 1 h.

Table 2 Cyclization of N-Methoxy-2-arylethanesulfonamides with
mCPBA in the Presence of A_0 , A_6 , or A_{10}

 A_6 (1.3 equiv), 9 h A_{10} (1.0 equiv), 6 h

Entry	R	Yields				
		\mathbf{A}_{0}	A_6	A_{10}		
1	Н	75	74	75		
2	Н	_	79 ^a	82 ^a		
3	Н	_	76 ^b	85 ^b		
4	Н	_	82°	89°		
5	CH ₂ Cl	_	61	65		
6	Me	51 ^d	62	67		
7	Br	53	39	38		
8	Cl	39	45	45		

^a Yield with the first recovered polymer.

^b Yield with the second recovered polymer.

^c Yield with the third recovered polymer.

^d Reaction time was 24 h.

¹H and ¹³C NMR spectra were obtained with Jeol JNM-GSX-400, Jeol JNM-LA-400, and Jeol JNM-LA-500 spectrometers. Chemical shifts (δ) are expressed in ppm downfield from TMS. Mass spectra were recorded with Jeol HX-110 or Jeol JMS-ATII15 spectrometers. IR spectra were measured with a Jasco FT/IR-4100 spectrometer. Melting points were determined with a Yamato melting point apparatus model MP-21. Silica gel 60 (Kanto Kagaku Co.) was used for column chromatography and Wakogel B-5F was used for preparative TLC. Cross-linked poly(*p*-chloromethyl)styrene (loading rate: 1.87 mmol/g) was obtained from Argonaut Technologies Co.

6-(*m*-Iodobenzyloxy)-1-hexanol and 10-(*m*-Iodobenzyloxy)-1-decanol; Typical Procedure

A solution of 6-(2'-tetrahydropyranyloxy)-1-hexanol (50 mmol, 10.11 g) in THF (25 mL) was stirred for 1 h with Na₂SO₄. After removal of Na₂SO₄ from the solution, NaH (1.3 equiv, 55% purity, 65 mmol, 2.83 g) was added at 0 °C and the obtained mixture was stirred for 2 h under an argon atmosphere. Then, m-iodobenzyl bromide (1.1 equiv, 55 mmol, 16.27 g) was added and the mixture was stirred at r.t. for 12 h. After the reaction, the mixture was quenched with H₂O (30 mL) and poured into Et₂O (50 mL). The organic layer was dried over Na₂SO₄. After filtration and removal of the solvent under reduced pressure, MeOH (100 mL) and p-TsOH·H₂O (0.4 equiv, 3.80 g) were added and the obtained mixture was stirred at r.t. for 3 h. After the reaction and removal of the solvent under reduced pressure, 6-(m-iodobenzyloxy)-1-hexanol was obtained in a crude state. Pure 6-(m-iodobenzyloxy)-1-hexanol was obtained in 95% yield by column chromatography on silica gel (EtOAchexane, 1:2).

6-(m-Iodobenzyloxy)-1-hexanol

¹H NMR (500 MHz, $CDCl_3$): $\delta = 1.34-1.44$ (m, 4 H), 1.54-1.66 (m, 4 H), 3.46 (t, J = 6.5 Hz, 2 H), 3.62-3.68 (br s, 2 H), 4.44 (s, 2 H), 7.08 (t, J = 7.9, 7.6 Hz, 1 H), 7.29 (d, J = 7.6 Hz, 1 H), 7.61 (d, J = 7.9 Hz, 1 H), 7.69 (s, 1 H).

10-(m-Iodobenzyloxy)-1-decanol

¹H NMR (500 MHz, CDCl₃): δ = 1.25–1.39 (m, 12 H), 1.54–1.65 (m, 4 H), 3.46 (t, *J* = 6.5 Hz, 2 H), 3.61–3.67 (br s, 2 H), 4.42 (s, 2 H), 7.07 (t, *J* = 7.9, 7.6 Hz, 1 H), 7.29 (d, *J* = 7.6 Hz, 1 H), 7.60 (d, *J* = 7.9 Hz, 1 H), 7.70 (s, 1 H).

