ORGANOMETALLICS

From Chelate C,N-Cyclopalladated Oximes to C,N,N'-, C,N,S-, or C,N,C'-Pincer Palladium(II) Complexes by Formation of Oxime Ether Ligands

Antonio Abellán-López,[†] María-Teresa Chicote,[†] Delia Bautista,[‡] and José Vicente^{*,†}

[†]Grupo de Química Organometálica, Departamento de Química Inorgánica, Universidad de Murcia, Apartado 4021, 30071 Murcia, Spain

[‡]SAI, Universidad de Murcia, Apartado 4021, 30071 Murcia, Spain

Supporting Information

ABSTRACT: Pincer complexes of the types $[Pd\{C,N,N'-Ar\{C(Me) = NOCH_2py-2\}-2\}X]$ or $[Pd\{C,N,S-C_6H_4\{C(Me) = NOCH_2SMe\}-2\}CI]$ (Ar = C_6H_4 , $C_6H(OMe)_3$ -4,5,6; py-2 = 2-pyridyl; X = Cl, Br) have been prepared by reacting cyclopalladated oxime complexes $[Pd\{C,N-Ar\{C(Me) = NOH\}-2\}(\mu-Cl)]_2$ with XCH₂py-2 or ClCH₂SMe, respectively, in the presence of K^tBuO. Various neutral and cationic derivatives have been synthesized as well as iminobenzoyl complexes resulting from the insertion of isocyanide into their Pd-C_{aryl} bond. The cycloaddition of MeO₂CC=CCO₂Me to the oximato complex $[Pd\{C,N-C_6H_4\{C(Me)=NO\}-2\}(^{t}Bubpy)]$ (^tBubpy = 4,4

oximato complex $[Pd{C,N-C_6H_4{C(Me)=NO}-2}('Bubpy)]$ ('Bubpy = 4,4'-di-*tert*-butyl-2,2'-bipyridine) in the presence of various neutral L ligands produces pincer complexes $[Pd{C,N,C'-C_6H_4{C(Me)=NOC(CO_2Me)=C(CO_2Me)}-2}L]$. Complexes of each one of the new types have been characterized by X-ray diffraction methods.

INTRODUCTION

Ortho-functionalized aryl palladium complexes are of interest because of their remarkable reactivity.^{1,2} In particular, we have focused our ongoing research on such complexes^{3–7} in the study of their reactions with unsaturated species. The modified reactivity imposed by the metal on both the pre-existing ortho group and that resulting from the insertion process allowed us to prepare interesting organic compounds resulting from depalladation processes,^{4,5,8–12} as well as various types of chelate^{13,14} and pincer^{12,15–17} complexes, including the first family of stable Pd(IV) pincer complexes prepared by oxidizing the corresponding Pd(II) derivatives^{18,19} and the first *C,N,C*-imidocarbene¹⁴ and *C,N,O*-acyl^{14,15} complexes of any metal.

The continuous growth in the development of pincer complexes^{15–17,20} can be attributed to their applications in organic synthesis, as catalysts^{12,18,21} or in stoichiometric reactions,^{19,22} or as materials.²³ Although the most common complexes involve symmetrical pincer ligands, the presence of different donor groups provides unsymmetrical pincer complexes with unique properties and reactivity.²⁴

A few examples have been reported of chelate organometal complexes converting into pincer derivatives. However, in all cases, this transformation occurs as a consequence of the chelating ligand bearing a pendant aryl group that metalates.^{25,26} In a few other reports, preexisting pendant groups different from aryl in the chelating ligand have been suggested to participate in chelate-to-pincer complex conversion processes.^{18,26,27} However, the generation of a coordinating side arm on a chelate complex giving rise to a pincer complex is unprecedented. We report here the first results obtained applying this strategy, namely, the nucleophilic attack of oximato chelate complexes to XCH₂py-2 (X = Cl, Br; py-2 = 2-pyridyl) or ClCH₂SMe to give *C*,*N*,*N'*- or *C*,*N*,*S*-pincer derivatives, respectively. We have reported a different, but related, approach when reacting a 2-formylaryl palladium complex with ortho-phenylenediamine.²⁸ The same type of condensation reaction has been used to prepare chelate²⁹ or pincer palladium complexes from monocoordinated formylaryl complexes and primary amines.³⁰ Very recently,³¹ the formation of the pincer complexes [MCl{*P*,*C*,*P*-*C*-(PPh₂CH₂PPh₂)₂] (M = Ni, Pd, Pt) from MCl₂, CS₂, and dppm has been suggested to occur by attack of dppm to chelate complexes of the type [M]{*P*,*C*-C(S)PPh₂CH₂PPh₂)₂} with abstraction of dppmS.

We are studying the reactivity of ortho-substituted aryl palladium complexes with alkynes. These reactions generally give organic compounds^{4,5,7,8,11,32–34} or products resulting from the insertion of the alkyne into the Pd–C bond^{3,8,11,12,32–36} or its attack on the aryl ligand.^{4,8,17,32,37} The latter are most probably obtained through the intermediacy of insertion products, with only one exception, in which the alkyne attacks to an aryl substituent.¹⁷ In this work, we report the unprecedented reaction of an aryl complex with MeO₂CC=CCO₂Me (DMAD). When reacted with this alkyne, aryl palladium complexes typically give the product of insertion into the Pd–C bond.^{2,9,11,12,34,36,38} However, the reaction with some of our oximato complexes afforded the

Received: July 29, 2012 Published: October 11, 2012 products of a cycloaddition (A, Scheme 1). This behavior differs also from the typical behavior of ketoximes

Scheme 1

RR'C=NOH when reacted with DMAD in the presence of catalytic amounts of base. The products are the result of a hydro-oximation reaction, (E+Z)-MeO₂CCH=C(ON=CRR')CO₂Me (**B**, Scheme 1), that convert upon heating into pyrroles.³⁹ When designing this reaction, we also considered the possibility that a different cycloaddition occurred to give **C** (Scheme 1), taking into account the formation of **D** in the reaction of DMAD with 1,2-dihydroquinazoline 3-oxide.⁴⁰

RESULTS AND DISCUSSION

Synthesis. We have previously reported the synthesis of cyclopalladated aryloxime complexes 1 (Scheme 2) and their reactions with base to give oximato derivatives, for instance 2.¹³ We decided to study the potential reactivity of these oximato complexes toward XCH₂py-2 (X = Cl, Br) or ClCH₂SMe in the hope that an oxime ether would form, giving a *C*,*N*,*N'*- or *C*,*N*,*S*-pincer complex after coordination of the N or S atom. The results were as expected, and complex **3aBr** was obtained when BrCH₂py-2 (prepared *in situ* from the commercially available (BrCH₂pyH-2)Br and K^tBuO) was reacted with **2a** (Scheme 2). However, a more straightforward method for obtaining good yields of pincer complexes was the reaction of the oxime complexes **1** with 1 equiv of base and an appropriate alkyl halide, such as XCH₂py-2 or ClCH₂SMe, which afforded complexes **3** or **4**, respectively.⁴¹

Replacement of the chloro ligand in complex 3aCl or 4aCl by monodentate neutral ligands was achieved by reacting them with equimolar amounts of $MClO_4$ (M = Ag, Na (for 5a3)) and the appropriate ligand to give cationic complexes 5a1-5a4 or 6a1-6a4, respectively. The reactions were carried out in

acetone or CH_2Cl_2 (5a4) and, when using silver salts, protected from light.

The mononuclear acetato complex 7a (Scheme 2) was prepared from equimolar amounts of 3aCl and AgAcO, while the dinuclear bridging acetato complex 8a was isolated from the reaction of 3aCl with AgTfO and AgAcO in 2:1:1 molar ratio. The latter is the first complex in which two palladium atoms are connected only by a bridging acetato ligand.

The reaction of complex 3aCl with excess isocyanide RNC caused its insertion in the Pd-Carvl bond to give the iminobenzoyl pincer complex 9a1 (R = Xy; Scheme 3) or 9a2 ($R = {}^{t}Bu$). A similar reaction starting from the cationic complex 5a1 or 5a2 produced the cationic iminoacyl-(isocvanide) complex 10a1 (R = Xy) or 10a2 (R = ^tBu), respectively. Complex 11a1, the analogue of 10a1 containing the C,N,S-pincer ligand, was prepared in high yield from the acetonitrile complex 6a4 and XyNC. However, this procedure did not allow us to isolate pure its ^tBuNC homologue 11a2. This complex deinserts ^tBuNC in solution at room temperature, giving a mixture of 6a2 and 11a2. However, pure 11a2 was obtained by reacting the isocyanide complex 6a2 with ^tBuNC. Excess isocyanide over the required amount was used in all these insertion reactions (see Experimental Section), but a larger excess was necessary to complete the reaction (1) when ^tBuNC was used instead of XyNC and (2) when the insertion occurred in a neutral complex (for example, 3aCl to give 9) than in a cationic derivative (for example, 5 or 6 to give complex 10 or 11, respectively). This confirms that the insertion process is facilitated by the presence of an electronwithdrawing substituent in the isocyanide and of a higher positive charge at the metal, both favoring the nucleophilic attack of the aryl carbon on the isocyanide one.

The reaction of complex 2a with DMAD was carried out in the hope that, apart from the common insertion of the alkyne in the $Pd-C_{arvl}$ bond, two alternative processes, namely, a hydro-oximation or a cycloaddition, could occur. The former would be analogous to that observed in the reaction of ketoximes RR'C=NOH with DMAD in the presence of catalytic amounts of base to give compounds (E+Z)- $MeO_2CCH=C(ON=CRR')CO_2Me$ (B, Scheme 1), which, under heating, transform into pyrroles,³⁹ while the latter could afford C in a similar way to that observed in the attack of DMAD to 1,2-dihydroquinazoline 3-oxide (D, Scheme 1).⁴⁰ However, the reaction of 2a with an equimolar amount of DMAD produced a mixture from which complex 12 was the only product that we could isolate pure, in 52% yield (Scheme 4). Although the NMR spectra and elemental analyses of 12 showed that it was an adduct, they did not allow us to fully determine its structure. With the purpose of knowing if the oximato function had participated in the process, we reacted 12 with ClCH₂py-2. The reaction produced complex 13, resulting from replacement of ^tBubpy by ClCH₂py-2, which we could isolate in good yield and fully characterize including its crystal structure. Therefore, formation of 12 can be explained by the nucleophilic attack of the oximate oxygen on one alkyne carbon of DMAD followed by the attack of the resulting carbanion on the Pd atom, which must be more electrophilic than the C=N carbon atom. Complex 12 can be a tetra- (as represented in Scheme 4) or pentacoordinated complex depending on the role of the ligand ^tBubpy in the complex. Complex 12 reacted also with isocyanides RNC (R = Xy, ^tBu; 1:1 molar ratio), at room temperature, to give complexes 14 and 15, respectively, which were isolated in moderate yield. In the case of 15, the yield

Article

Scheme 2

improves when using excess isocyanide. Not even traces of iminobenzoyl derivatives were obtained when 14 or 15 was treated with excess isocyanide. In fact, 14 did not react with ^tBuNC under any reaction conditions, and this was also the case for 15 and XyNC below 60 °C, while, upon heating at 80 °C, an intractable mixture formed along with elemental palladium.

Complexes 4a, 5a3, 6a3, 7a, 9a1, and 10a1 crystallized with various amounts of water in spite of being heated in a vacuum oven. The water content deduced from their elemental analyses was confirmed in all cases by their ¹H NMR spectra.

