Dalton Transactions

An international journal of inorganic chemistry

www.rsc.org/dalton

Volume 40 | Number 31 | 21 August 2011 | Pages 7793-8036

ISSN 1477-9226

RSCPublishing

COVER ARTICLE Guo, Zhao *et al*.

Coumarin phosphorescence observed with N^N Pt(II) bisacetylide complex and its applications for luminescent oxygen sensing and triplet-triplet-annihilation based upconversion

Dalton Transactions

Cite this: Dalton Trans., 2011, 40, 7834

PAPER

Coumarin phosphorescence observed with N^N Pt(II) bisacetylide complex and its applications for luminescent oxygen sensing and triplet-triplet-annihilation based upconversion[†]

Haiyang Sun, Huimin Guo,* Wenting Wu, Xin Liu and Jianzhang Zhao*

Received 23rd March 2011, Accepted 26th April 2011 DOI: 10.1039/c1dt10490j

A *dbbpy* platinum(II) bis(coumarin acetylide) complex (**Pt-1**, *dbbpy* = 4,4'-di-*tert*-butyl-2,2'-bipyridine) was prepared. **Pt-1** shows intense absorption in the visible region ($\lambda_{abs} = 412 \text{ nm}$, $\varepsilon = 3.23 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1}$) compared to the model complex *dbbpy* Pt(II) bis(phenylacetylide) (**Pt-2**, $\lambda_{abs} = 424 \text{ nm}$, $\varepsilon = 8.8 \times 10^3 \text{ M}^{-1} \text{ cm}^{-1}$). Room temperature phosphorescence was observed for **Pt-1** (³IL, $\tau_P = 2.52 \text{ µs}$, $\lambda_{em} = 624 \text{ nm}$, $\Phi_P = 2.6\%$) and the emissive triplet excited state was assigned as mainly intraligand triplet excited state (³IL), proved by 77 K steady state emission, nanosecond time-resolved transient absorption spectroscopy and DFT calculations. Complex **Pt-1** was used for phosphorescent oxygen sensing and the sensitivity (Stern–Volmer quenching constant $K_{sv} = 0.012 \text{ Torr}^{-1}$) is 12-fold of the model complex **Pt-2** ($K_{sv} = 0.001 \text{ Torr}^{-1}$). **Pt-1** was also used as triplet sensitizer for triplet–triplet-annihilation based upconversion, upconversion quantum yield Φ_{UC} up to 14.1% was observed, *vs.* 8.9% for the model complex **Pt-2**.

Introduction

Diimine $(N^{\land}N)$ Pt(II) bisacetylide complexes are of particular interesting due to their applications in electroluminescence, photovoltaics, photocatalysis and molecular probes, *etc.*¹⁻⁴ The photon emission of Pt(II) bis(acetylide) complexes are attributed to triplet excited state with a ³MLCT/³LLCT mixed feature (metal-to-ligand charge transfer and ligand-to-ligand-charge transfer).¹ The photophysics of the complexes, such as absorption/phosphorescence wavelength and phosphorescence quantum yields, are largely dependent on the acetylide ligands, thus the photophysical properties of these complexes can be readily tuned by variation of the acetylide ligands, which is feasible from a synthetic perspective.^{1,2,5-8}

However, much room is left for the current development of the N^{N} Pt(II) bis(acetylide) complexes to optimize their photophysical properties, such as (1) the UV-vis absorption and emission properties. For example, the absorption of the typical diimine Pt(II) bisacetylide complex is usually weak in visible region (the ε is less than 5000 M⁻¹ cm⁻¹),⁶ and the phosphorescence lifetime (τ_{P}), or more generally, the triplet excited state lifetime (τ_{T}), is usually short (*ca.* 1.0 µs). Complexes with intense absorption as

well as long-lived triplet excited state are rarely reported.⁹ (2) The structural diversity of the acetylide ligands is limited to the typical aromatic moieties, such as substituted phenyl, naphthyl, pyrenyl, etc., and very few organic fluorophores have been attached to the Pt(II) center to investigate the phosphorescence of the acetylide ligand, *i.e.* emission of the intraligand triplet excited state (³IL).¹ The ³IL excited state is particularly interesting, because longer lifetimes or red-shifted emission were usually observed with the ³IL excited state, vs. the normal ³MLCT excited state. We have shown that the ³IL excited state is important for applications such as oxygen sensing and upconversion.¹⁰⁻¹⁵ Previously we prepared an N^N Pt(II) bis(acetylide) complex containing the naphthalimide (NI) subunit,^{14,15} which shows intense long-lived room temperature NI localized ³IL phosphorescence ($\tau_{\rm P} = 118 \,\mu s$, $\Phi_{\rm P} = 17.5\%$). To the best of our knowledge, however, only the ethynylated pyrene and NI that show intense absorption were attached to Pt(II) to investigate the emissive ³IL excited states.1,2,14-20

In order to tackle the above limitations, herein we designed a $N^{\wedge}N$ Pt(II) bis(acetylide) complex containing coumarin (Pt-1, Scheme 1). Enhanced absorption in the visible range, as well as prolonged phosphoresence lifetime, were observed for Pt-1 compared to the model complex Pt-2 (Scheme 1). With steady state and time-resolved spectroscopy and DFT calculations, we proved that the intraligand triplet excited state (³IL) is the main component of the triplet excited state of Pt-1. Pt-1 was used as energy donor in two triplet–triplet-energy transfer processes, *i.e.* luminescent oxygen sensing and triplet–triplet-annihilation (TTA) based upconversion.