Polymer-Supported PhI A₀, A₆, and A₁₀; Typical Procedure

A solution of 6-(*m*-iodobenzyloxy)-1-hexanol (1.42 equiv, 61 mmol, 20.4 g) in DMF (20 mL) was stirred for 1 h with Na₂SO₄. After removal of Na₂SO₄ from the solution, NaH (1.3 equiv, 80 mmol, 55% purity, 3.84 g) was added at 0 °C and the obtained mixture was stirred for 2 h under an argon atmosphere. Then, cross-linked poly(*p*-chloromethyl)styrene (loading rate: 1.87 mmol/g, 22.9 g) was added and the obtained mixture was stirred for 3 d at 60 °C. When the reaction was complete, H₂O was added and the precipitates were collected by filtration and washed with H₂O and then EtOH. The obtained solids were dried by vacuum pump to provide polymer-supported PhI A₆ in 91% yield. Unreacted 6-(*m*-iodoben-zyloxy)-1-hexanol (7.38 g) was recovered by removal of the solvent from the filtrate.

Polymer-Supported PhI A₀

¹H NMR (500 MHz, CDCl₃): δ = 7.74 (s, 1 H), 7.63 (d, *J* = 8.0 Hz, 1 H), 7.33 (d, *J* = 7.6 Hz, 1 H), 7.10 (dd, *J* = 8.0, 7.6 Hz, 1 H), 4.66 (s, 2 H).

Anal. found: C, 75.55; H, 6.47; I, 16.01; loading rate: 1.26 mmol/g.

Polymer-Supported PhI A₆

¹H NMR (500 MHz, CDCl₃): δ = 7.69 (s, 1 H), 7.60 (d, *J* = 8.0 Hz, 1 H), 7.28 (d, *J* = 7.6 Hz, 1 H), 7.07 (dd, *J* = 8.0, 7.6 Hz, 1 H), 4.42 (s, 2 H), 3.52 (t, *J* = 6.6 Hz, 2 H), 3.45 (t, *J* = 6.6 Hz, 2 H).

Synthesis 2010, No. 14, 2355-2360 © Thieme Stuttgart · New York

Anal. found: C, 77.28; H, 7.27; I, 11.62; loading rate: 1.09 mmol/g.

Polymer-Supported PhI A₁₀

¹H NMR (500 MHz, CDCl₃): δ = 7.69 (s, 1 H), 7.60 (d, *J* = 7.7 Hz, 1 H), 7.29 (d, *J* = 7.0 Hz, 1 H), 7.07 (dd, *J* = 7.7, 7.0 Hz, 1 H), 4.43 (s, 2 H), 3.52 (t, *J* = 6.7 Hz, 2 H), 3.45 (t, *J* = 6.4 Hz, 2 H).

Anal. found: C, 78.91; H, 7.45; I, 9.41; loading rate: 0.99 mmol/g.

a-Tosyloxylation of Ketones; Typical Procedure

To a solution of acetophenone (120 mg, 1 mmol) in MeCN (5 mL) were added polymer-supported PhI A_{10} (0.5 equiv, 444 mg), *p*-TsOH·H₂O (3.0 equiv, 570 mg), and *m*CPBA (65% purity, 2.5 equiv, 664 mg). The mixture was stirred for 9 h at 50 °C under an argon atmosphere. After the reaction, MeOH (5 mL) was added and the precipitated polymer-reagent was obtained by filtration and washed with Et₂O. The filtrate was poured into sat. aq NaHCO₃ and extracted with CHCl₃ (3 × 15 mL). The organic layer was dried over Na₂SO₄ and, after removal of the solvent under reduced pressure, α -tosyloxyacetophenone was obtained by short column chromatography on silica gel (EtOAc–hexane, 1:4) in 85% yield. Polymer-supported iodobenzene was recovered in 87% yield (386 mg).

α-Tosyloxyacetophenone

Mp 90 °C (Lit.2h 90-91 °C).

IR (KBr): 1180, 1360, 1715 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 2.45 (s, 3 H), 5.27 (s, 2 H), 7.35 (d, *J* = 8.5 Hz, 2 H), 7.47 (t, *J* = 8.2 Hz, 2 H), 7.61 (t, *J* = 8.2 Hz, 1 H), 7.84 (d, *J* = 8.2 Hz, 2 H), 7.85 (d, *J* = 8.2 Hz, 2 H).

α-Tosyloxy-*p*-methylacetophenone

Mp 105 °C (Lit.⁷ 82–83 °C).