The reaction of **3bCl** with CO, aimed to produce the corresponding acyl complex, did not occur at room temperature in toluene, and when the reaction mixture was heated at 80 °C for 3 h, decomposition was observed. After removing the colloidal palladium by filtration through a short pad of anhydrous MgSO₄, a solution was obtained containing the previously unreported ligand $C_6H_2\{C(Me)=NOCH_2py-2\}$ -(OMe)₃-3,4,5 (L) along with very small amounts of unknown impurities. L was identified by its exact mass and ¹H and ¹³C NMR spectra.⁴² An attempt to prepare L by alkylation of the oxime $C_6H_2\{C(Me)=NOH\}(OMe)_3$ -3,4,5 with (ClCH₂pyH-2)Cl and K^tBuO (1:1:2), carried out under the same reaction conditions used for the synthesis of **3bCl**, produced a mixture containing only a small amount of L (<20%), along with unreacted oxime, ClCH₂py-2, and other unidentified products. X-ray Crystal Structures. The crystal structures of complexes 3aBr (Figure 1), 3bCl (Figure 2), 5a3 (Figure 3), 6a1 (Figure 4), $8a \cdot CH_2Cl_2$ (Figure 5), 9a1 (Figure 6), and 13 (Figure 7) have been determined by X-ray diffraction studies, offering the first structural data for each of the various types of complexes here described since no derivatives of these pincer ligands have been reported so far for any metal. In all cases the palladium atom is in a slightly distorted square-planar environment.

In the pincer ligands, the five-membered palladacycles are planar, the highest mean deviation from the plane in all complexes being 0.0434 Å (in 5a3), while the six-membered palladacycle adopts an envelope conformation except in complex 9a1, which displays a boat-boat conformation in both six-membered metallacycles.

The Pd(1)-C(1), Pd(1)-N(1), N(1)-O(1), and N(1)= C(7) bond distances in our complexes are within the values found in the few other crystal structures of palladacycles derived from aryloximes.⁴³ As expected, the formation of the O(1)-C(9) bond causes an appreciable weakening of the N– O bond (N(1)-O(1) bond distance within 1.3987(15) and 1.4116(19) Å) compared to that in the only cyclopalladated aryloximato complex reported so far (1.301(2) Å).¹³

In complex $8a \cdot CH_2Cl_2$ the two half-molecules are oriented anti with respect to each other, allowing some interaction between both palladiums since the Pd(1)-Pd(2) bond

Organometallics

Scheme 4

distance, 3.0428(3) Å), is shorter than twice the van der Waals radius of palladium (1.63 Å). In the only compounds related to $8a \cdot CH_2Cl_2$, two non-organometallic trifluoroacetato complexes, the Pd(1)–Pd(2) distances are 3.165 and 3.412 Å, too long for any bonding or attractive interaction between the two metal atoms.⁴⁴ In 9a1 the xylyl group in the iminobenzoyl fragment is folded toward the chloro ligand, thus avoiding contact with the H⁶ proton.

With the exception of 3aBr and 9a1, the complexes display intermolecular nonclassical C-H···O hydrogen bonds (see Figures 2, 4, 5, and 7) with the involvement of one OMe group (3bCl) or the counteranions, and additionally, 3bCl shows

Figure 1. Thermal ellipsoid representation plot (50% probability) of complex 3aBr. Selected bond lengths (Å) and angles (deg): Pd(1)–C(1) 1.9961(18), Pd(1)–N(1) 2.0034(14), Pd(1)–N(2) 2.1506(15), Pd(1)–Br(1) 2.4184(3), C(2)–C(7) 1.461(3), N(1)–C(7) 1.292(2), N(1)–O(1) 1.3990(19), C(9)–O(1) 1.447(2), C(9)–C(10) 1.504(2), N(2)–C(10) 1.351(2); C(1)–Pd(1)–N(1) 79.74(7), N(1)–Pd(1)–N(2) 91.51(6), C(1)–Pd(1)–Br(1) 94.89(5), N(2)–Pd(1)–Br(1) 93.98(4), N(1)–C(7)–C(2) 111.46(15), C(7)–N(1)–O(1) 115.67(14), N(1)–O(1)–C(9) 108.84(12), O(1)–C(9)–C(10) 112.83(14).

Figure 2. Left: Thermal ellipsoid representation plot (50% probability) of complex **3bCl**. Right: Intermolecular C–H···O and C–H···Cl bonds in **3bCl** giving layers parallel to the *ac* plane. Selected bond lengths (Å) and angles (deg): Pd(1)–C(1) 2.024(2), Pd(1)–N(1) 1.9923(17), Pd(1)–N(2) 2.1483(18), Pd(1)–Cl(1) 2.3031(5), C(2)–C(7) 1.465(3), N(1)–C(7) 1.290(3), N(1)–O(1) 1.405(2), O(1)–C(9) 1.441(3), C(9)–C(10) 1.504(3), N(2)–C(10) 1.347(3); N(1)–Pd(1)–Cl(1) 99.79(6), N(2)–Pd(1)–Cl(1) 99.10(5), N(1)–C(7)–C(2) 111.90(18), C(7)–N(1)–O(1) 115.52(17), N(1)–O(1)–C(9) 109.40(15), O(1)–C(9)–C(10) 112.11(18).

nonclassical C-H···Cl hydrogen bonds. A 3D network results in the case of 5a3, and layers parallel to the *bc* plane form in 13. **NMR Spectroscopy.** Because of their low solubility in CDCl₃, the NMR spectra of complexes 5a4, 6a1, 6a2 (13 C),

Figure 3. Thermal ellipsoid representation plot (50% probability) of the cation of complex 5a3 (40%). Hydrogen atoms and the ClO_4 anion are omitted for clarity. Selected bond lengths (Å) and angles (deg): Pd(1)-C(1) 2.015(2), Pd(1)-N(1) 2.0429(17), Pd(1)-N(2) 2.1425(17), Pd(1)-P(1) 2.2716(5), C(2)-C(7) 1.469(3), N(1)-C(7) 1.285(3), N(1)-O(1) 1.402(2), O(1)-C(9) 1.455(3), C(9)-C(10) 1.505(3), N(2)-C(10) 1.353(3); C(1)-Pd(1)-N(1) 79.72(8), N(1)-Pd(1)-N(2) 88.47(7), C(1)-Pd(1)-P(1) 93.83(6), N(2)-Pd(1)-P(1) 99.27(5), N(1)-C(7)-C(2) 112.14(18), C(7)-N(1)-O(1) 116.44(16), N(1)-O(1)-C(9) 108.46(15), O(1)-C(9)-C(10) 111.46(17).

Figure 4. Left: Thermal ellipsoid representation plot (50% probability) of the cation of complex **6a1**. The ClO₄ anion is omitted for clarity. Right: The molecules are arranged into ribbons parallel to $(1 \ 0 \ -1)$ by C-H···O(ClO₄) interactions. Selected bond lengths (Å) and angles (deg): Pd(1)-C(11) 1.9391(19), Pd(1)-N(1) 1.9960(15), Pd(1)-C(1) 2.0127(18), Pd(1)-S(1) 2.4072(5), C(2)-C(7) 1.473(2), N(1)-C(7) 1.288(2), N(1)-O(1) 1.4116(19), O(1)-C(9) 1.420(2), S(1)-C(9) 1.8227(19); C(11)-Pd(1)-C(1) 96.99(8), N(1)-Pd(1)-C(1) 80.05(7), C(11)-Pd(1)-S(1) 99.48(5), N(1)-Pd(1)-S(1) 83.45(5), N(1)-C(7)-C(2) 110.90(16), C(7)-N(1)-O(1) 117.02(15), N(1)-O(1)-C(9) 109.72(13), O(1)-C(9)-S(1) 114.39(12).

Figure 5. Left: Thermal ellipsoid representation plot (50% probability) of the cation of complex 8a·CH₂Cl₂. Hydrogen atoms, the TfO anion, and the solvent are omitted for clarity. Right: Two oxygens of the triflate anions join the molecules by C-H-O into layers parallel to the a axis. Selected bond lengths (Å) and angles (deg): Pd(1)-Pd(2) 3.0428(3), Pd(1)-C(1) 1.9847(18), Pd(1)-N(1) 1.9882(15), Pd(1)-O(4) 2.0491(13), Pd(1)-N(2) 2.1364(15), C(2)-C(7) 1.466(2), N(1)-C(7) 1.294(2), O(1)-N(1) 1.4056(18), O(1)-C(9) 1.446(2), C(9)-C(10) 1.510(3), N(2)-C(10) 1.349(2), Pd(2)-C(21) 1.9807(18), Pd(2)-N(3) 1.9835(15), Pd(2)-O(3) 2.0533(13), Pd(2)-N(4) 2.1275(15), C(22)-C(27) 1.463(3), N(3)-C(27) 1.295(2), O(2)-N(3) 1.3987(19), O(2)-C(29)1.442(2), C(29)-C(30) 1.513(3), N(4)-C(30) 1.348(2); C(1)-Pd(1)-N(1) 79.93(7), C(1)-Pd(1)-O(4) 94.75(6), N(1)-Pd(1)-N(2) 92.60(6), O(4)-Pd(1)-N(2) 91.92(6), C(1)-Pd(1)-Pd(2) 87.82(5), C(21)-Pd(2)-N(3) 80.39(7), C(21)-Pd(2)-O(3) 94.95(7), N(3)-Pd(2)-N(4) 92.81(6), O(3)-Pd(2)-N(4) 91.37(6).

and **6a4** were measured in CD₃CN. The ¹H and ¹³C methyl nuclei of the SMe group in complex **6a3** (2.01 and 15.8 ppm, respectively) are shielded with respect to those in 4 and in the remaining complexes **6** (2.50–2.68 and 16.4–16.9 ppm, respectively). This is probably caused by the aryl groups of the phosphine ligand. The singlet observed at room temperature for the methylene protons (H⁹, Chart 1; 4.58–5.46 ppm) changes to an AB system when the temperature is lowered. The methoxy aryl substituents in complexes **3bCl** and **3bBr** must be responsible for the shielding of the C¹ and C² resonances with respect to those in the "**a**" derivatives bearing the unsubstituted arene ($\Delta \delta \approx 20$ and 5 ppm, respectively), as found previously when comparing the spectra of **1a** and **1b**.¹³

In the iminobenzoyl complexes 9–11, the isocyanide insertion into the Pd–C_{aryl} bond produces a marked shielding of the C resonances in the resulting six-membered palladacycle, with respect to their precursor complexes ($\Delta\delta$ (ppm) = 20–22 (C¹), 9–16 (C²), and 10–17 (C⁷)). At room or lower temperature, the C==NXy methyl groups give two separate resonances in 9a1, while at 55 °C only one resonance is observed. However, only below –30 °C do the spectra of complexes 10a1 and 11a1 show two Me(Xy) resonances,

Organometallics

Figure 6. Thermal ellipsoid representation plot (50% probability) of complex 9a1. Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (deg): Pd(1)-C(15) 1.9617(19), Pd(1)-N(1) 2.0491(15), Pd(1)-N(2) 2.1738(15), Pd(1)-Cl(1) 2.3037(5), C(15)-N(3) 1.261(2), C(2)-C(7) 1.484(3), N(1)-C(7) 1.288(2), N(1)-O(1) 1.4156(19), O(1)-C(9) 1.442(2), C(9)-C(10) 1.507(3), N(2)-C(10) 1.349(2); C(15)-Pd(1)-N(1) 86.03(7), N(1)-Pd(1)-N(2) 86.78(6), C(15)-Pd(1)-Cl(1) 91.93(5), N(2)-Pd(1)-Cl(1) 95.01(4), C(1)-C(15)-Pd(1) 107.93(12), N(1)-C(7)-C(2) 116.85(16), C(7)-N(1)-O(1) 112.38(15), N(1)-O(1)-C(9) 111.67(13), O(1)-C(9)-C(10) 112.73(15).

suggesting that the isocyanide ligand exerts less congestion at the iminoacyl Xy group than the chloro ligand in complex **9a1**.