State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China. E-mail: zhaojzh@dlut.edu.cn, guohm@dlut.edu.cn; Fax: + 86 (0)411 8498 6236; Tel: + 86 (0)411 8498 6236

[†] Electronic supplementary information (ESI) available: structural characterization spectra, determination of the upconversion quantum yields and NBO analysis. See DOI: 10.1039/c1dt10490j

Scheme 1 Molecular structures of Pt-1 and the model complex Pt-2. The coumarin acetylide (L-1) and the triplet acceptor 9,10-diphenylabthracene (DPA) used in TTA upconversion are also shown. The model complex used as a triplet sensitizer in the upconversion, Ru-1, is also shown.

Experimental

Materials and reagents

4,4'-Di-*tert*-butyl-2,2'-bipyridine (*dbbpy*) is a product of Aldrich. Other chemicals are analytical pure and were used as received without further purification. Solvents were dried or distilled before used for synthesis or spectroscopic studies.

Apparatus

NMR spectra were recorded on a 400 MHz Varian Unity Inova spectrophotometer. Mass spectra were recorded with Q-TOF Micro spectrometer and MALDI micro MX. UV-vis absorption spectra were recorded on a HP8453 UVvisible spectrophotometer. Fluorescence spectra were recorded on a JASCO FP-6500 or a Sanco 970 CRT spectrofluorometer.

Fluorescence or phosphorescence lifetimes were measured on Horiba Jobin Yvon Fluoro Max-4 (TCSPC). Nanosecond timeresolved transient absorption spectroscopy was obtained with LP-920 pump-probe spectrometer (Edinburgh Instruments). The emission at 77 K was measured with a Oxford Optistat DNTM cryostat (with liquid nitrogen filling) and FS920 fluorospectrometer (Edinburgh Instruments). Flow cell coupled to a fluorospectrometer was used in the luminescent O₂ sensing.

Synthesis of compound 5

4-Diethylaminosalicylaldehyde (1.93 g, 10 mmol), diethylmalonate (3.2 g, 20 mmol) and piperidine (1 mL) were combined in absolute ethanol (30 mL) and stirred for 6 h under reflux conditions. Ethanol was evaporated under reduced pressure, then concentrated HCl (20 mL) and glacial acetic acid (20 mL) were added to hydrolyze the reaction with stirring for another 6 h. The solution was cooled to room temperature and poured into ice water (100 mL). NaOH solution (40%) was added dropwise to adjust pH of the solution to 5.0, and a pale precipitate formed immediately. After stirring for 30 min, the mixture was filtered, washed with water, dried, then the residue was purified with column chromatography (silica gel, dichloromethane) to give 1.05 g product **5** (yield: 48%) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, 1H, *J* = 8.0 Hz, ArH), 7.23 (d, 1H, *J* = 8.0 Hz, Ar-CH), 6.57 (d, 1H, *J* = 12.0 Hz, ArH), 6.48 (s, 1H, ArH), 6.04 (d, 1H, *J* = 12.0 Hz, Ar-CH), 3.42 (m, 4H, CH₂), 1.20 (t, 6H, CH₃).

Synthesis of compound 4

Br₂ (0.23 mL, 4.5 mmol) was added dropwise to a solution of 7diethylaminocoumarin (1.0 g, 4.5 mmol) in acetic acid (23 mL), and the mixture was stirred at rt for 2–3 h. Resulting white solid was filtered and washed with acetic acid, and dried. The solid was recrystallized in acetonitrile (white solid, 1.1 g, 80% yield). ¹H-NMR (400 MHz, CDCl₃): δ 8.37 (s, 1H), 7.45 (d, J = 8.6 Hz, 1H), 6.72 (dd, J = 8.8 Hz, J = 2.4 Hz, 1H), 6.56 (d, J = 2.4 Hz, 1H), 3.48 (q, J = 7.2 Hz, 4H), 1.21 (t, 6H, CH₃).

Synthesis of compound 3

PdCl₂(PPh₃)₂ (24.0 mg, 0.03 mmol, 5.0 mol%), CuI (6.5 mg, 0.03 mmol, 5.0 mol%), TEA (190 μ L, 1.4 mmol), and (trimethylsilyl)acetylene (192 μ L, 2.0 mmol) were added to a solution of 4 (200.0 mg, 0.67 mmol) in anhydrous DMF (7 mL) under Ar. The mixture was stirred at 60 °C for 6 h. The resulting solution was cooled to rt, diluted with water, and extracted with CH₂Cl₂. The organic layer was dried over Na₂SO₄. The solvent was removed under reduced pressure and the compound was purified by column chromatography (silica gel, petroleumether–EA 4:1, v/v) to afford product **3**. (Yellow solid, 190 mg, 90% yield). ¹H-NMR (400 MHz, CDCl₃): δ 7.93 (s, 1H), 7.44 (d, *J* = 8.9 Hz, 1H), 6.78 (dd, *J* = 8.9 Hz, *J* = 2.4 Hz, 1H), 6.51 (d, *J* = 2.4 Hz, 1H), 3.58 (q, *J* = 7.0 Hz, 4H), 1.26 (t, *J* = 7.0 Hz, 6H), 0.24 (s, 9H).