IR (KBr): 1170, 1350, 1700 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 2.41 (s, 3 H), 2.45 (s, 3 H), 5.24 (s, 2 H), 7.26 (d, *J* = 8.1 Hz, 2 H), 7.35 (d, *J* = 8.2 Hz, 2 H), 7.74 (d, *J* = 8.1 Hz, 2 H), 7.86 (d, *J* = 8.2 Hz, 2 H).

α-Tosyloxy-*p*-chloroacetophenone

Mp 123 °C (Lit.⁷ 125 °C).

IR (KBr): 1190, 1360, 1710 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 2.46 (s, 3 H), 5.21 (s, 2 H), 7.35 (d, *J* = 8.4 Hz, 2 H), 7.45 (d, *J* = 8.6 Hz, 2 H), 7.80 (d, *J* = 8.6 Hz, 2 H), 7.84 (d, *J* = 8.4 Hz, 2 H).

α-Tosyloxy-p-nitroacetophenone

Mp 137 °C (Lit.⁷ 130–131 °C).

IR (KBr): 1180, 1340, 1710 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): $\delta = 2.47$ (s, 3 H), 5.25 (s, 2 H), 7.37 (d, J = 8.3 Hz, 2 H), 7.83 (d, J = 8.3 Hz, 2 H), 8.03 (d, J = 8.9 Hz, 2 H), 8.32 (d, J = 8.9 Hz, 2 H).

a-Tosyloxypropiophenone

Mp 68 °C (Lit.⁷ 68–69 °C).

IR (KBr): 1170, 1370, 1700 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 1.60 (d, *J* = 7.0 Hz, 3 H), 2.41 (s, 3 H), 5.79 (q, *J* = 7.0 Hz, 1 H), 7.29 (d, *J* = 8.1 Hz, 2 H), 7.46 (t, *J* = 7.2 Hz, 2 H), 7.75 (d, *J* = 7.2 Hz, 2 H), 7.88 (d, *J* = 8.1 Hz, 2 H).

α-Tosyloxy-3-pentanone

Mp 45–46 °C (Lit.^{2k} 43–44 °C).

IR (neat): 1190, 1360, 1720 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 1.03 (t, *J* = 7.3 Hz, 3 H), 1.35 (d, *J* = 7.0 Hz, 3 H), 2.47 (s, 3 H), 2.60 (m, 2 H), 4.80 (q, *J* = 7.0 Hz, 1 H), 7.37 (d, *J* = 8.0 Hz, 2 H), 7.81 (d, *J* = 8.0 Hz, 2 H).

α -Tosyloxy-6-undecanone

Mp 72 °C (Lit.3d 72 °C).

IR (neat): 1190, 1380, 1720 cm⁻¹.

¹H NMR (400 MHz, $CDCl_3$): $\delta = 0.70-0.80$ (m, 3 H), 0.86-1.75 (m, 15 H), 2.46 (s, 3 H), 2.51 (t, J = 7.5 Hz, 2 H), 4.64 (dd, J = 8.0, 4.6 Hz, 1 H), 7.36 (d, J = 8.0 Hz, 2 H), 7.80 (d, J = 8.0 Hz, 2 H).

Methyl a-Tosyloxyacetoacetate

IR (neat): 1180, 1320, 1720 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 2.30 (s, 3 H), 2.48 (s, 3 H), 3.71 (s, 3 H), 5.20 (s, 1 H), 7.38 (d, *J* = 8.5 Hz, 2 H), 7.83 (d, *J* = 8.5 Hz, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 21.66, 26.53, 53.27, 80.34, 128.18, 129.98, 132.02, 145.90, 163.86, 196.98.

HRMS (FAB): m/z [M + 1] calcd for C₁₂H₁₅O₆S: 287.0589; found: 287.0596.

Ethyl α -Tosyloxybenzoylacetate

Oil.

Oil.

IR (neat): 1440, 1590, 1690 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 1.18 (t, J = 7.0 Hz, 3 H), 2.85 (s, 3 H), 4.18 (m, 2 H), 5.59 (s, 1 H), 7.30 (d, J = 8.4 Hz, 2 H), 7.46 (t, J = 7.5 Hz, 2 H), 7.61 (t, J = 7.5 Hz, 1 H), 7.79 (d, J = 8.5 Hz, 2 H), 7.93 (d, J = 8.5 Hz, 2 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 13.75, 21.63, 62.80, 78.03, 128.24, 128.71, 129.34, 129.82, 132.34, 133.28, 134.36, 145.68, 164.12, 188.19.