The room-temperature ¹H NMR spectra of **11a2** and **12** show only one resonance of 18 H for both *tert*-buthyl groups at 1.57 and 1.37 ppm, respectively. In **11a2**, this suggests an interchange between the coordinated and inserted isocyanides,

Chart 1. Atom Numbering Used in the NMR Assignments

which at -60 °C is slow on the NMR time scale, showing two resonances at 1.59 and 1.61 ppm. In the case of complex **12**, whatever the coordination mode of the ^tBubpy ligand, the NMR is indicative of a fluxional process interchanging the relative position of the two halves of the ligand. While the ¹H NMR spectra of the isocyanide complexes **14** and **15** show the CO_2Me protons very close together at around 3.75 ppm or accidentally coinciding, respectively, in those of their homologues with nitrogen donor ligands, **12** and **13**, one of such resonances remains unaltered, while the other one is appreciably shielded ($\Delta = 0.35$ ppm), which could be attributed

Figure 7. Left: Thermal ellipsoid representation plot (50% probability) of complex **13.** Right: Layers parallel to the *bc* plane resulting from intermolecular C–H···O hydrogen bonds. Selected bond lengths (Å) and angles (deg): Pd(1)-C(1) 2.0485(18), Pd(1)-N(1) 1.9390(14), Pd(1)-C(10) 2.0623(17), Pd(1)-N(2) 2.0489(14), C(9)-C(10) 1.332(2), C(9)-O(1) 1.418(2), N(1)-O(1) 1.4044(18), C(7)-N(1) 1.296(2), C(2)-C(7) 1.478(2), C(1)-C(2) 1.423(3); N(1)-Pd(1)-C(1) 80.18(7), C(1)-Pd(1)-N(2) 102.626(6), N(1)-Pd(1)-C(10) 79.70(6), N(2)-Pd(1)-C(10) 97.55(6), N(1)-O(1)-C(9) 108.32(12), C(10)-C(9)-O(1) 121.65(15), C(9)-C(10)-Pd(1) 110.84(12), C(7)-N(1)-Pd(1)-Pd(1)-22.7(12), N(1)-C(7)-C(2) 110.82(15), C(1)-C(2)-C(7) 116.17(15), C(2)-C(1)-Pd(1) 110.31(12).

Organometallics

to the anisotropic effect of the aromatic rings of the ^tBubpy or $ClCH_2py-2$ ligands coordinated in cis position with respect to one of the $C(CO_2Me)$ fragments.

CONCLUSION

We report a chelate-to-pincer complex conversion process using a new strategy, which consists in the generation of a coordinating side arm in the chelating ligand by attacking it with a ligand. Both the chelating and the added ligands must remain bonded in such a manner as to permit the coordination of a donor atom of the added ligand. The chosen processes to illustrate this method have been (1) the reaction between a cyclopalladated oxime complex and a halomethylene derivative XCH₂E (X = Cl, Br, E = py-2, SMe) and a base and (2) the reaction between DMAD and an oximato complex. Some of the resulting oxime ether pincer complexes insert isocyanides in the Pd–C bond.

EXPERIMENTAL SECTION

General Procedures. When not stated, the reactions were carried out without precautions to exclude light or atmospheric oxygen or moisture. Melting points were determined on a Reichert apparatus and are uncorrected. Elemental analyses were carried out with a Carlo Erba 1106 microanalyzer. IR spectra were recorded on a Perkin-Elmer Spectrum 100 spectrophotometer using Nujol mulls between polyethylene sheets. NMR spectra were recorded in Bruker Avance, 200, 300, or 400 MHz, NMR spectrometers. The NMR assignments were performed with the help of APT, HMQC, and HMBC experiments. The atom numbering used in NMR assignments is shown in Chart 1. High-resolution ESI mass spectra were recorded on an Agilent 6220 Accurate Mass TOF LC/MS spectrometer. ClCH₂SMe, PTol₃, ^tBuNC, XyNC, AgTfO (Fluka), (ClCH₂pyH-2) Cl (Lancaster), (BrCH₂pyH-2)Br, ^tBubpy, K^tBuO, AgClO₄, AgAcO (Aldrich), NaAcO (Sigma), MeCN (Carlo Erba), and dimethyl acetylenedicarboxylate (DMAD, Alfa Aesar) were obtained from commercial sources. The syntheses of complexes 1a, 1b, and 2a were recently reported by us.¹³

X-ray Crystallography. Compounds 3aBr, 3bCl, 5a3, 6a1, 8a1·CH₂Cl₂, 9a1, and 13 were measured on a Bruker Smart APEX machine at 100 K. Data were collected using monochromated Mo K α radiation in ω scan mode. The structures were solved by direct methods. All were refined anisotropically on F^2 . The methyl groups were refined using rigid groups (AFIX 137), and the other hydrogens were refined using a riding model. Further details on crystal data, data collection, and refinements are summarized in the Supporting Information.

Synthesis of $[Pd{C,N,N'-Ar^{R}{C(Me)=NOCH_{2}(C_{5}H_{4}N)-2}-2}X]$ $(Ar^{R} = C_{6}H_{4}, X = CI (3aCI), Br (3aBr); Ar^{R} = C_{6}H(OMe)_{3}-4,5,6, X$ = Cl (3bCl), Br (3bBr)). To a suspension containing K^tBuO (for 3aCl, 298 mg, 2.52 mmol; for 3aBr, 263 mg, 2.23 mmol; for 3bCl, 98 mg, 0.83 mmol; for 3aBr, 88 mg, 0.75 mmol) and (XCH₂pyH-2)X (for 3aCl, X = Cl, 206 mg, 1.26 mmol; for 3aBr, X = Br, 281 mg, 1.10 mmol; for 3bCl, X = Cl, 67 mg, 0.41 mmol; for 3bBr, X = Br, 281 mg, 1.10 mmol) in CH₂Cl₂ (for 3aCl, 3aBr, 20; for 3bCl, 3bBr, 10 mL) was added complex 1a (for 3aCl, 346 mg, 0.63 mmol; for 3aBr, 299 mg, 0.54 mmol) or 1b (for 3bCl, 146 mg, 0.20 mmol; for 3bBr, 135 mg, 0.18 mmol). The resulting suspension was stirred for 2.5 (3bCl, 3bBr), 3 (3aCl), or 4.5 (3aBr) h and filtered through a short pad of Celite, the solution was concentrated under vacuum to 1 (3aCl, 3bCl) or 2 mL (3aBr, 3bBr), and Et₂O (15 mL) was added. For 3aCl and 3bCl the suspension was filtered and the solid was washed with Et₂O $(3 \times 2 \text{ mL})$ and dried, first by suction and then in a vacuum oven (70 °C, 15 (3aCl) or 5 h (3bCl), to give pale tan colored solids. A second crop of 3aCl was obtained by concentrating the mother liquor almost to dryness, stirring the residue with Et_2O (15 mL), filtering the suspension, washing the solid with Et_2O (3 × 2 mL), and drying it as above. For 3aBr and 3bBr,⁴¹ the suspension was filtered, and the solid collected was reacted with NaBr (for 3aBr, 450 mg, 4.37 mmol; for

3bBr, 250 mg, 2.43 mmol) in acetone (for **3aBr**, 35; for **3bBr**, 15 mL) overnight. The solvent was removed under vacuum, CH_2Cl_2 (20 mL) was added, and the suspension was filtered through a short pad of Celite. The solution was concentrated under vacuum (2 mL), Et₂O (15 mL) was added, and the suspension was filtered. The solid was washed with Et₂O (3 × 3 mL) and dried by suction to give a pale yellow solid. **3aBr** was additionally recrystallized from CH_2Cl_2/Et_2O and dried, first by suction and then in a vacuum oven (70 °C, 5 h).

3aCl: Yield: 413 mg, 1.13 mmol, 90%. Mp: 245 °C. ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 2.35 (s, 3 H, Me), 5.18 (s, 2 H, CH₂), 7.07 (td, 1 H, H⁴, ³J_{HH} = 7 Hz, ⁴J_{HH} = 1 Hz), 7.11 (td, 1 H, H⁵, ³J_{HH} = 7 Hz, ⁴J_{HH} = 2 Hz), 7.18 (dd, 1 H, H³, ³J_{HH} = 7 Hz, ⁴J_{HH} = 2 Hz), 7.42 (d, 1 H, H¹¹, ³J_{HH} = 8 Hz), 7.46 (ddd, 2 H, H¹³, ³J_{HH} = 8 Hz, ³J_{HH} = 5 Hz, ⁴J_{HH} = 1 Hz), 7.88 (td, 1 H, H¹², ³J_{HH} = 8 Hz, ⁴J_{HH} = 2 Hz), 8.01 (dd, 1 H, H⁶, ³J_{HH} = 7 Hz, ⁴J_{HH} = 1 Hz), 7.88 (td, 1 H, H¹², ³J_{HH} = 8 Hz, ⁴J_{HH} = 2 Hz), 8.01 (dd, 1 H, H⁶, ³J_{HH} = 7 Hz, ⁴J_{HH} = 1 Hz), 9.45 (d, 1 H, H¹⁴, ³J_{HH} = 5 Hz); (400 MHz, CDCl₃, -60 °C): δ 2.42 (s, 3 H, Me), 5.24 (AB system, 2 H, CH₂, ν_A = 5.21, ν_B = 5.27, J_{AB} = 13 Hz), 7.17 (t, 1 H, H⁴, ³J_{HH} = 7 Hz), 7.33–7.57 (m, 2 H, H¹¹⁺¹³), 7.98–8.01 (m, 2 H, H⁶⁺¹²), 9.38 (d, 1 H, H¹⁴, ³J_{HH} = 5 Hz). ¹³C{¹H} NMR (75 MHz, CDCl₃, 25 °C): δ 11.8 (Me⁸), 76.4 (C⁹), 124.7 (C⁴), 125.1 (C¹¹⁺¹³), 126.1 (C³), 129.6 (C⁵), 136.1 (C⁶), 139.1 (C¹²), 141.3 (C²), 151.8 (C¹⁰), 152.3 (C¹⁴), 154.3 (C¹), 171.1 (C⁷). Anal. Calcd for C₁₄H₁₃ClN₂OPd: C, 45.80; H, 3.57; N, 7.63. Found: C, 45.58; H, 3.54; N, 7.58.

3aBr: Yield: 275 mg, 0.67 mmol, 62%. Mp: 220 °C. ¹H NMR (300 MHz, CDCl₃, 25 °C): δ 2.35 (s, 3 H, Me), 5.19 (s, 2 H, CH₂), 7.02–7.10 (m, 2 H), 7.16–7.22 (m, 1 H, H³ ^{or 5}), 7.42–7.46 (m, 2 H, H¹¹⁺¹³), 7.89 (td, 1 H, H¹², ³J_{HH} = 8 Hz, ⁴J_{HH} = 2 Hz), 8.24–8.30 (m, 1 H, H^{4 or 6}), 9.56–9.58 (m, 1 H, H¹⁴); (400 MHz, CDCl₃, -60 °C): δ 2.43 (s, 3 H, Me), 5.26 (AB system, 2 H, CH₂, ν_{A} = 5.22, ν_{B} = 5.30, J_{AB} = 14 Hz), 7.10–7.16 (m, 2 H), 7.27–7.29 (m, 1 H, H^{3 or 5}), 7.51–7.56 (m, 2 H, H¹¹⁺¹³), 8.00 ("t", 1 H, H¹², ³J_{HH} = 8 Hz), 8.23–8.27 (m, 1 H, H^{4 or 6}), 9.51 ("d", 1 H, H¹⁴, ³J_{HH} = 5 Hz). ¹³C{¹H} NMR (75 MHz, CDCl₃, 25 °C): δ 11.9 (Me⁸), 76.6 (C⁹), 124.6 (CH, Ar), 125.1 (C¹³), 125.2 (C¹¹), 126.2 (C^{3 or 5}), 129.9 (CH, Ar), 139.0 (C^{4 or 6}), 139.1 (C¹²), 141.6 (C²), 152.0 (C¹⁰), 153.6 (C¹), 153.9 (C¹⁴), 170.9 (C⁷). Anal. Calcd for C₁₄H₁₃BrN₂OPd: C, 40.86; H, 3.18; N, 6.81. Found: C, 40.71; H, 3.17; N, 6.78. Crystals suitable for an X-ray diffraction study were grown by slow diffusion of Et₂O into a solution of **3aBr** in CH₂Cl₂.