Synthesis of compound 2

A 1.0 M solution of tetrabutylammoniumfluoride (TBAF) in THF (0.78 mL, 0.78 mmol) was added to a solution of **3** (163 mg, 0.52 mmol) in 10 mL of THF and MeOH (4/1, v/v). The mixture was stirred at rt for 8 h. The solvent was removed under reduced pressure and the product was purified by column chromatography on silica gel with PE–EA (7:2, v/v) as the eluent, affording the product **2**. (Yellow solid, 76 mg, 60% yield). ¹H-NMR (400 MHz, CDCl₃): δ 7.77 (s, 1H), 7.24 (d, *J* = 8.9 Hz, 1H), 6.59 (dd, *J* = 8.9 Hz, *J* = 2.4 Hz, 1H), 6.46 (d, *J* = 2.4 Hz, 1H), 3.43 (q, *J* = 7.0 Hz, 4H), 3.26 (s, 1H), 1.22 (s, *J* = 7.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 161.16, 156.45, 151.39, 146.96, 129.06, 109.27, 108.01, 103.41, 97.29, 81.14, 78.57, 77.22, 44.95, 12.43. TOF–MS: C₁₅H₁₅NO₂, calculated *m/z* = 241.1103, found *m/z* = 241.1112.

Synthesis of Pt-1

Pt(dbbpy)Cl₂ (50.0 mg, 0.09 mmol), CuI (5.0 mg, 0.09 mmol) and diisopropylamine (1.0 mL) were dissolved in 5 mL of CH₂Cl₂ and DMF (2/3, v/v), the mixture was stirred for 10 min. The mixture was purged with Ar, then product 2 (70.0 mg, 0.27 mmol) was added and the mixture was stirred at room temperature for 24 h. The resulting white solid was filtered and washed with CH₂Cl₂. The residue was purified by column chromatography (silica gel, $CH_2Cl_2-CH_3OH = 80:1$, v/v) 23.3 mg, yield: 85%. ¹H NMR (400 MHz, CDCl₃): δ 10.40(d, J = 4.0 Hz 2H), 7.92 (s, 2H), 7.79 (s, 2H), 7.73 (d, J = 4.0 Hz, 2H), 7.26 (d, J = 8.0 Hz, 2H), 6.52 (m, 4H), 1.44 (m, 18H), 1.25 (m, 4H), 1.25 (m, 4H),12H). ¹³C NMR (100 MHz, CDCl₃): δ 163.57, 163.07, 156.16, 155.08, 152.88, 149.60, 141.91, 128.13, 125.01, 118.25, 109.47, 108.82, 97.49, 96.61, 44.78, 35.74, 29.70, 12.53. HR-MALDI-MS: $[C_{48}H_{52}N_4O_4Pt+H]^+$, calculated m/z = 944.3715, found m/z =944.3776. Anal. calcd for C48H52N4O4Pt(.0.5CH2Cl2): C, 59.05; H, 5.42; N, 5.68; Found: C, 59.26; H, 5.32; N, 5.62.

Computational methods. All calculations were performed using the Gaussian 09 W software (Gaussian, Inc.).²¹ The gas phase geometry optimizations were carried out using B3LYP functional with the 6-31G(d) basis set. The vertical excitation energy was calculated with the Time-Dependent DFT (TDDFT) method based on the singlet ground state geometry. The spin-density of the triplet state was calculated with the energy minimized triplet state geometries.

Upconversions. A diode pumped laser was used for the upconversions. The solution samples were purged with N₂ or Ar for 15 min before measurement. The upconversion quantum yields were determined with a laser dye 4-dicyanomethylene-6-(*p*-dimethylaminostyryl)-2-methyl-4*H*-pyran (DCM) as the quantum yield standards ($\Phi = 0.10$ in CH₂Cl₂) and the quantum yields were calculated with eqn (1),¹¹ where Φ_{unk} , A_{unk} , I_{unk} and η_{unk} represents the quantum yield, absorbance, integrated photoluminescence intensity and the refractive index of the samples. The photography of the upconversion were taken with Sumsang NV 5 digital camera. The exposure times are the default values of the camera.

$$\Phi_{\rm unk} = 2\Phi_{\rm std} \left(\frac{A_{\rm std}}{A_{\rm unk}}\right) \left(\frac{I_{\rm unk}}{I_{\rm std}}\right) \left(\frac{\eta_{\rm unk}}{\eta_{\rm std}}\right)^2 \tag{1}$$

Results and discussion

Solvents-dependent absorption and emission

Coumarins are well-known fluorophores that show intense absorption and strong fluorescence, and were widely used as fluorophores for molecular probes or lanthanide luminescence.^{22a} Previously coumarin was used as a light-harvesting antenna for lanthanide luminescence,^{22b} or a $C^{\wedge}N$ ligand for cyclometalated Ir(III) complexes,^{23,24} or Pt(II)/Pd(II) complexes,^{25,26} but its room temperature phosphorescence was never reported. Inspired by the related work that ³IL emission can be observed by connection of arylacetylide to a Pt(II) center, and our own work with naphthalimide,¹⁵ herein we designed a $N^{\wedge}N$ Pt(II) bisacetylide complex with the coumarin acetylide ligand (Pt-1, Scheme 1). The π -conjugation framework of coumarin is directly attached to Pt(II) in Pt-1 thus a significant heavy atom effect is expected, by which the intersystem crossing (ISC) from the singlet excited state to the triplet excited state can be facilitated, thus ³IL emission is possible.1 We used a model complex Pt-2 in our photophysical and photophysical application studies (Scheme 1).