HRMS (FAB): m/z [M + 1] calcd for C₁₈H₁₉O₆S: 363.0902; found: 363.0920.

a-Tosyloxy-m-nitroacetophenone

Mp 129-130 °C.

IR (KBr): 1615, 1375, 1348, 1188 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 2.46 (s, 3 H), 5.25 (s, 2 H), 7.37 (d, *J* = 8.0 Hz, 2 H), 7.72 (t, *J* = 8.0 Hz, 1 H), 7.84 (d, *J* = 8.0 Hz, 2 H), 8.21 (dt, *J* = 8.0, 1.2 Hz, 1 H), 8.46 (dt, *J* = 8.0, 1.2 Hz, 1 H), 8.63 (t, *J* = 1.2 Hz, 1 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 30.38, 69.87, 123.05, 128.15, 128.25, 130.03, 130.25, 132.35, 133.72, 135.29, 144.70, 145.88, 188.82.

HRMS (ESI): m/z [M + Na] calcd for $C_{15}H_{13}O_6NSNa$: 358.0356; found: 358.0347.

Benzosultams; Typical Procedure

To a solution of *N*-methoxy-2-phenylethanesulfonamide (0.5 mmol, 107.5 mg) and polymer-supported PhI A_{10} (1.0 equiv, 444 mg) in CF₃CH₂OH (3 mL) was added *m*CPBA (2.0 equiv, 1.0 mmol, 65% purity, 265 mg). The mixture was stirred for 6 h at r.t. under an argon atmosphere. After the reaction, MeOH (5 mL) was added and the precipitates were filtered and washed with Et₂O. The filtrate was poured into sat. aq NaHCO₃ and extracted with CHCl₃ (3 × 15 mL). The organic layer was dried over Na₂SO₄ and, after removal of the solvent under reduced pressure, *N*-methoxy-3,4-dihydro-2,1-benzothiazine-2,2-dioxide was obtained in a crude state (purity >90%). Pure product was obtained by preparative TLC (silica gel; hexane–CHCl₃, 1:5) in 75% yield. Polymer-supported iodobenzene was recovered in 92% yield (409 mg).

N-Methoxy-3,4-dihydro-2,1-benzothiazine-2,2-dioxide Mp 104.0–106.0 °C.

IR (KBr): 3000, 2950, 2815, 1580, 1480, 1360, 1170 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 3.42 (t, *J* = 6.4 Hz, 2 H), 3.50 (td, *J* = 6.4, 1.5 Hz, 2 H), 4.08 (s, 3 H), 7.20–7.23 (m, 1 H), 7.31–7.34 (m, 2 H), 7.36–7.40 (m, 1 H).

¹³C NMR (100 MHz, CDCl₃): δ = 27.86 (s), 40.20 (s), 65.57 (p), 126.72 (q), 127.88 (t), 128.03 (t), 128.90 (t), 129.41 (t), 141.88 (q). MS (EI): *m/z* = 213 [M]⁺.

Anal. Calcd for $C_9H_{11}NO_3S$: C, 50.69; H, 5.20; N, 6.57. Found: C, 50.76; H, 5.32; N, 6.58.

$N\mbox{-}Methoxy\mbox{-}7\mbox{-}methyl\mbox{-}3\mbox{-}4\mbox{-}dihyd\mbox{-}o\mbox{-}2\mbox{-}1\mbox{-}benzothiazine\mbox{-}2\mbox{-}2\mbox{-}diox\mbox{-}ide$

Mp 119.0-121.0 °C.

IR (KBr): 3000, 2950, 2815, 1620, 1500, 1360, 1170 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 2.36 (s, 3 H), 3.36 (t, *J* = 6.6 Hz, 2 H), 3.47 (t, *J* = 6.6 Hz, 2 H), 4.07 (s, 3 H), 7.08 (d, *J* = 7.9 Hz, 1 H), 7.12 (d, *J* = 7.9 Hz, 1 H), 7.18 (s, 1 H).

¹³C NMR (100 MHz, CDCl₃): δ = 20.99 (p), 27.56 (s), 40.20 (s), 65.68 (p), 123.61 (q), 128.27 (t), 129.32 (t), 130.07 (t), 138.22 (q), 141.63 (q).