3bCl: Yield: 130 mg, 0.284 mmol, 71%. Mp: 187 $^{\circ}$ C (dec). 1 H NMR (400 MHz, CDCl₃, 25 °C): δ 2.32 (s, 3 H, Me), 3.84 (s, 3 H, OMe), 3.92 (s, 3 H, OMe), 3.94 (s, 3 H, OMe), 5.18 (s, 2 H, CH₂), 6.69 (s, 1 H, H³), 7.39 (d, 1 H, H¹¹, ${}^{3}J_{HH} = 8$ Hz), 7.49 (ddd, 1 H, H¹³, ${}^{3}J_{\rm HH} = 8$ Hz, ${}^{3}J_{\rm HH} = 6$ Hz, ${}^{4}J_{\rm HH} = 1$ Hz), 7.88 (td, 1 H, H¹², ${}^{3}J_{\rm HH} = 8$ Hz, ${}^{4}J_{HH} = 2$ Hz), 9.82 (dd, 1 H, H 14 , ${}^{3}J_{HH} = 6$ Hz, ${}^{4}J_{HH} = 2$ Hz); (400 MHz, CDCl₃, -60 °C): δ 2.41 (s, 3 H, Me), 3.90 (s, 3 H, OMe), 3.93 (s, 3 H, OMe), 4.00 (s, 3 H, OMe), 5.25 (AB system, 2 H, CH₂, ν_A = 5.20, $\nu_{\rm B}$ = 5.30, $J_{\rm AB}$ = 13 Hz), 6.74 (s, 1 H, H³), 7.51 (d, 1 H, H¹¹, ${}^{3}J_{\rm HH}$ $\begin{array}{l} \text{(a, 1 H, 11')} \\ \text{(a,$ 76.2 (C⁹), 107.3 (C³), 124.7 (C¹¹), 124.9 (C¹³, 136.8 (C^{1 or 2}), 136.9 (C^{1 or 2}), 139.0 (C¹²), 144.9 (C, Ar), 151.25 (C, Ar, or C¹⁰), 151.29 (C, Ar or C¹⁰), 151.8 (C¹⁴), 159.5 (C, Ar), 170.9 (C⁷). Anal. Calcd for C17H19ClN2O4Pd: C, 44.66; H, 4.19; N, 6.13. Found: C, 44.28; H, 4.11; N, 5.95. Crystals suitable for an X-ray diffraction study were grown by slow diffusion of Et₂O into a solution of **3bCl** in CH₂Cl₂.

3bBr: Yield: 103 mg, 0.21 mmol, 56%. Mp: 197 °C (dec). ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 2.32 (s, 3 H, Me), 3.84 (s, 3 H, OMe), 3.91 (s, 3 H, OMe), 3.92 (s, 3 H, OMe), 5.20 (s, 2 H, CH₂), 6.69 (s, 1 H, H³), 7.39 (d, 1 H, H¹¹, ³J_{HH} = 8 Hz), 7.47 (ddd, 1 H, H¹³, ³J_{HH} = 8 Hz, ³J_{HH} = 6 Hz, ⁴J_{HH} = 1 Hz), 7.88 (td, 1 H, H¹², ³J_{HH} = 8 Hz, ⁴J_{HH} = 2 Hz), 9.82 (ddd, 1 H, H¹⁴, ³J_{HH} = 6 Hz, ⁴J_{HH} = 6 Hz, ⁴J_{HH} = 1 Hz); (400 MHz, CDCl₃, -55 °C): δ 2.41 (s, 3 H, Me), 3.90 (s, 3 H, OMe), 3.92 (s, 3 H, OMe), 3.97 (s, 3 H, OMe), 5.28 (AB system, 2 H, CH₂), ν_A = 5.20, ν_B = 5.35, J_{AB} = 14 Hz), 6.75 (s, 1 H, H³), 7.51 (d, 1 H, H¹¹, ³J_{HH} = 8 Hz), 7.55 ("t", 1 H, H¹³, ³J_{HH} \approx ³J_{HH} \approx 7 Hz), 7.99 (t, 1 H, H¹², ³J_{HH} = 8 Hz), 9.71 (d, 1 H, H¹⁴, ³J_{HH} = 6 Hz). ¹³C{¹H} (NMR

(75 MHz, CDCl₃, 25 °C): δ 12.5 (Me⁸), 56.4 (OMe), 60.9 (OMe), 62.1 (OMe), 76.5 (C⁹), 107.4 (C³), 124.8 (C^{11 or 13}), 125.1 (C^{11 or 13}), 136.7 (C¹), 137.1 (C²), 139.0 (C¹²), 144.5 (C, Ar), 151.4 (C, Ar), 151.6 (C¹⁰), 153.5 (C¹⁴), 159.2 (C, Ar), 170.7 (C⁷). Anal. Calcd for C₁₇H₁₉BrN₂O₄Pd: C, 40.70; H, 3.82; N, 5.58. Found: C, 40.36; H, 3.87; N, 5.49.

Synthesis of $[Pd{C,N,S-C_6H_4}(C(Me)=NOCH_2SMe}-2]CI]$ (4a). To a suspension containing K^tBuO (46 mg, 0.39 mmol) and complex 1a (107 mg, 0.19 mmol) in CH₂Cl₂ (8 mL) was added ClCH₂SMe (41 μ L, 0.40 mmol). The resulting suspension was stirred for 18 h and filtered through a short pad of Celite, the solution was concentrated under vacuum (1 mL), Et₂O (15 mL) was added, and the suspension was filtered. The solid collected was washed with $Et_2O(3 \times 2 mL)$ and dried, first by suction and then in a vacuum oven (70 °C, 15 h), to give 4a·0.3H₂O as a light brown solid. Yield: 90 mg, 0.26 mmol, 68%. Mp: 196 °C (dec). ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 1.57 (s, 0.6 H, H₂O), 2.27 (s, 3 H, Me⁸), 2.54 (s, 3 H, MeS), 5.10 (s, 2 H, CH₂), 7.03 (dd, 1 H, H³, ${}^{3}J_{HH} = 8$ Hz, ${}^{4}J_{HH} = 2$ Hz), 7.08 (td, 1 H, H⁴, ${}^{3}J_{HH} = 8$ Hz, ${}^{4}J_{HH} = 2$ Hz), 7.16 (td, 1 H, H⁵, ${}^{3}J_{HH} = 8$ Hz, ${}^{4}J_{HH} = 2$ Hz), 7.76 (dd, 1 H, H⁶, ${}^{3}J_{HH} = 8$ Hz, ${}^{4}J_{HH} = 2$ Hz). ${}^{13}C{}^{1}H{}$ NMR (100 MHz, solvent, CDCl₃, 25 °C): δ 12.4 (Me⁸), 16.4 (Me¹⁰), 78.1 (C⁹), 125.3 (C^4) , 126.7 (C^3) , 130.8 (C^5) , 134.0 (C^6) , 144.9 (C^2) , 155.7 (C^1) , 170.2 (C⁷). Anal. Calcd for C₁₀H_{12.6}ClNO_{1.3}PdS: C, 35.17; H, 3.72; N, 4.10; S, 9.39. Found: C, 35.00; H, 3.44; N, 4.21; S, 9.51.

Synthesis of $[Pd{C,N,N'-C_6H_4}(C(Me)=NOCH_2(C_5H_4N-2)]-2]L]$ -CIO₄ (L = XyNC (5a1), ^tBuNC (5a2), PTol₃ (5a3), MeCN (5a4)). A mixture containing AgClO₄ (for 5a1, 70 mg, 0.33 mmol; for 5a2, 181 mg, 0.85 mmol; for 5a4, 78 mg, 0.37 mmol) or NaClO₄·H₂O (for 5a3, 25 mg, 0.18 mmol), complex 3aCl (for 5a1, 114 mg, 0.31 mmol; for 5a2, 307 mg, 0.84 mmol; for 5a3, 51 mg, 0.12 mmol; for 5a4, 134 mg, 0.37 mmol), and the appropriate ligand (for 5a1, XyNC, 41 mg, 0.31 mmol; for 5a2, 'BuNC, 97 µL, 0.86 mmol; for 5a3, PTol₃, 38 mg, 0.13 mmol; for 5a4, MeCN, 3 mL, 57.3 mmol) in acetone (for 5a1 and 5a2, 20 mL; for 5a3, 10 mL) or in CH₂Cl₂ (for 5a4, 5 mL) was stirred for 40 min (5a4), 2 h (5a1, 5a3), or 4 h (5a2) protected from light and then filtered through a short pad of Celite. The solution was concentrated under vacuum (2 mL), Et₂O (20 mL) was added, and the suspension was filtered. The solid collected was washed with Et₂O $(3 \times 2 \text{ mL})$ and dried, first by suction and then in a vacuum oven at 75 °C for 5 h, to give the title compound as an off-white solid.

sal: Yield: 134 mg, 0.24 mmol, 77%. Mp: 243 °C (dec). ¹H NMR (400 MHz, CD₂Cl₂, 25 °C): δ 2.54 (s, 3 H, Me⁸), 2.58 (s, 6 H, Me, Xy), 5.32 (s, 2 H, CH₂), 7.17 (td, 1 H, H⁵, ³J_{HH} = 8 Hz, ⁴J_{HH} = 2 Hz), 7.28 (td, 1 H, H⁴, ³J_{HH} = 8 Hz, ⁴J_{HH} = 2 Hz), 7.30 (m, 2 H, meta-CH, Xy), 7.43 (dd, 1 H, para-CH, Xy, ³J_{HH} = 8 Hz, ³J_{HH} = 7 Hz), 7.46 (dd, 1 H, H⁶, ³J_{HH} = 8 Hz, ⁴J_{HH} = 2 Hz), 7.45 (dd, 1 H, H³, ³J_{HH} = 8 Hz, ⁴J_{HH} = 2 Hz), 7.66 (ddd, 1 H, H¹³, ³J_{HH} = 8 Hz, ³J_{HH} = 5 Hz, ⁴J_{HH} = 2 Hz), 7.76 (ddd, 1 H, H¹¹, ³J_{HH} = 8 Hz, ⁴J_{HH} = 2 Hz), 7.76 (ddd, 1 H, H¹¹, ³J_{HH} = 8 Hz, ⁴J_{HH} = 2 Hz), 8.18 (td, 1 H, H¹², ³J_{HH} = 8 Hz, ⁴J_{HH} = 2 Hz), 8.76 (ddd, 1 H, H¹⁴, ³J_{HH} = 5 Hz, ⁴J_{HH} = 2 Hz, ⁵J_{HH} = 1 Hz). ¹³C{¹H} NMR (100 MHz, CD₂Cl₂, 25 °C): δ 12.5 (Me⁸), 19.2 (Me, Xy), 77.2 (C⁹), 125.6 (m, ipso-C, Xy), 126.8 (C¹³), 126.9 (C⁴), 127.8 (C¹¹), 128.96 (C³), 129.02 (meta-C, Xy), 131.6 (para-C, Xy), 131.8 (C⁵), 136.6 (ortho-C, Xy), 137.9 (C⁶), 141.8 (C²),142.0 (C¹²), 143.5 (1:1:1, t, C≡N, ¹J_{CN} = 22 Hz), 152.6 (C¹⁰), 153.2 (C¹), 153.9 (C¹⁴), 175.8 (C⁷). IR (cm⁻¹): ν(C≡N) 2185, ν(CIO) 1090, δ(OCIO) 622. Λ_M (Ω⁻¹·cm²·mol⁻¹): 134. Anal. Calcd for C₂₃H₂₂CIN₃O₅Pd: C, 49.13; H, 3.94; N, 7.47. Found: C, 49.01; H, 3.90; N, 7.53.