Firstly the UV-vis absorptions of the complexes were studied (Fig. 1). **Pt-2** shows maximal absorption at 424 nm with a moderate molar extinction coefficient ($\varepsilon = 8800 \text{ M}^{-1} \text{ cm}^{-1}$). For **Pt-1**, however, the absorption at 424 nm is greatly enhanced ($\varepsilon = 24903 \text{ M}^{-1} \text{ cm}^{-1}$). Furthermore, an intense absorption band at 414 nm was observed ($\varepsilon = 32300 \text{ M}^{-1} \text{ cm}^{-1}$). By comparison with that of **L-1**, the absorption of **Pt-1** at 414 nm is clearly due to the coumarin ligand, *i.e.* $S_0 \rightarrow {}^{-1}\text{IL}$ transition.

Fig. 1 UV-vis absorption of **L-1**, **Pt-1** and **Pt-2**, and the normalized emission of **Pt-1** and **Pt-2**. $c = 1.0 \times 10^{-5}$ M in toluene, 20 °C.

The absorption feature of L-1 is recognizable in Pt-1. This is different from the normal Pt(II) bisacetylide complexes, which usually show red-shifted absorption compared to the free acetylide ligand.^{1,6,7,14} Furthermore, the UV-vis absorption of Pt-1 is not sensitive to the polarity of the solvents (Fig. 2a). On the contrary, Pt-2 shows negative solvatochromism (Fig. 2b), indicating that

Fig. 2 UV-Vis absorption spectra of (a) **Pt-1** and (b) **Pt-2** in different solutions. $c = 1.0 \times 10^{-5}$ M, 20 °C.

CT absorption is the major component of the UV-vis absorption bands of Pt-2.²⁷ All these results infer that the absorption of Pt-1 is IL in character, not the typical MLCT for Pt(II) bisacetylide complexes.¹

An emission band at 624 nm with vibrational progression was found for **Pt-1** (Fig. 1). A structured band is characteristic for ³IL emission.^{1,10,12,14,20} On the contrary, structureless emission was observed for **Pt-2** (567 nm). Thus the emission of **Pt-1** was attributed to the ³IL excited state localized on the coumarin ($\tau_T = 2.44 \mu$ s). A Pt(II) acetylide complex with an ethynyl–flavone ligand was reported to show emission at 570 nm ($\tau = 21 \mu$ s).²⁸ The phosphorescence quantum yield of **Pt-1** is low ($\Phi_P = 2.6\%$), probably due to the equilibrium of the ³MLCT state (herein it is non-emissive) with the ³IL excited state.²⁹ It is known that Pt(II) bisacetylide complexes with an electron-donating acetylide ligand are non-phosphorescent.^{30,31} **Pt-1** is phosphorescent in the solid state (ESI†).

The emission of **Pt-1** is strongly solvent polarity dependent (Fig. 3a). It is highly emissive in toluene but the phosphorescence is significantly quenched in polar solvents, such as in ethyl acetate or in methylene dichloride, and it becomes non-phosphorescent in acetonitrile. We propose that the non-luminescent ³MLCT excited state will be more significantly stabilized in polar solvents than ³IL states (³MLCT becomes lower in energy than ³IL excited state), thus **Pt-1** is non-phosphorescent in CH₃CN.¹⁶ The emission of **Pt-2** is relatively less solvent polarity-dependent (Fig. 3b).

Previously it was found that the phosphorescence of the 2-(4'nitrophenyl)pyridine Pt(II) (acac) complex can be quenched by a weak Lewis base, such as toluene, dichloromethane, *etc.*, due to the strong positively charged Pt(II) center of the complex.³² In order to exclude the exciplex quenching of **Pt-1** by the polar solvents (Lewis bases), the electrostatic potential surfaces of the complexes **Pt-1** and **Pt-2** at the T₁ state were studied (Fig. 4). The red-colored

Fig. 3 Emission spectra of (a) **Pt-1** ($\lambda_{ex} = 474$ nm) and (b) **Pt-2** ($\lambda_{ex} = 403$ nm) in different solutions. Under N₂ atmosphere. $c = 1.0 \times 10^{-5}$ M, 20 °C.

area in **Pt-2** defines a region of high electron density at the metal center, while the corresponding green area depicts a diminished electronic density. For **Pt-1**, a similar profile was observed, *i.e.* the Pt(II) center has higher electron density than the other areas of the complex (Fig. 4), thus the Lewis base quenching mechanism is not applicable to **Pt-1**.³²

Fig. 4 Potential surfaces of electron density for the T_1 excited state of **Pt-1** (left) and **Pt-2** (right). The red color represents areas of high electron density and the green color indicates areas with diminished electron density (isovalue = 0.0004). Calculated at B3LYP/3-21G level with the T_1 state geometry with Gaussian 09W.

77 K emission, nanosecond time-resolved transient absorption and spin density of the complexes: assignment of the ³IL features of the T_1 state

The emission of **Pt-1** at 77 K shows more significant vibration progression than the emission spectrum at RT. Notably the thermally induced Stokes shift is very small ($\Delta E_s = 182 \text{ cm}^{-1}$) (Fig. 5), a small ΔE_s is an established evidence for the ³IL emission.