MS (EI): $m/z = 227 [M]^+$.

Anal. Calcd for $C_{10}H_{13}NO_3S;\,C,\,52.85;\,H,\,5.77;\,N,\,6.16.$ Found: C, 52.80; H, 5.69; N, 6.14.

N-Methoxy-7-chloromethyl-3,4-dihydro-2,1-benzothiazine-2,2-dioxide

Mp 120.0–122.5 °C.

IR (paraffin oil): 1360, 1280, 1236, 1170 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 3.40 (t, *J* = 6.5 Hz, 2 H), 3.49 (t, *J* = 6.5 Hz, 2 H), 4.09 (s, 3 H), 4.58 (s, 2 H), 7.21 (d, *J* = 8.0 Hz, 1 H), 7.34 (dd, *J* = 8.0, 1.9 Hz, 1 H), 7.39 (d, *J* = 1.9 Hz, 1 H).

¹³C NMR (100 MHz, CDCl₃): δ = 27.61 (s), 40.11 (s), 44.92 (s), 65.69 (p), 126.69 (q), 127.44 (t), 128.80 (t), 129.84 (t), 137.59 (q), 141.96 (q).

MS (FAB): $m/z = 261 [M + 1]^+$.

Anal. Calcd for $C_{10}H_{12}CINO_3S\cdot 1/5H_2O$: C, 45.44; H, 4.69; N, 5.30. Found: C, 45.44; H, 4.62; N, 5.24.

$N\mbox{-}Methoxy\mbox{-}7\mbox{-}bromo\mbox{-}3\mbox{-}4\mbox{-}dihydro\mbox{-}2\mbox{-}1\mbox{-}benzothiazine\mbox{-}2\mbox{-}2\mbox{-}diox\mbox{-}ide$

Mp 138.0–139.5 °C.

IR (paraffin oil): 1360, 1292, 1167 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 3.35 (t, *J* = 6.6 Hz, 2 H), 3.48 (t, *J* = 6.6 Hz, 2 H), 4.08 (s, 3 H), 7.08 (d, *J* = 8.4 Hz, 1 H), 7.42 (dd, *J* = 8.4, 2.0 Hz, 1 H), 7.52 (d, *J* = 2.0 Hz, 1 H).

¹³C NMR (100 MHz, CDCl₃): $\delta = 27.50$ (s), 40.24 (s), 65.86 (p), 120.94 (q), 125.51 (q), 130.00 (t), 130.73 (t), 131.71 (t), 142.94 (q).

MS (FAB): $m/z = 291[M + 1]^+$.

Anal. Calcd for $C_9H_{10}BrNO_3S$: C, 37.00; H, 3.45; N, 4.79. Found: C, 36.87; H, 3.43; N, 4.75.

N-Methoxy-7-chloro-3,4-dihydro-2,1-benzothiazine-2,2-diox-ide

Mp 123.0-125.0 °C.

IR (KBr): 3000, 2950, 2815, 1600, 1480, 1360, 1160 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 3.37 (t, *J* = 6.5 Hz, 2 H), 3.48 (t, *J* = 6.5 Hz, 2 H), 4.08 (s, 3 H), 7.14 (d, *J* = 8.2 Hz, 1 H), 7.27 (dd, *J* = 8.2, 2.2 Hz, 1 H), 7.36 (d, *J* = 2.2 Hz, 1 H).

¹³C NMR (100 MHz, CDCl₃): δ = 27.55 (s), 40.42 (s), 65.95 (p), 125.08 (q), 127.14 (t), 128.92 (t), 130.60 (t), 133.53 (q), 142.90 (q). MS (EI): *m/z* = 247 [M]⁺.

Anal. Calcd for $C_9H_{10}CINO_3S$: C, 43.64; H, 4.07; N, 5.65. Found: C, 43.39; H, 4.08; N, 5.52.

Acknowledgment

Financial support of a Grant-in-Aid for Scientific Research (No.20550033) from the Ministry of Education, Science, Sports and Culture in Japan, Academia Showcase Research Grant from the Japan Chemical Innovation Institute (JCII), and Iodine Research Project in Chiba University, is gratefully acknowledged.