5a2: Yield: 354 mg, 0.69 mmol, 82%. Mp: 154 °C. ¹H NMR (400 MHz, CD₂Cl₂, 25 °C): δ 1.75 (s, 9 H, ^tBu), 2.47 (s, 3 H, Me⁸), 5.24 (s, 2 H, CH₂), 7.20 (td, 1 H, H⁵, ³J_{HH} = 7 Hz, ⁴J_{HH} = 1 Hz), 7.26 (td, 1 H, H⁴, ³J_{HH} = 7 Hz, ⁴J_{HH} = 1 Hz), 7.32 (dd, 1 H, H⁶, ³J_{HH} = 7 Hz, ⁴J_{HH} = 1 Hz), 7.32 (dd, 1 H, H⁶, ³J_{HH} = 7 Hz, ⁴J_{HH} = 1 Hz), 7.41 (dd, 1 H, H³, ³J_{HH} = 7 Hz, ⁴J_{HH} = 1 Hz), 7.71–7.75 (m, 2 H, H¹¹⁺¹³), 8.15 (td, 1 H, H¹², ³J_{HH} = 8 Hz, ⁴J_{HH} = 2 Hz), 8.62 (ddd, 1 H, H¹⁴, ³J_{HH} = 5 Hz, ⁴J_{HH} = 2 Hz, ⁴J_{HH} = 1 Hz). ¹³C{¹H} NMR (75 MHz, CD₂Cl₂, 25 °C): δ 12.4 (Me⁸), 30.1 (Me, ^tBu), 60.7 (CMe₃), 77.1 (C⁹), 126.7 (C⁴), 127.0 (C¹³), 127.6 (C¹¹), 128.7 (C³), 130.5 (1:1:1, t, C≡N, ¹J_{CN} = 19 Hz), 131.7 (C⁵), 137.5 (C⁶), 141.7 (C¹²), 141.9 (C²), 152.4 (C¹⁰), 152.8 (C¹), 153.8 (C¹⁴), 175.3 (C⁷). IR (cm⁻¹): ν (C≡N) 2223, ν (ClO) 1091, δ (OClO) 623. Λ_M

 $(\Omega^{-1} \cdot cm^2 \cdot mol^{-1})$: 129. Anal. Calcd for $C_{19}H_{22}ClN_3O_3Pd$: C, 44.38; H, 4.31; N, 8.17. Found: C, 44.68; H, 4.35; N, 8.25.

5a3·H₂O: Yield: 78 mg, 0.104 mmol, 84%. Mp: > 200 $^{\circ}$ C (dec). ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 1.73 (br s, 2 H, H₂O), 2.36 (s, 9 H, Me, PTol₃), 2.50 (s, 3 H, Me⁸), 5.47 (s, 2 H, CH₂), 6.50 (ddd, 1 H, H^{6} , ${}^{3}J_{HH} = 8 Hz$, ${}^{3}J_{HP} = 6 Hz$, ${}^{4}J_{HH} = 1 Hz$), 6.63 (td, 1 H, $H^{4 \text{ or } 5}$, ${}^{3}J_{HH}$ = 8 Hz, ${}^{4}J_{HH}$ = 1 Hz), 6.94 (dd, 1 H, H¹³, ${}^{3}J_{HH}$ = 8 Hz, ${}^{3}J_{HH}$ = 6 Hz, ${}^{4}J_{HH}$ = 1 Hz), 7.05 (dd, 1 H, H⁴ or 5, ${}^{3}J_{HH}$ = 8 Hz, ${}^{4}J_{HH}$ = 1 Hz), 7.19 (m, 6 H, meta-CH, $PTol_3$), 7.34 (dd, 1 H, H³, ${}^{3}J_{HH} = 8$ Hz, ${}^{4}J_{HH} = 1$ Hz), 7.53 (m, 6 H, ortho-CH, PTol₃), 7.68 (d, 1 H, H¹⁴, ³J_{HH} = 6 Hz), 7.73 (d, 1 H, H¹¹, ${}^{3}J_{HH} = 8$ Hz), 7.85 (td, 1 H, H¹², ${}^{3}J_{HH} = 8$ Hz, ${}^{4}J_{HH} =$ 1 Hz); (400 MHz, CDCl₃, -60 °C): δ 2.28 (br s, 2 H, H₂O), 2.40 (br s, 9 H, Me, $PTol_3$), 2.55 (s, 3 H, Me⁸), 5.47 (AB system, 2 H, CH₂, ν_A s, 9 H, Me, PT01₃), 2.53 (s, 5 H, Me), 5.47 (AB system, 2 H, CH₂, $\nu_{\rm A}$ = 5.40, $\nu_{\rm B}$ = 5.55, $J_{\rm AB}$ = 14 Hz), 6.49 ("t", 1 H, H⁶, $^{3}J_{\rm HP} \approx ^{3}J_{\rm HH}$ = 7 Hz), 6.69 (t, 1 H, H⁴ or ⁵, $^{3}J_{\rm HH}$ = 7 Hz), 6.98 ("t", 1 H, H¹³, $^{3}J_{\rm HH} \approx ^{3}J_{\rm HH}$ \approx 7 Hz), 7.12 (t, 1 H, H⁴ or ⁵, $^{3}J_{\rm HH}$ = 7 Hz), 7.24 (vbr s, 6 H, meta-CH, PT01₃), 7.41 (d, 1 H, H³, $^{3}J_{\rm HH}$ = 7 Hz), 7.53–8.04 (vbr s, 6 H, ortho-CH, PT01₃), 7.64 (d, 1 H, H¹⁴, $^{3}J_{\rm HH}$ = 8 Hz). ¹³C{¹H} NMR (75 MHz, CDCl. 25 °C): δ 124 (Mc⁸) = 214 (Mc PTcl) - 773 (°C) 124 9 CDCl₃, 25 °C): δ 12.4 (Me⁸), 21.4 (Me, PTol₃), 77.3 (C⁹), 124.9 (C¹³), 125.3 (d, *ipso*-C, PTol₃, ¹J_{CP} = 53 Hz), 125.7 (C^{4 or 5}), 126.9 (C¹¹), 127.6 (C³), 129.88 (d, meta-CH, $PTol_3$, ${}^3J_{CP} = 12 Hz$), 129.90 $(C^{4 \text{ or } 5})$, 134.8 (d, ortho-CH, PTol₃, ${}^{2}J_{CP} = 13 \text{ Hz}$), 138.3 (d, C⁶, ${}^{3}J_{CP} =$ 11 Hz), 140.2 (C¹²), 142.6 (d, *para*-C, PTol₃, ${}^{4}J_{CP} = 2$ Hz), 1208 (C²), 152.2 (d, C¹⁴, ${}^{3}J_{CP} = 3$ Hz), 152.56 (C^{1 or 10}), 152.61 (C^{1 or 10}), 171.7 (C⁷). ³¹P{¹H} NMR (122 MHz, CDCl₃, 25 °C): δ 40.45. IR (cm⁻¹): ν (ClO) 1093, δ (OClO) 622. $\Lambda_{\rm M}$ (Ω^{-1} ·cm²·mol⁻¹): 124. Anal. Calcd for C₃₅H₃₆ClN₂O₆PPd: C, 56.19; H, 4.82; N, 3.72. Found: C, 55.97; H, 4.99; N, 3.82. HRMS (ESI+, m/z): calcd for C₃₅H₃₄N₂OPPd [M]⁺ 636.1468, found 636.1474, error = 0.94 ppm. Crystals suitable for an X-ray diffraction study were grown by slow diffusion of Et₂O into a solution of 5a3 in CH₂Cl₂.

5a4: Yield: 153 mg, 0.324 mmol, 89%. Mp: 180 °C (dec). ¹H NMR (300 MHz, CD₃CN, 25 °C): δ 1.97 (s, 3 H, MeCN), 2.42 (s, 3 H, Me⁸), 5.23 (s, 2 H, CH₂), 7.21 (td, 1 H, H⁵, ³J_{HH} = 7 Hz, ⁴J_{HH} = 2 Hz), 7.25 (td, 1 H, H⁴, ³J_{HH} = 7 Hz, ⁴J_{HH} = 1 Hz), 7.37 (dd, 1 H, H⁶, ³J_{HH} = 7 Hz, ⁴J_{HH} = 1 Hz), 7.41 (dd, 1 H, H³, ³J_{HH} = 7 Hz, ⁴J_{HH} = 2 Hz), 7.65 (ddd, 1 H, H¹³, ³J_{HH} = 8 Hz, ³J_{HH} = 5 Hz, ⁴J_{HH} = 1 Hz), 7.69 (d, 1 H, H¹¹, ³J_{HH} = 8 Hz), 8.13 (td, 1 H, H¹², ³J_{HH} = 8 Hz, ⁴J_{HH} = 1 Hz), 8.71 (d, 1 H, H¹⁴, ³J_{HH} = 5 Hz). ¹³C{¹H} NMR (75 MHz, CD₃CN, 25 °C): δ. 1.8 (Me, CH₃CN), 12.6 (Me⁸), 77.2 (C⁹), 118.3 (CH₃CN), 126.9 (C¹³), 127.1 (C⁴), 127.4 (C¹¹), 128.8 (C³), 131.4 (C⁵), 134.9 (C⁶), 141.9 (C¹²), 142.3 (C²), 152.6 (C¹⁴), 152.9 (C¹⁰), 154.4 (C¹), 177.1 (C⁷). IR (cm⁻¹): ν(C≡N) 2326, ν(CIO) 1093, δ(OCIO) 624. Λ_M (Ω⁻¹·cm²·mol⁻¹): 130. Anal. Calcd for C₁₆H₁₆ClN₃O₅Pd: C, 40.70; H, 3.42; N, 8.90. Found: C, 40.74; H, 3.44; N, 8.82.

Synthesis of [Pd{C,N,S-C₆H₄{C(Me)=NOCH₂SMe}-2}L]ClO₄ (L = XyNC (6a1), 'BuNC (6a2), PTol₃ (6a3), MeCN (6a4)). Complex 4a (for 6a1, 102 mg, 0.30 mmol; for 6a2, 101 mg, 0.30 mmol; for 6a3, 99 mg, 0.30 mmol; for 6a4, 95 mg, 0.28 mmol) was added to a solution containing AgClO₄ (97%, for 6a1, 66 mg, 0.31 mmol; for 6a2 and 6a3, 65 mg, 0.30 mmol; for 6a4, 61 mg, 0.29 mmol) and the appropriate ligand (for 6a1, XyNC, 40 mg, 0.31 mmol; for 6a2, ^tBuNC, 35 µL, 0.31 mmol; for **6a3**, PTol₃, 90 mg, 0.30 mmol; for **6a4**, MeCN, 2 mL, 38.2 mmol) in acetone (for 6a1 and 6a2, 10 mL; for 6a3, 20 mL; for 6a4, 8 mL). The resulting suspension was stirred protected from light for 0.5 (6a3), 1.5 (6a1, 10a4), or 3 h (6a2). For 6a1 and 6a2 the suspension was filtered through a short pad of Celite and concentrated under vacuum (2 mL), Et₂O (15 mL) was added, and the suspension was filtered. The solid collected was washed with Et_2O (3 × 3 mL) and dried by suction to give a pale orange (6a1) or yellow (6a2) solid. For 6a3 and 6a4 the reaction mixture was concentrated to dryness, CH₂Cl₂ (10 mL) was added, and the suspension was filtered through a short pad of Celite. The solution was concentrated (1 mL), Et₂O (15 mL) was added, and the suspension was stirred (for 6a3, 30 min in an ice/water bath) and filtered. The solid collected was washed wit Et_2O (3 × 2 mL), and 6a3 was additionally recrystallized from CH2Cl2/Et2O and dried, first by suction and then in a vacuum oven (6a3: 80 °C, 5 h; 6a4: 65 °C, 15 h), to give $6a3 \cdot H_2O$ or 6a4 as pale tan solids.

6a1: Yield: 144 mg, 0.27 mmol, 89%. Mp: 132 °C (dec). ¹H NMR (400 MHz, CD₃CN, 25 °C): δ 2.48 (s, 3 H, Me⁸), 2.52 (s, 6 H, Me, Xy), 2.61 (s, 3 H, Me¹⁰), 5.28 (br s, 2 H, CH₂), 7.27 (td, 1 H, H⁵, ³J_{HH} = 8 Hz, ⁴J_{HH} = 2 Hz), 7.31 (m, 2 H, meta-CH, Xy), 7.32 (td, 1 H, H⁴, ³J_{HH} = 8 Hz, ⁴J_{HH} = 2 Hz), 7.43 (t, 1 H, para-CH, Xy, ³J_{HH} = 8 Hz), 7.46 (dd, 1 H, H³, ³J_{HH} = 8 Hz, ⁴J_{HH} = 2 Hz). ¹³C{¹H} NMR (75 MHz, CD₃CN, 25 °C): δ 13.3 (Me⁸), 16.8 (Me¹⁰), 19.0 (Me, Xy), 79.7 (C⁹), 126.6 (m, ipso-C, Xy), 127.8 (C⁴), 129.4 (meta-C, Xy), 130.4 (C³), 132.0 (para-C, Xy), 133.4 (C⁵), 137.2 (ortho-C, Xy), 137.9 (C⁶), 142.6 (m, C≡N), 147.1 (C²), 156.6 (C¹), 176.3 (C⁷). IR (cm⁻¹): ν(C≡N) 2184, ν(ClO) 1097, δ(OClO) 623. Λ_M (Ω⁻¹·cm²·mol⁻¹): 132. Anal. Calcd for C₁₉H₂₁ClN₂O₃PdS: C, 42.95; H, 3.98; N, 5.27; S, 6.04. Found: C, 43.08; H, 4.00; N, 5.27; S, 5.95. Crystals suitable for an X-ray diffraction study were grown by slow evaporation of a solution of **6a1** in acetone.