Fig. 5 Photoluminescence spectra of **Pt-1** at RT (in toluene) and 77 K (in EtOH–MeOH, 4: 1, v/v). $\lambda_{ex} = 414$ nm.

In contrast, substantial a ΔE_s value of 2470 cm⁻¹ (0.31 eV) was reported for the model complex **Pt-2**, for which the emissive T₁ state is MLCT.^{8b}

In order to prove the ³IL feature of the triplet excited state of **Pt-1**, nanosecond time-resolved transient absorption spectroscopy was studied (Fig. 6). Significant bleaching at 400 nm was observed for **Pt-1** upon pulsed laser excitation, which unambiguously proved the coumarin localized ³IL excited state. Minor bleaching was observed at 470 nm. Transient absorption was observed in the range of 500 nm–700 nm. The transients of **Pt-1** are drastically different from that of the model complex **Pt-2**.³³ **Pt-2** did not show any transient absorption in the range of 500 nm–700 nm.^{17,20,34}

Fig. 6 Transient absorption spectra of **Pt-1** after pulsed laser excitation ($\lambda_{ex} = 532$ nm). $c = 1.5 \times 10^{-5}$ M in toluene, 20 °C.

The isosurfaces of the spin density of T_1 state of **Pt-1** support the IL feature of the T_1 state (Fig. 7). For **Pt-2**, the spin density surface is localized on the phenyl acetylide ligands, the Pt(II) center and the dbbpy ligand. This spin density distribution is in line with the known ³MLCT/³LLCT feature of *dbbpy* Pt(II) bisphenylacetylide. For **Pt-1**, the coumarin ligand contributes more significantly to the spin density. We proved that the energy level of the triplet excited state of the coumarin acetylide ($T_1 = 576$ nm, by DFT calculation) is close to the ³MLCT state of the complex (see Supporting Information[†]), thus the ³IL excited state is the T_1 state of the T_1 excited state (see ESI for detailed analysis[†]).

Fig. 7 Spin density surfaces for the T_1 excited state of Pt-1 and Pt-2. Calculated at B3LYP/6-31g(d)/LanL2DZ level based on the optimized T_1 state geometry (isovalue = 0.0004), with Gaussian 09W.

Application of Pt-1 as triplet sensitizer for triplet-triplet-annihilation upconversion

Next we set out to utilize **Pt-1** for triplet–triplet-annihilation (TTA) based upconversion.^{11,34} TTA upconversion requires a triplet sensitizer and an acceptor to accomplish the cascade processes of light-harvesting, triplet–triplet-energy-transfer (TTET), TTA and the upconverted fluorescence emission.³⁵ This upconversion scheme is particularly promising for application due to its low excitation power (even lower than the terrestrial solar radiation level, 0.1 W cm⁻², AM 1.5G).^{36,37} Furthermore, the excitation/emission wavelength of TTA upconversion can be readily optimized by independent selection of the triplet sensitizers and acceptors. Currently the triplet sensitizers of TTA upconversion are limited to porphyrin Pt(II)/Pd(II) complexes.^{35–37} However, it

Fig. 8 Triplet–triplet-annihilation upconversion with **Pt-1** and **Pt-2** as triplet sensitizers. (a) Emission of the sensitizers **Pt-1** and **Pt-2** alone. (b) Emission of **Pt-1** and **Pt-2** in the presence of DPA. Excited with 473 nm laser (5 mW). $c_{\text{sensitizers}} = 1.0 \times 10^{-5}$ M, $c_{\text{DPA}} = 1.32 \times 10^{-4}$ M. 20 °C. The asterisks indicate the scattered 473 nm laser.

is difficult to modify the porphyrin complexes to optimize the excitation/emission wavelength. Thus new sensitizers have to be developed. Herein we used **Pt-1** as the triplet sensitizer for TTA upconversion.

The emission of **Pt-1** is much weaker than **Pt-2** with 473 nm laser excitation (Fig. 8a). DPA was selected as the triplet acceptor.^{11,38} In the presence of DPA, upconverted fluorescence (400 nm–550 nm) was observed upon selective excitation of the sensitizers at 473 nm. Irradiation of DPA alone at 473 nm did not produce any emission, and thus verified the upconverted emission with **Pt-1** or **Pt-2** as the triplet sensitizers. Upconversion quantum yields (Φ_{UC}) of 14.1% and 8.9% were determined for **Pt-1** and **Pt-2** under our experimental conditions, respectively (Table 2).

Notably, the peak area of the quenched phosphorescence of **Pt-1** by DPA is not significant, although the upconverted fluorescence is significant. For **Pt-2**, the upconversion is accompanied with quenching of the phosphorescence. We propose a non-emissive portion of the **Pt-1** sensitizers that in the triplet excited state is involved in TTET. It should be pointed out that ³IL is weakly phosphorescent ($\Phi_P = 2.6\%$). This is the first time that sensitizer molecules at excited states that are otherwise non-emissive were proposed to be involved in the TTA upconversion. The efficiency of the TTET process of the TTA upconversion was studied. The Stern–Volmer quenching constants of 5.56×10^3 M⁻¹ and 3.77×10^3 M⁻¹ were determined for **Pt-1** and **Pt-2**, respectively (Fig. 9 and Table 2).