References

- (1) (a) For reviews, see: Varvoglis, A. Hypervalent Iodine in Organic Synthesis; Academic Press: San Diego, 1997. (b) Moriarty, R. M.; Vaid, R. K. Synthesis 1990, 431. (c) Stang, P. J. Angew. Chem., Int. Ed. Engl. 1992, 31, 274. (d) Prakash, O.; Saini, N.; Sharma, P. K. Synlett 1994, 221. (e) Kitamura, T. J. Synth. Org. Chem. 1995, 53, 893. (f) Stang, P. J.; Zhdankin, V. V. Chem. Rev. 1996, 96, 1123. (g) Umemoto, T. Chem. Rev. 1996, 96, 1757. (h) Kita, Y.; Takada, T.; Tohma, H. Pure Appl. Chem. 1996, 68, 627. (i) Togo, H.; Hoshina, Y.; Nogami, G.; Yokoyama, M. J. Synth. Org. Chem. 1997, 55, 90. (j) Varvoglis, A. Tetrahedron 1997, 53, 1179. (k) Zhdankin, V. V. Rev. Heteroat. Chem. 1997, 17, 133. (l) Muraki, T.; Togo, H.; Yokoyama, M. Rev. Heteroat. Chem. 1997, 17, 213. (m) Kitamura, T.; Fujiwara, Y. Org. Prep. Proced. Int. 1997, 29, 409. (n) Varvoglis, A.; Spyroudis, S. Synlett 1998, 221. (o) Zhdankin, V. V.; Stang, P. J. Tetrahedron 1998, 54, 10927. (p) Moriarty, R. M.; Prakash, O. Adv. Heterocycl. Chem. 1998, 69, 1. (q) Togo, H.; Katohgi, M. Synlett 2001, 565. (r) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2002, 102, 2523. (s) Richardson, R. D.; Wirth, T. Angew. Chem. Int. Ed. 2006, 45, 4402. (t) Ladziata, U.; Zhdankin, V. Synlett 2007, 527.
- (2) For reviews, see: (a) Moriarty, R. M.; Vaid, R. K.; Koser, G. F. Synlett 1990, 365. (b) Koser, G. F. Aldrichimica Acta 2001, 34, 89. (c) Papers: Prakash, O.; Saini, N.; Sharma, P. K. Heterocycles 1994, 38, 409. (d) Neilands, O.; Karele, B. J. Org. Chem. USSR 1970, 6, 885. (e) Koser, G. F.; Wettach, R. H.; Troup, J. M.; Frenz, B. A. J. Org. Chem. 1976, 41, 3609. (f) Koser, G. F.; Wettach, R. H. J. Org. Chem. 1977, 42, 1476. (g) Koser, G. F.; Wettach, R. H.; Smith, C. S. J. Org. Chem. 1980, 45, 1543. (h) Koser, G. F.; Relenyi, A. G.; Kalos, A. N.; Rebrovic, L.; Wettach, R. H. J. Org. Chem. 1982, 47, 2487. (i) Moriarty, R. M.; Penmasta, R.; Awasthi, A. K.; Epa, W. R.; Prakash, I. J. Org. Chem. 1989, 54, 1101. (j) Moriarty, R. M.; Vaid, R. K.; Hopkins, T. E.; Vaid, B. K.; Prakash, O. Tetrahedron Lett. 1990, 31, 201. (k) Tuncay, A.; Dustman, J. A.; Fisher, G.; Tuncay, C. I. Tetrahedron Lett. 1992, 33, 7647. (1) Moriarty, R. M.; Vaid, B. K.; Duncan, M. P.; Levy, S. G.; Prakash, O.; Goyal, S. Synthesis 1992, 845. (m) Prakash, O.; Goyal, S. Synthesis 1992, 629. (n) Prakash, O.; Rani, N.; Goyal, S. J. Chem. Soc., Perkin Trans. 1 1992, 707. (o) Prakash, O.; Saini, N.; Sharma, P. K. Synlett 1994, 221. (p) Vrama, R. S.; Kumar, D.; Liesen, P. J. J. Chem. Soc., Perkin Trans. 1 1998, 4093. (q) Lee, J. C.; Choi, J. u.-H. Synlett 2001, 234.