6a2: Yield: 136 mg, 0.29 mmol, 94%. Mp: 142 °C (dec). ¹H NMR (300 MHz, CDCl₃, 25 °C): δ 1.71 (s, 9 H, ¹Bu), 2.48 (s, 3 H, Me⁸), 2.68 (s, 3 H, Me¹⁰), 5.28 (vbr s, 2 H, CH₂), 7.17–7.31 (m, 4 H, Ar). ¹³C{¹H} NMR (75 MHz, CD₃CN, 25 °C): δ 12.9 (Me⁸), 16.9 (Me¹⁰), 30.0 (Me, ¹Bu), 60.0 (C(Me)₃), 79.0 (C⁹), 126.8 (C, Ar), 128.9 (C, Ar), 132.5 (C, Ar), 135.8 (C, Ar), 145.6 (C²), 155.3 (C¹), 174.5 (C⁷). IR (cm⁻¹): ν (C \equiv N) 2216, ν (ClO) 1091, δ (OClO) 623. $\Lambda_{\rm M}$ (Ω^{-1} ·cm²·mol⁻¹): 140. Anal. Calcd for C₁₅H₂₁ClN₂O₅PdS: C, 37.28; H, 4.38; N, 5.80; S, 6.64. Found: C, 37.36; H, 4.54; N, 5.69; S, 6.41. **6a**3·H₂O: Yield: 142 mg, 0.20 mmol, 67%. Mp: 187 °C (dec). ¹H

NMR (300 MHz, CDCl₃, 25 °C): δ 1.63 (br s, 2 H, H₂O), 2.01 (s, 3 H, MeS), 2.41 (s, 9 H, Me, PTol₃), 2.50 (s, 3 H, Me⁸), 5.27 (br s, 2 H, CH₂), 6.42 (ddd, 1 H, H⁶, ³*J*_{HH} = 8 Hz, ³*J*_{HP} = 5 Hz, ⁴*J*_{HH} = 1 Hz), 6.73 (td, 1 H, H⁶, ³*J*_{HH} = 8 Hz, ⁴*J*_{HH} = 1 Hz), 7.09 (t, 1 H, H⁴, ³*J*_{HH} = 8 Hz), 7.29–7.26 (m, 7 H, H⁶ + meta-CH, PTol₃), 7.52 (m, 6 H, ortho-CH, PTol₃), 1³C{¹H} NMR (75 MHz, CDCl₃, 25 °C): δ 12.7 (Me⁸), 15.8 (Me¹⁰), 21.4 (Me, PTol₃), 78.7 (d, C⁹, ³*J*_{CP} = 3 Hz), 125.9 (d, ipso-C, PTol₃, ¹*J*_{CP} = 55 Hz), 126.1 (C⁴), 128.4 (C³), 129.9 (d, meta-C, PTol₃, ³*J*_{CP} = 13 Hz), 137.6 (d, C⁶, ³*J*_{CP} = 10 Hz), 142.7 (d, para-C, ⁴*J*_{CP} = 2 Hz), 146.8 (C²), 156.1 (C¹), 173.0 (C⁷). ³¹P{¹H} NMR (122 MHz, CDCl₃, 25 °C): δ 36.21. IR (cm⁻¹): ν(CIO) 1095, δ(OCIO) 623. Λ_M (Ω⁻¹·cm²·mol⁻¹): 134. Anal. Calcd for C₃₁H₃₅CINO₆PSPd: C, 51.53; H, 4.88; N, 1.94; S, 4.44. Found: C, 51.41; H, 4.83; N, 1.97; S, 4.36.

6a4: Yield: 100 mg, 0.23 mmol, 80%. Mp: 173 °C (dec). ¹H NMR (400 MHz, CD₃CN, 25 °C): *δ* 1.97 (s, 3 H, MeCN), 2.40 (s, 3 H, Me⁸), 2.58 (s, 3 H, Me¹⁰), 5.14 (s, 2 H, CH₂), 7.22–7.30 (m, 3 H, Ar), 7.34–7.36 (m, 1 H, Ar). ¹³C{¹H} NMR (75 MHz, CD₃CN, 25 °C): *δ* 1.8 (Me, MeCN), 13.2 (Me⁸), 16.5 (Me¹⁰), 78.8 (C⁹), 127.6 (C, Ar), 129.4 (C, Ar), 132.5 (C, Ar), 133.7 (C, Ar), 146.2 (C²), 155.8 (C¹), 176.0 (C⁷), MeCN resonance not observed. IR (cm⁻¹): ν (C=N) 2331, ν (ClO) 1088, δ (OClO) 623. $\Lambda_{\rm M}$ (Ω⁻¹·cm²·mol⁻¹): 140. Anal. Calcd for C₁₂H₁₅ClN₂O₅PdS: C, 32.67; H, 3.43; N, 6.35; S, 7.27. Found: C, 32.72; H, 3.27; N, 6.29; S, 6.99.

Synthesis of $[Pd{C,N,N'-C_6H_4{C(Me)=NOCH_2(C_5H_4N)-2}-2}-$ (OAc)] (7a). To a solution of 3aCl (155 mg, 0.42 mmol) in CH₂Cl₂ (15 mL) was added AgAcO (72 mg, 0.43 mmol). The suspension was stirred for 15 h protected from light and then filtered through a short pad of Celite. The solution was concentrated under vacuum (1 mL), and Et₂O (15 mL) was added. The suspension was filtered, and the solid collected was washed with Et_2O (3 × 2 mL) and dried, first by suction and then in a vacuum oven (70 °C, 15 h), to give 7a·0.3H₂O as a pale yellow solid. Yield: 153 mg, 0.39 mmol, 92%. Mp: >140 °C (dec). ¹H NMR (400 MHz,CDCl₃, 25 °C): δ 1.95 (vbr s, 0.6 H, H₂O), 2.28 (s, 3 H, Me, AcO), 2.33 (s, 3 H, Me⁸), 5.17 (s, 2 H, CH_2), 7.07 (td, 1 H, $H^{4 \text{ or } 5}$, ${}^3J_{HH} = 7$ Hz, ${}^4J_{HH} = 1$ Hz), 7.13 (td, 1 H, $H^{4 \text{ or } 5}, J_{HH} = 7 \text{ Hz}, J_{HH} = 1 \text{ Hz}), 7.18 \text{ (dd, 1 H, H}^{3 \text{ or } 6}, J_{HH} = 7 \text{ Hz}, J_{HH} = 7 \text{ Hz}, J_{HH} = 1 \text{ Hz}), 7.26 \text{ (d, 1 H, H}^{3 \text{ or } 6}, J_{HH} = 7 \text{ Hz}), 7.43 \text{ (d, 1 H, H}^{11}, J_{H} = 7 \text{ Hz}),$ ${}^{3}J_{\rm HH}$ = 8 Hz), 7.47 (m, 1 H, H¹³, ${}^{3}J_{\rm HH}$ = 8 Hz, ${}^{3}J_{\rm HH}$ = 5 Hz, ${}^{4}J_{\rm HH}$ = 1 Hz), 7.89 (td, 1 H, H¹², ${}^{3}J_{HH} = 8$ Hz, ${}^{4}J_{HH} = 2$ Hz), 8.75 (dd, 1 H, H¹⁴, ${}^{3}J_{HH} = 5$ Hz, ${}^{4}J_{HH} = 2$ Hz). ${}^{13}C{}^{1}H$ } NMR (75 MHz, CDCl₃, 25 °C): δ 11.7 (Me⁸), 24.4 (Me, AcO), 75.9 (C⁹), 124.6 (C^{4 or 5}), 125.1 (C¹¹⁺¹³),

125.7 (C³ or ⁶), 129.7 (C⁴ or ⁵), 133.1 (C³ or ⁶), 139.0 (C¹²), 141.2 (C²), 150.7 (C¹⁴), 151.9 (C¹⁰), 154.3 (C¹), 171.3 (C⁷), 177.7 (CO₂). IR (cm⁻¹): $\nu_{asym}(CO_2)$ 1622. Λ_M (Ω^{-1} ·cm²·mol⁻¹): 130. Anal. Calcd for C₁₆H₁₆₆N₂O_{2.3}Pd: C, 48.52; H, 4.48; N, 7.07. Found: C, 48.23; H, 4.21; N, 7.22.

Synthesis of $[{Pd{C,N,N'-C_6H_4}(C(Me)=NOCH_2(C_5H_4N-2)}-$ 2}}₂(µ-OAc)]TfO (8a). To a suspension of AgTfO (99%; 44 mg, 0.17 mmol) and AgAcO (99%; 28 mg, 0.17 mmol) in CH₂Cl₂ (10 mL) was added complex 3aCl (122 mg, 0.33 mmol). The suspension was stirred for 45 min protected from light and then filtered through a short pad of Celite. The solution was concentrated under vacuum (2 mL), Et₂O (10 mL) was added, and the suspension was filtered. The solid collected was washed with Et_2O (3 × 4 mL) and dried, first by suction and then in a vacuum oven (75 °C, 5h), to give 8a as a pale yellow solid. Yield: 133 mg, 0.15 mmol, 92%. Mp: 184 °C (dec). ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 2.44 (s, 3 H, Me⁸), 2.44 (s, 3 H, Me, AcO), 4.58 (s, 2 H, CH₂), 6.28 (t, 1 H, H⁵, ${}^{3}J_{HH} = 7$ Hz), 6.35 (d, $\begin{array}{l} \text{Me, ACO}, 4.58 \text{ (s, } 2 \text{ H, CH}_2), 6.28 \text{ (t, } 1 \text{ H, H}^+, J_{\text{HH}} = 7 \text{ Hz}), 6.53 \text{ (d, } 1 \text{ H, } \text{H}^6, {}^3J_{\text{HH}} = 7 \text{ Hz}), 7.12 \text{ (dd, } 1 \text{ H, } \text{H}^3, {}^3J_{\text{HH}} = 7 \text{ Hz}), 7.12 \text{ (dd, } 1 \text{ H, } \text{H}^3, {}^3J_{\text{HH}} = 7 \text{ Hz}), 7.12 \text{ (dd, } 1 \text{ H, } \text{H}^3, {}^3J_{\text{HH}} = 7 \text{ Hz}), 7.12 \text{ (dd, } 1 \text{ H, } \text{H}^3, {}^3J_{\text{HH}} = 7 \text{ Hz}), 7.42 \text{ (m, } 1 \text{ H, } \text{H}^{13}), 7.79 \text{ (td, } 1 \text{ H, } \text{H}^{12}, {}^3J_{\text{HH}} = 8 \text{ Hz}, {}^4J_{\text{HH}} = 1 \text{ Hz}), 8.49 \text{ (d, } 1 \text{ H, } \text{H}^{12}, {}^3J_{\text{HH}} = 8 \text{ Hz}, {}^4J_{\text{HH}} = 1 \text{ Hz}), 8.49 \text{ (d, } 1 \text{ Hz}), 8.49 \text{$ H, H¹⁴, ${}^{3}J_{\text{HH}} = 5 \text{ Hz}$). ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (75 MHz, CDCl₃, 25 °C): δ 12.4 (Me⁸), 25.6 (Me, OAc), 75.6 (C⁹), 121.1 (q, CF₃, $J_{CF} = 321$ Hz), 124.7 (C¹³), 125.1 (C⁴), 125.7 (C¹¹), 126.6 (C³), 128.6 (C⁵), 133.0 (C⁶), 139.4 (C¹²), 140.6 (C²), 148.7 (C¹⁴), 151.9 (C¹⁰), 154.0 (C¹), 173.2 (C⁷), 183.0 (CO₂). ¹⁹F{¹H} NMR (188 MHz, CDCl₃, 25 °C): δ -78.8 (TfO). IR (cm⁻¹): ν_{asym} (CO₂) 1551, ν (S=O, TfO) 1029. Λ_{M} $(\Omega^{-1} \cdot \text{cm}^2 \cdot \text{mol}^{-1})$: 127. Anal. Calcd for $C_{31}H_{29}F_3N_4O_7Pd_2S$: C, 42.73; H, 3.35; N, 6.43; S, 3.68. Found: C, 42.40; H, 3.06; N, 6.65; S, 3.20. Crystals suitable for an X-ray diffraction study were grown by slow difussion of Et₂O into a solution of 8a in CH₂Cl₂.