Fig. 9 Stern–Volmer plots generated from the phosphorescence intensity quenching of complex **Ru-1** ($\lambda_{ex} = 474$ nm), **Pt-1** ($\lambda_{ex} = 474$ nm), **Pt-2** ($\lambda_{ex} = 403$ nm) as a function of DPA concentration. In toluene, $c = 1.0 \times 10^{-5}$ M, 20 °C.

The upconversion quantum yield of **Pt-1** is among the highest values ever reported.³⁵ Considering the large molar extinction coefficient, the absolute upconverted fluorescence emission of **Pt-1** is *ca*. 5-fold of **Pt-2**. Recently [Pt(ttpy)(C=CPh)]ClO₄ (where ttpy = 4'-*p*-tolylterpyridine) was reported for TTA based upconversion.³⁹ However, the Φ_{UC} is only 1.1%, despite its long phosphorescence lifetime (4.6 µs).³⁹ Using Pt(II) acetylide complexes as triplet sensitizers for TTA upconversion is attractive because the photophysical properties of the Pt(II) complex sensitizers, such as the excitation wavelength, can be readily optimized by using different acetylide ligands.

Table 1 Photophysical parameters of L-1, Pt-1 and Pt-2

	$\lambda_{abs}{}^{a}$	ε^{b}	$\lambda_{ m em}{}^c$	Φ^{d}	$ au_{ ext{L}}{}^{e}$	$ au_{\mathrm{T}}$ (µs)/
L-1	397	3.66	443	84.2%	2.8 ns	_
Pt-1	414	3.23	624	2.6%	2.52 μs	2.44
Pt-2	424	0.88	567	42.2%	1.27 μs	

^{*a*} In toluene $(1.0 \times 10^{-5} \text{ mol dm}^{-3})$. ^{*b*} Molar extinction coefficient at the absorption maxima. *e*: $10^4/\text{cm}^{-1} \text{ mol}^{-1} \text{ dm}^3$. ^{*c*} In toluene. ^{*d*} In toluene, with [Ru(bpy)₂(phen)][PF₆]₂ as standard ($\Phi = 0.06$ in deaerated acetonitrile). ^{*e*} Luminescence lifetime. In toluene. ^{*f*} Triplet state lifetime, measured by time-resolved transient absorption. 1.5×10^{-5} mol dm⁻³ in toluene.

Table 2 Stern–Volmer quenching constant (K_{sv}) and bimolecular quenching constants (k_q) of **Pt-1** and **Pt-2** for TTET with DPA as acceptor and the upconversion quantum yields (Φ_{UC}) . 20 °C

	$K_{\rm sv}/(10^3 {\rm M}^{-1})$	$k_{\rm q}/(10^9 {\rm M}^{-1} {\rm s}^{-1})$	${\it \Phi}_{ m UC}$	
Pt-1	5.56	2.21	14.1%	
Pt-2	3.77	2.97	8.9%	

Application of the complexes for luminescent oxygen sensing

Firstly the sensitivity of the complex to oxygen in toluene solution was studied (Fig. 10). **Pt-1** is strongly phosphorescent in nitrogen saturated solution (Fig. 10a). The emission is quenched under air atmosphere or in oxygen saturated solution. Thus the phosphorescence of **Pt-1** is sensitive to O_2 . For **Pt-2**, however, the emission under air atmosphere is still significant compared to that under N_2 atmosphere. These results indicate that the phosphorescence lifetime of **Pt-1** is longer than that of **Pt-2** (Table 1).

Fig. 10 Emission spectra of (a) Pt-1 ($\lambda_{ex} = 474$ nm) and (b) Pt-2 ($\lambda_{ex} = 403$ nm) in toluene saturated with air, oxygen and nitrogen. $c = 1.0 \times 10^{-5}$ M. 20 °C.

For practical applications the O_2 sensing will be performed with the complexes embedded in solid supporting matrix, such as in polymer films.⁴⁰ We selected a polymer IMPEK-C as the supporting matrix and the oxygen sensing with the films was studied with a flow-cell, which is coupled to a spectrometer with an optical fiber bundle.¹² Two kinds of experiment were performed. The first one is to test the response of the films to the saturation switch between the O_2 and N_2 (Fig. 11). Fast response and recovery was observed with the films. Both t_195 are 4 s.

Fig. 11 Phosphorescence intensity response of the oxygen sensing films toward O_2/N_2 switches. (a) Pt-1, $\lambda_{ex} = 412$ nm, $\lambda_{em} = 624.3$ nm. (b) Pt-2, $\lambda_{ex} = 424$ nm, $\lambda_{em} = 567$ nm. 20 °C.

Good photostability were observed for the complexes, *i.e.* the phosphorescence of the complexes is fully recovered after exposure to continuous irradiation during the O_2 sensing experiments, which is ideal for practical applications. Previously a cyclometalated Ir(III) complex were used for O_2 sensing but it was unstable toward photoexcitation.²³

In order to quantitatively evaluate the O_2 sensitivity of the complexes, the response of the phosphorescence of the sensing films toward small steps of variation of O_2 partial pressure were studied (Fig. 12). **Pt-1** is more significantly quenched than **Pt-2**.

The oxygen sensing data of **Pt-1** and **Pt-2** were fitted with the two-sites model (Fig. 13 and ESI[†]).¹⁰ The Stern–Volmer quenching constants of **Pt-1** and **Pt-2** were determined as 0.012 and 0.001 Torr⁻¹, respectively. Thus the oxygen sensitivity of **Pt-1** is 12 -fold of **Pt-2**.