Synthesis 2010, No. 14, 2355-2360 © Thieme Stuttgart · New York

- (3) Monomer reagents: (a) Muraki, T.; Togo, H.; Yokoyama, M. J. Org. Chem. 1999, 64, 2883. (b) Nabana, T.; Togo, H. J. Org. Chem. 2002, 67, 4362. (c) Misu, Y.; Togo, H. Org. Biomol. Chem. 2003, 1, 1342. (d) Ueno, M.; Nabana, T.; Togo, H. J. Org. Chem. 2003, 68, 6424. Polymer reagents: (e) Abe, S.; Sakuratani, K.; Togo, H. Synlett 2001, 22. (f) Abe, S.; Sakuratani, K.; Togo, H. J. Org. Chem. 2001, 66, 6174. (g) Sakuratani, K.; Togo, H. ARKIVOC 2003, (vi), 11. (h) Ueno, M.; Togo, H. Synthesis 2004, 2673.
- (4) Reviews: (a) Ochiai, M.; Miyamoto, K. Eur. J. Org. Chem. 2008, 4229. (b) Dohi, T.; Kita, Y. Chem. Commun. 2009, 2073. (c) Uyanik, M.; Ishihara, K. Chem. Commun. 2009, 2086. Papers: (d) Ochiai, M.; Takeuchi, Y.; Katayama, T.; Sueda, T.; Miyamoto, K. J. Am. Chem. Soc. 2005, 127, 12244. (e) Dohi, T.; Maruyama, A.; Yoshimura, M.; Morimoto, K.; Tohma, H.; Kita, Y. Angew. Chem. Int. Ed. 2005, 44, 6193. (f) Li, J.; Chan, P. W. H.; Che, C. Org. Lett. 2005, 7, 5801. (g) Thottumkara, A. P.; Bowsher, M. S.; Vinod, T. K. Org. Lett. 2005, 7, 2933. (h) Dohi, T.; Maruyama, A.; Minamitsuji, Y.; Takenaga, N.; Kita, Y. Chem. Commun. 2007, 1224. (i) Richardson, R. D.; Page, T. K.; Altermann, S.; Paradine, S. M.; French, A. N.; Wirth, T. Synlett 2007, 538. (j) Yakura, T.; Konishi, T. Synlett 2007, 765. (k) Sheng, J.; Li, X.; Tang, M.; Gao, B.; Huang, G. Synthesis 2007, 1165. (1) Chen, C.; Feng, X.; Zhang, G.;
- Zhao, Q.; Huang, G. Synthesis 2008, 3205. (m) Uyanik, M.;
 Akakura, M.; Ishihara, K. J. Am. Chem. Soc. 2009, 131, 251. (n) Miyamoto, K.; Sei, Y.; Yamaguchi, K.; Ochiai, M. J. Am. Chem. Soc. 2009, 131, 1382. (o) Ojha, L. R.;
 Kudugunti, S.; Maddukuri, P. P.; Kommareddy, A.; Gunna, M. R.; Dokuparthi, P.; Gottam, H. B.; Botha, K. K.; Parapati, D. R.; Vinod, T. K. Synlett 2009, 117. (p) Dohi, T.;
 Minamitsuji, Y.; Maruyama, A.; Hirose, S.; Kita, Y. Org. Lett. 2008, 10, 3559. (q) Uyanik, M.; Fukatsu, R.; Ishihara, K. Org. Lett. 2009, 11, 3470. (r) Uyanik, M.; Yasui, T.;
 Ishihara, K. Bioorg. Med. Chem. Lett. 2009, 19, 3848. (s) Yakura, T.; Tian, Y.; Yamauchi, Y.; Omoto, M.; Konishi, T. Chem. Pharm. Bull. 2009, 57, 252.
- (5) Yamamoto, Y.; Togo, H. Synlett 2005, 2486.
 (6) (a) Yamamoto, Y.; Togo, H. Synlett 2006, 798.
 (b) Yamamoto, Y.; Kawano, Y.; Toy, P. H.; Togo, H. *Tetrahedron* 2007, 63, 4680. (c) Akiike, J.; Yamamoto, Y.; Togo, H. Synlett 2007, 2168. (d) Moroda, A.; Togo, H. Synthesis 2008, 1257. (e) Ishiwata, Y.; Togo, H. *Tetrahedron Lett.* 2009, 50, 5354.
- (7) Khanna, M. S.; Grag, C. P.; Kapoor, R. P. *Tetrahedron Lett.* 1992, 33, 45.