Synthesis of [Pd{C,N,N'-C(=NR)C₆H₄{C(Me)=NOCH₂(C₅H₄N-2)}-2}Cl] (R = Xy (9a1), 'Bu (9a2)). To a solution of 3aCl (for 9a1, 63 mg, 0.17 mmol; for 9a2, 123 mg, 0.34 mmol) in CH₂Cl₂ (9a1, 7 mL) or CHCl₃ (9a2, 7 mL) was added the appropriate isocyanide (for 9a1, XyNC, 31 mg, 0.24 mmol; for 9a2, 'BuNC, 65 μ L, 0.58 mmol). The solution was stirred for 2 (9a1) or 20 h (9a2) and concentrated under vacuum (1 mL). Upon addition of Et₂O (15 mL) a suspension formed, which was filtered. The solid collected was washed with Et₂O (3 × 3 mL) and dried, first by suction and then in a vacuum oven (75 °C, 5 h), to give 9a1.0.3H₂O or 9a2 as a yellow solid.

9a1 0.3H2O: Yield: 77 mg, 0.39 mmol, 92%. Mp: 210 °C (dec). ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 1.59 (s, 0.6 H, H₂O), 2.39 (vbr s, 3 H, Me, Xy), 2.45 (s, 3 H, Me⁸), 2.49 (vbr s, 3 H, Me, Xy), 5.51 (AB system, 2 H, CH₂, $\nu_A = 6.00$, $\nu_B = 5.03$, $J_{AB} = 13$ Hz), 6.91 (t, 1 H, para-CH, Xy, ${}^{3}J_{HH} = 7$ Hz), 7.04 (vbr m, 2 H, meta-CH, Xy), 7.31–7.35 (m, 2 H, H¹¹⁺¹³), 7.40 (ddd, 1 H, H⁴, ${}^{3}J_{HH} = 8$ Hz, ${}^{3}J_{HH} = 7$ Hz, ${}^{4}J_{\rm HH} = 1$ Hz), 7.44 (dd, 1 H, H³, ${}^{3}J_{\rm HH} = 8$ Hz, ${}^{4}J_{\rm HH} = 2$ Hz), 7.49 (td, 1 H, H⁵, ${}^{3}J_{HH} = 7$ Hz, ${}^{4}J_{HH} = 2$ Hz), 7.64 (dd, 1 H, H⁶, ${}^{3}J_{HH} = 7$ Hz, ${}^{4}J_{HH}$ = 1 Hz), 7.76 (td, 1 H, H¹², ${}^{3}J_{HH}$ = 8 Hz, ${}^{4}J_{HH}$ = 2 Hz), 8.70 (m, 1 H, H¹⁴). (400 MHz, CDCl₃, 55 °C): δ 1.45 (s, 0.6 H, H₂O), 2.42 (vbr s, 6 H, Me, Xy), 2.43 (s, 3 H, Me⁸), 5.01, 6.00 (two vbr s, 2 H, CH₂), 6.88 (t, 1 H, para-CH, Xy, ${}^{3}J_{HH} = 7$ Hz), 7.02 (d, 2 H, meta-CH, Xy, ${}^{3}J_{HH} = 7$ Hz), 7.28–7.32 (m, 2 H, H¹¹⁺¹³), 7.37 (ddd, 1 H, H⁴, ${}^{3}J_{HH} = 8$ Hz, ${}^{3}J_{\rm HH} = 7$ Hz, ${}^{4}J_{\rm HH} = 1$ Hz), 7.42 (dd, 1 H, H³, ${}^{3}J_{\rm HH} = 8$ Hz, ${}^{4}J_{\rm HH} = 2$ Hz), 7.47 (td, 1 H, H⁵, ${}^{3}J_{HH} = 7$ Hz, ${}^{4}J_{HH} = 2$ Hz), 7.63 (dd, 1 H, H⁶, ${}^{3}J_{\rm HH} = 7$ Hz, ${}^{4}J_{\rm HH} = 1$ Hz), 7.73 (td, 1 H, H¹², ${}^{3}J_{\rm HH} = 8$ Hz, ${}^{4}J_{\rm HH} = 2$ Hz), 8.72 (ddd, 1 H, H¹⁴, ${}^{3}J_{HH} = 5$ Hz, ${}^{4}J_{HH} = 2$ Hz, ${}^{5}J_{HH} = 1$ Hz). ¹³C{¹H} NMR (75 MHz, CDCl₃, 25 °C): δ 15.3 (Me⁸), 19.4 (br s, Me, Xy), 75.6 (C⁹), 122.8 (para-CH, Xy), 123.6 (br s, ortho-C, Xy), 124.0 (C¹¹), 125.3 (C¹³), 125.5 (C⁶), 127.4 (br s, meta-CH, Xy), 128.1 (C³), 128.7 (C⁴), 129.4 (br s, ortho-C, Xy), 132.0 (C²), 132.7 (C⁵), 134.4 (C¹), 138.9 (C¹²), 148.9 (ipso-C, Xy), 150.4 (C¹⁴), 152.6 (C¹⁰), 156.7 (C⁷), 178.4 (C=NXy). IR (cm⁻¹): ν (C=NXy) 1652. Anal. Calcd for C23H226CINO33Pd: C, 54.84; H, 4.52; N, 8.34. Found: C, 54.37; H, 4.16; N, 8.19. Crystals suitable for an X-ray diffraction study were grown by slow diffusion of Et₂O into a solution of 9a1 in CH₂Cl₂.

9a2: Yield: 80 mg, 0.18 mmol, 53%. Mp: 158 °C. ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 1.84 (s, 9 H, Me, ¹Bu), 2.34 (s, 3 H, Me⁸), 5.57 (AB system, 2 H, CH₂, ν_A = 6.10, ν_B = 5.05, J_{AB} = 13 Hz), 7.25–

7.30 (m, 3 H, CH, Ar and/or py-2), 7.38–7.43 (m, 3 H, CH, Ar and/or py-2), 7.82 (td, 1 H, H¹², ${}^{3}J_{\rm HH} = 8$ Hz, ${}^{4}J_{\rm HH} = 1$ Hz), 8.82 (dd, 1 H, H¹⁴, ${}^{3}J_{\rm HH} = 5$ Hz, ${}^{4}J_{\rm HH} = 1$ Hz). ${}^{13}C{}^{1}H{}$ NMR (75 MHz, CD₂Cl₂, 25 °C): δ 14.8 (Me⁸), 32.3 (Me, 'Bu), 56.8 (CMe₃), 76.0 (C⁹), 124.3 (CH, Ar or py-2), 124.5 (CH, Ar or py-2), 125.4 (C¹³), 127.3 (CH, Ar or py-2), 124.5 (C¹), 138.8 (C²), 132.7 (CH, Ar or py-2), 134.5 (C¹), 138.8 (C¹²), 150.2 (C¹⁴), 153.2 (C¹⁰), 156.4 (C⁷), 169.0 (C=N⁴Bu). IR (cm⁻¹): ν (C=N⁴Bu) 1625. Anal. Calcd for C₁₉H₂₂ClN₃OPd: C, 50.68; H, 4.92; N, 9.23. Found: C, 50.35; H, 4.98; N, 9.24.

Synthesis of [Pd{C,N,N'-C(=NR)C₆H₄{C(Me)=NOCH₂(C₅H₄N-2)}-2}(CNR)]ClO₄ (R= Xy (10a1), ^tBu (10a2)). A mixture containing the appropriate complex 5 (for 10a1: Sa1, 110 mg, 0.20 mmol; for 10a2: Sa2, 15 mg, 0.22 mmol) and RNC (for 10a1: R = Xy, 32 mg, 0.24 mmol; for 10a2: R = ^tBu, 28 μ L, 0.25 mmol) in CHCl₃ (10 mL) was stirred for 2.5 or 4.5 h (10a2) and then filtered through a short pad of Celite. The solution was concentrated under vacuum (3 mL), Et₂O (15 mL) was added, and the suspension was filtered. The solid collected was washed with Et₂O (3 × 2 mL) and dried by suction. 10a1 was recrystallized from CH₂Cl₂/Et₂O and 10a1 and 10a2 were additionally dried in a vacuum oven (70 °C, 10 h) to give 10a1·0.3H₂O or 10a2 as pale yellow solids.