Conclusions

In conclusion, a diimine Pt(II) bis(coumarin acetylide) complex was prepared, in which the fluorophore of coumarin was directly

Fig. 12 Phosphorescence intensity response of the complexes to O_2/N_2 switches. (a) **Pt-1**, $\lambda_{ex} = 412$ nm, $\lambda_{em} = 624.3$ nm. (b) **Pt-2**, $\lambda_{ex} = 424$ nm, $\lambda_{em} = 567$ nm. 20 °C.

Fig. 13 Two-sites model plots for sensing film of Pt-1 and Pt-2 in IMPEK-C. Intensity ratios $I_0/I vs. O_2$ partial pressure (Torr). 20 °C.

connected to a Pt(II) center. The complex shows enhanced UV-vis absorption ($\varepsilon = 32\ 300\ M^{-1}\ cm^{-1}$ at 414 nm), red-emission at 625 nm, phosphorescence lifetime (τ_P) of 2.44 µs and quantum yield (Φ_P) of 2.6%. The phosphorescence of the complex is dependent on the polarity of the solvents. Coumarin-localized intraligand emissive triplet excited (³IL) was proposed to be responsible for the emission of the complex. To the best of our knowledge, this is the first time that the room temperature phosphorescence of coumarin was observed. The complex was used as triplet sensitizer for triplet–triplet-annihilation based upconversion and upconversion quantum yield (Φ_{UC}) up to 14.1% was observed. We propose that sensitizer molecules at the triplet excited state that are otherwise non-emissive were involved in the triplet–tripletenergy-transfer (TTET) process. The complexes were also used for another TTET process, *i.e.* luminescent oxygen sensing. The Stern–Volmer quenching constant of the coumarin-containing complex is 12-fold of the model complex. Good photostability was observed for the complexes during the luminescent oxygen sensing experiments. Our strategy of directly attaching a fluorophore to Pt(II) atom *via* an acetylide linker to access Pt(II) complexes with intense absorption in the visible region and long-lived emissive ³IL excited state (ligand phosphorescence) will be useful for design of light-harvesting transition metal complexes and for applications in photovoltaics, in photocatalysis and in upconversions materials, *etc.*

Acknowledgements

We thank the NSFC (20972024 and 21073028), the Fundamental Research Funds for the Central Universities (DUT10ZD212 and DUT111LK19), Ministry of Education (SRFDP-200801410004 and NCET-08-0077), the Royal Society (UK) and NSFC (China-UK Cost-Share Science Networks, 21011130154), the Education Department of Liaoning Province (2009T015) and State Key Laboratory of Fine Chemicals (KF0802) for financial support.

Notes and references

- 1 J. A. G. Williams, Top. Curr. Chem., 2007, 281, 205.
- 2 (a) M. Hissler, A. Harriman, A. Khatyr and R. Ziessel, *Chem.-Eur. J.*, 1999, 5, 3366; (b) F. Nastasi, F. Puntoriero, S. Campagna, J.-H. Olivierb and R. Ziessel, *Phys. Chem. Chem. Phys.*, 2010, 12, 7392.
- 3 (a) Y. Liu and K. Schanze, *Inorg. Chem.*, 2005, 44, 4055; (b) C. She, A. A. Rachford, X. Wang, S. Goeb, A. O. El-Ballouli, F. N. Castellano and J. T. Hupp, *Phys. Chem. Chem. Phys.*, 2009, 11, 8586; (c) S. C. F. Kui, Y.-C. Law, G. S. M. Tong, W. Lu, M.-Y. Yuen and C.-M. Che, *Chem. Sci.*, 2011, 2, 221.
- 4 (a) T. J. Wadas, R. J. Lachicotte and R. Eisenberg, *Inorg. Chem.*, 2003,
 42, 3772; (b) J. Ni, L.-Y. Zhang, H.-M. Wen and Z.-N. Chen, *Chem. Commun.*, 2009, 3801; (c) P.-H. Lanoë, H. L. Bozec, J. A. Gareth Williams, J.-L. Fillaut and V. Guerchais, *Dalton Trans.*, 2010, 39, 707; (d) G.-J. Zhou and W.-Y. Wong, *Chem. Soc. Rev.*, 2011, 40, 254.
- 5 I. V. Sazanovich, M. A. H. Alamiry, J. Best, R. D. Bennett, O. V. Bouganov, E. S. Davies, V. P. Grivin, A. J. H. M. Meijer, V. F. Plyusnin, K. L. Ronayne, A. H. Shelton, S. A. Tikhomirov, M. Towrie and J. A. Weinstein, *Inorg. Chem.*, 2008, 47, 10432.
- 6 C. E. Whittle, J. A. Weinstein, M. W. George and K. S. Schanze, *Inorg. Chem.*, 2001, 40, 4053.
- 7 M. Hissler, W. B. Connick, D. K. Geiger, J. E. McGarrah, D. Lipa, R. J. Lachicotte and R. Eisenberg, *Inorg. Chem.*, 2000, **39**, 447.
- 8 (a) J. A. Aligo, L. Smith, J. L. Eglin and L. E. Pence, *Inorg. Chem.*, 2005, **44**, 4001; (b) I. E. Pomestchenko and F. N. Castellano, *J. Phys. Chem. A*, 2004, **108**, 3485.
- 9 A. A. Rachford, S. Goeb and F. N. Castellano, J. Am. Chem. Soc., 2008, 130, 2766.
- 10 S. Ji, W. Wu, W. Wu, P. Song, K. Han, Z. Wang, S. Liu, H. Guo and J. Zhao, J. Mater. Chem., 2010, 20, 1953.
- 11 S. Ji, W. Wu, W. Wu, H. Guo and J. Zhao, *Angew. Chem., Int. Ed.*, 2011, 50, 1626.
- 12 W. Wu, W. Wu, S. Ji, H. Guo, P. Song, K. Han, L. Chi, J. Shao and J. Zhao, J. Mater. Chem., 2010, 20, 9775.
- 13 W. Wu, W. Wu, S. Ji, H. Guo and J. Zhao, Eur. J. Inorg. Chem., 2010, 4470.
- 14 Maria L. Muro-Small Guo, S. M. Ji, J. Z. Zhao and Felix N. Castellano, *Inorg. Chem.*, 2010, 49, 6802.

- 15 H. Guo, S. Ji, W. Wu, W. Wu, J. Shao and J. Zhao, Analyst, 2010, 135, 2832
- 16 S. Goeb, A. A. Rachford and F. N. Castellano, *Chem. Commun.*, 2008, 814.
- 17 S. Goeb Rachford, R. Ziessel and F. N. Castellano, *Inorg. Chem.*, 2008, 47, 4348.
- 18 Q. Yang, L. Wu, Z. Wu, L. Zhang and C. Tung, *Inorg. Chem.*, 2002, 41, 5653.
- 19 I. E. Pomestchenko, C. R. Luman, M. Hissler, R. Ziessel and Felix N. Castellano, *Inorg. Chem.*, 2003, 42, 1394.
- 20 E. O. Danilov, I. E. Pomestchenko, S. Kinayyigit, P. L. Gentili, M. Hissler, R. Ziessel and F. N. Castellano, J. Phys. Chem. A, 2005, 109, 2465.
- 21 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Danneherg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, *GAUSSIAN 09 (Revision A.1)*, Gaussian, Inc., Wallingford, CT, 2009.
- 22 (a) N. C. Lim, J. V. Schuster, M. C. Porto, M. A. Tanudra, L. L Yao, H. C. Freake and C. Bruckner, *Inorg. Chem.*, 2005, 44, 2018; (b) J. Yao, W. Dou, W. Liu and J. Zheng, *Inorg. Chem. Commun.*, 2009, 12, 430.
- 23 S. M. Borisov and I. Klimant, Anal. Chem., 2007, 79, 7501.
- 24 C. Ulbricht, N. Rehmann, E. Holder, D. Hertel, K. Meerholz and U. S. Schubert, *Macromol. Chem. Phys.*, 2009, 210, 531.
- 25 J. Brooks, Y. Babayan, S. Lamansky, P. I. Djurovich, I. Tsyba, R. Bau and M. E. Thompson, *Inorg. Chem.*, 2002, **41**, 3055.
- 26 O. A. Rodionova, M. V. Puzyk and K. P. Balashev, Opt. Spectrosc., 2008, 105, 62.
- 27 F. N. Castellano, I. E. Pomestchenko, E. Shikhova, F. Hua, M. L. Muro and N. Rajapakse, *Coord. Chem. Rev.*, 2006, 250, 1819.
- 28 P. H. Lanoe, J. L. Fillaut, L. Toupet, J. A. G. Williams, H. L. Bozec and V. Guerchais, *Chem. Commun.*, 2008, 4333.
- 29 N. Armaroli, ChemPhysChem, 2008, 9, 371.
- 30 F. Q. Guo and W. F. Sun, Inorg. Chem., 2005, 44, 4055.
- 31 X. Han, L. Z. Wu, G. Si, J. Pan, Q. Z. Yang, L. P. Zhang and C. H. Tung, *Chem.-Eur. J.*, 2007, **13**, 1231.
- 32 M. D. Perez, P. I. Djurovich, A. Hassan, G. Y. Cheng, T. J. Stewart, K. Aznavour, R. Bauz and M. E. Thompson, *Chem. Commun.*, 2009, 4215.
- 33 J. E. McGarrah and R. Eisenberg, Inorg. Chem., 2003, 42, 4355.
- 34 F. Hua, S. Kinayyigit, A. A. Rachford, E. A. Shikhova, S. Goeb, J. R. Cable, C. J. Adams, K. Kirschbaum, A. A. Pinkerton and F. N. Castellano, *Inorg. Chem.*, 2007, 46, 8771.
- 35 T. N. Singh-Rachford and F. N. Castellano, *Coord. Chem. Rev.*, 2010, **254**, 2560.
- 36 A. Monguzzi, J. Mezyk, F. Scotognella, R. Tubino and F. Meinardi, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 2008, 78, 195112–1.
- 37 A. Monguzzi, R. Tubino and F. Meinardi, Phys. Rev. B: Condens. Matter Mater. Phys., 2008, 77, 155122–1.
- 38 R. R. Islangulov, D. V. Kozlov and F. N. Castellano, *Chem. Commun.*, 2005, 3776.
- 39 P. W. Du and R. Eisenberg, Chem. Sci., 2010, 1, 502.
- 40 (a) O. Wolfbeis and R. Narayanaswamy, Optical sensors: Industrial, Environmental and Diagnostic Applications, Springer-Verlag, Berlin-Heidelberg, 2004; (b) J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer Academic, New York, 2nd edn, 1999.