10a1.0.3H2O: Yield: 124 mg, 0.18 mmol, 91%. Mp: 194 °C (dec). ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 1.7–2.7 (vbr s, 6 H, Me, Xy^{im}), 2.10 (s, 6 H, Me, XyPd), 2.60 (s, 3 H, Me8), 5.64 (br s, 2 H, CH2), 6.4–7.4 (vbr s, 2 H, meta-Xy^{im}), 6.88 (t, 1 H, para-Xy^{im}, ${}^{3}J_{HH} = 7$ Hz), 7.12 (d, 2 H, meta-Xy^{id}, ${}^{3}J_{HH} = 8$ Hz), 7.31 (t, 1 H, para-Xy^{Pd}, ${}^{3}J_{HH} = 8$ Hz), 7.58 (ddd, 1 H, H¹³, ${}^{3}J_{HH} = 8$ Hz, ${}^{3}J_{HH} = 5$ Hz, ${}^{4}J_{HH} = 2$ Hz), 7.59–7.68 (m, 4 H, Ar), 7.89 (ddd, H¹¹, ${}^{3}J_{HH} = 8$ Hz, ${}^{4}J_{HH} = 2$ Hz), ${}^{5}J_{HH} = 2$ Hz, ${}^{4}J_{HH} = 2$ Hz), ${}^{2}J_{HH} = 2$ Hz), 2.0 (ddd) ${}^{5}J_{\rm HH} = 1$ Hz), 8.05 (td, 1 H, H¹², ${}^{3}J_{\rm HH} = 8$ Hz, ${}^{4}J_{\rm HH} = 2$ Hz), 8.29 (ddd, 1 H, H¹⁴, ${}^{3}J_{HH} = 5$ Hz, ${}^{4}J_{HH} = 2$ Hz, ${}^{5}J_{HH} = 1$ Hz). (400 MHz, CDCl₃, 55 °C): δ 2.10 (s, 6 H, Me, Xy^{Pd}), 2.24 (br s, 6 H, Me, Xy^{im}), 2.60 (s, 3 H, Me⁸), 5.63 (s, 2 H, CH₂), 6.87 (br m, 3 H, meta-Xy^{im} + para-Xy^{im}), 7.10 (d, 2 H, meta-Xy^{Pd}, ${}^{3}J_{HH} = 8$ Hz), 7.28 (t, 1 H, para-Xy^{Pd}, ${}^{3}J_{HH} = 8$ Hz), 7.56 (ddd, 1 H, H¹³, ${}^{3}J_{HH} = 8$ Hz, ${}^{3}J_{HH} = 5$ Hz, ${}^{4}J_{HH} = 1$ Hz), 7.57–7.67 (m, 4 H, Ar), 7.85 ("d", H¹¹, ${}^{3}J_{HH} = 8$ Hz), 40.2 (td, 1 H, ${}^{4}J_{HH} = 1$ Hz), H^{12} , ${}^{3}J_{HH} = 8$ Hz, ${}^{4}J_{HH} = 1$ Hz), 8.30 ("d", 1 H, H^{14} , ${}^{3}J_{HH} = 5$ Hz); (400 MHz, CDCl₃, -30 °C): δ 1.94 (s, 3 H, Me, Xyⁱⁿ), 2.11 (s, 6 H, Me, Xy^{Pd}), 2.55 (s, 3 H, Me, Xy^{im}), 2.62 (s, 3 H, Me⁸), 5.68 (AB system, 2 H, CH₂, ν_{A} = 5.73, ν_{B} = 5.62, J_{AB} = 14 Hz), 6.56 (d, 1 H, meta-Xyⁱⁿ, ${}^{3}J_{HH}$ = 7 Hz), 6.94 (t, 1 H, para-Xyⁱⁿ, ${}^{3}J_{HH}$ = 7 Hz), 7.17 (d, 2 H, meta-Xy^{Pd}, ${}^{3}J_{HH}$ = 8 Hz), 7.23 (d, 1 H, meta-Xyⁱⁿ, ${}^{3}J_{HH}$ = 7 Hz), 7.36 (t, 1 H, para-Xy^{Pd}, ${}^{3}J_{HH}$ = 8 Hz), 7.60 (ddd, 1 H, H¹³, ${}^{3}J_{HH}$ = 8 Hz, ${}^{3}J_{\text{HH}} = 5$ Hz, ${}^{4}J_{\text{HH}} = 1$ Hz), 7.65–7.68 (m, 4 H, Ar), 7.96 ("d", H¹¹, ${}^{3}J_{\rm HH}$ = 8 Hz), 8.09 (td, 1 H, H¹², ${}^{3}J_{\rm HH}$ = 8 Hz, ${}^{4}J_{\rm HH}$ = 1 Hz), 8.27 ("d", 1 H, H¹⁴, ${}^{3}J_{HH} = 5$ Hz). ${}^{13}C{}^{1}H{}$ NMR (100 MHz, CDCl₃, 25 °C): δ 15.9 (Me⁸), 18.7 (Me, Xy^{Pd}), 18.9 (br, Me, Xy^{im}), 76.0 (C⁹), 124.1 (*para-C*, Xy^{im}), 124.6 (br, *ipso-C*, Xy^{Pd}), 126.1 (br, *ortho-C*, Xy^{im}), 126.4 (C^{3, 4, 5 or 6}), 126.9 (C¹³), 127.1 (C¹¹), 128.2 (*meta-C*, Xy^{Pd}), 129.6 (C, Ar), 130.7 (C, Ar), 130.8 (para-C, Xy^{Pd}), 131.7 (C²), 132.5 (C¹), 133.4 (C, Ar), 135.5 (ortho-C, Xy^{Pd}), 138.5 (m, C≡N), 141.3 (C¹²), 150.4 (ipso-C, Xy^{im}), 150.5 (C¹⁴), 153.0 (C¹⁰), 159.8 (C⁷), 174.8 (C=NXy), meta-C, Xy^{im} not observed. IR (cm⁻¹): ν (C=N) 2198, ν (C=NXy) 1630. $\Lambda_{\rm M}$ (Ω^{-1} ·cm²·mol⁻¹): 121. Anal. Calcd for C32H31.6ClN4O5.3Pd: C, 55.00; H, 4.56; N, 8.02. Found: C, 54.60; H, 4.81; N, 7.94.

10a2: Yield: 129 mg, 0.22 mmol, 97%. Mp: 139 °C (dec). ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 1.60 (s, 9 H, Me, ^tBu), 1.67 (s, 9 H, Me, ^tBu), 2.42 (s, 3 H, Me⁸), 5.54 (AB system, 2 H, CH₂, ν_A = 5.73, ν_B = 5.35, J_{AB} = 14 Hz), 7.09 (d, 1 H, H⁶, ³J_{HH} = 7.5 Hz), 7.41–7.45 (m, 2 H, H³⁺⁴), 7.47–7.53 (m, 1 H, H⁵), 7.74 (d, 1 H, H¹¹, ³J_{HH} = 8 Hz), 7.78 (ddd, 1 H, H¹³, ³J_{HH} = 8 Hz, ³J_{HH} = 5 Hz, ⁴J_{HH} = 1 Hz), 8.04 (td, 1 H, H¹², ³J_{HH} = 8 Hz, ⁴J_{HH} = 1 Hz), 8.39 (d, 1 H, H¹⁴, ³J_{HH} = 5 Hz). ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): δ 15.1 (Me⁸), 29.8 (Me, ^tBu^{Pd}), 31.1 (Me, ^tBu^{im}), 56.6 (CMe₃), 59.8 (CMe₃), 76.1 (C⁹), 124.1 (C⁶), 126.8 (C¹¹), 127.2 (C¹³), 128.5 (C³), 129.0 (C⁴), 131.2 (C²), 133.1 (C⁵), 133.8 (C¹), 140.8 (C¹²), 150.7 (C¹⁴), 153.0 (C¹⁰), 158.7 (C⁷), 164.0 (C=N^tBu). IR (cm⁻¹): ν (C=N) 2210, ν (ClO) 1092, ν (OClO) 625. $\Lambda_{\rm M}$ (Ω^{-1} ·cm²·mol⁻¹): 134. Anal. Calcd for

 $C_{24}H_{31}ClN_4O_5Pd:$ C, 48.25; H, 5.23; N, 9.38. Found: C, 48.23; H, 5.17; N, 9.47.

Synthesis of [Pd{C,N,S-C(N=Xy)C₆H₄{C(Me)=NOCH₂SMe}-2}(CNXy)]ClO₄ (11a1). A solution of XyNC (69 mg, 0.53 mmol) in CH₂Cl₂ (9 mL) was slowly added to another of complex 6a4 (110 mg, 0.25 mmol) in the same solvent (10 mL), and the mixture was stirred for 5 h and then filtered through a short pad of Celite. The solution was concentrated under vacuum (2 mL), and Et₂O (20 mL) was added. The suspension was stirred in an ice/water bath for 15 min and filtered. The solid collected was washed with Et_2O (3 × 3 mL) and dried, first by suction and then under vacuum, to give 11a1 as a yellow solid. Yield: 151 mg, 0.23 mmol, 91%. Mp: 161 °C (dec). ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 2.13 (s, 6 H, Me, Xy^{Pd}), 2.16 (br s, 6 H, Me, Xy^{im}), 2.50 (s, 3 H, Me¹⁰), 2.92 (s, 3 H, Me⁸), 4.7–5.4 (br s, 6 H, Me, Xy), 2.30 (s, 5 H, Me), 2.52 (s, 5 H, Me), T_{-7} (b, s, 2 H, CH₂), 6.7–7.0 (vbr s, 1 H, meta-Xyⁱⁿ), 6.87 (br "t", 1 H, para-Xyⁱⁿ, ${}^{3}J_{\rm HH} = 7$ Hz), 7.12 (d, 2 H, meta-Xy^{Pd}, ${}^{3}J_{\rm HH} = 8$ Hz), 7.15–7.30 (vbr s, 1 H, meta-Xyⁱⁿ), 7.30 (t, 1 H, para-Xy^{Pd}, ${}^{3}J_{\rm HH} = 8$ Hz), 7.62 (td, 1 H, H⁴, ${}^{3}J_{HH} = 8$ Hz, ${}^{4}J_{HH} = 1$ Hz), 7.70 (td, 1 H, H⁵, ${}^{3}J_{HH} = 8$ Hz, ${}^{4}J_{\rm HH} = 1$ Hz), 7.75 (dd, 1 H, H³, ${}^{3}J_{\rm HH} = 8$ Hz, ${}^{4}J_{\rm HH} = 1$ Hz), 7.96 (dd, 1 H, H⁶, ${}^{3}J_{HH} = 8$ Hz, ${}^{4}J_{HH} = 1$ Hz). ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃, 25 °C): δ 16.46 (Me⁸), 16.53 (Me¹⁰), 18.5 (Me, Xy^{Pd}), 19.0 (br, Me, ⁿ), 75.0 (C⁹), 124.3 (CH, Xyⁱⁿ), 124.8 (br, ipso-C, Xy^{Pd}), 126.6 (br, Xv Xy^{im}), 127.1 (C⁶, Ar), 128.0 (br, Xy^{im}), 128.2 (meta-C, Xy^{Pd}), 128.6 (br, Xy^{im}), 130.2 (C⁴, Ar), 130.5 (C³), 130.7 (para-C, Xy^{Pd}), 130.9 (C², Ar), 133.8 (C⁵, Ar), 134.2 (C¹), 135.0 (ortho-C, Xy^{Pd}), 138.2 (m, $C \equiv N$ or *ipso-C*(Xy^{im})), 150.5 (C, Xy^{im}), 167.8 (C⁷), 174.3 (C= NXy). IR (cm⁻¹): ν (C \equiv N) 2198, ν (C=NXy) 1636. Λ_M $(\Omega^{-1} \cdot \text{cm}^2 \cdot \text{mol}^{-1})$: 136. Anal. Calcd for $C_{28}H_{30}\text{ClN}_3\text{O}_5\text{PdS}$: C, 50.77; H, 4.56; N, 6.34; S, 4.84. Found: C, 50.69; H, 4.48; N, 6.40; S, 4.55.

Synthesis of [Pd{C,N,S-C(N=^tBu)C₆H₄{C(Me)=NOCH₂SMe}-2}CN^tBu]ClO₄ (11a2). To a solution of 6a2 (102 mg, 0.21 mmol) in CH_2Cl_2 (5 mL) was added ^tBuNC (26 μ L, 0.23 mmol). After 1.5 h of stirring the solvent was removed under vacuum, and the residue was stirred with *n*-pentane (12 mL). The suspension was filtered, and the solid was washed with pentane $(3 \times 3 \text{ mL})$ and dried, first by suction and then in a vacuum oven (60 °C, 10 h), to give 11a2 as a yellow solid. Yield: 95 mg, 0.168 mmol, 79%. Mp: 92 °C (dec). ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 1.57 (s, 18 H, Me, ^tBu) 2.52 (s, 3 H, $\begin{aligned} &\text{Me}^{10}, 2.73 \text{ (s, 3 H, Me}^8\text{), 5.04 (br AB system, 2 H, CH₂, <math>\nu_A = 4.88, \nu_B \\ &= 5.18, J_{AB} = 10 \text{ Hz}\text{), 7.17 (d, 1 H, H^6, }^3J_{HH} = 7 \text{ Hz}\text{), 7.45 (t, 1 H, H^4, }^3J_{HH} = 8 \text{ Hz}\text{), 7.55 (t, 1 H, H^5, }^3J_{HH} = 7 \text{ Hz}\text{), 7.72 (d, 1 H, H^3, }^3J_{HH} = 8 \end{aligned}$ Hz). ${}^{3}C{}^{1}H$ NMR (75 MHz, CDCl₃, 25 °C): δ 15.5 (Me⁸), 17.2 (Me¹⁰), 29.8 (Me, ^tBu), 31.1 (Me, ^tBu), 56.6 (CMe₃), 59.6 (CMe₃), 75.7 (C⁹), 124.7 (C⁶), 128.7 (C⁴), 129.4 (C³), 130.4 (C²), 133.5 (C⁵), 135.0 (C¹), 161.1 (C=N^tBu), 166.1 (C⁷). IR (cm⁻¹): ν (C=N) 2210, ν (ClO) 1090, δ (OClO) 623. $\Lambda_{\rm M}$ ($\Omega^{-1} \cdot {\rm cm}^2 \cdot {\rm mol}^{-1}$): 127. Anal. Calcd for $C_{20}H_{30}ClN_3O_5PdS$: C, 42.41; H, 5.34; N, 7.42; S, 5.66. Found: C, C, 42.53; H, 5.06; N, 7.43; S, 5.80.

Synthesis of [Pd{C,N,C'-C₆H₄{C(Me)=NOC(CO₂Me)=C-(CO₂Me)]-2](^tBubpy)] (12). To a solution of 2a (114 mg, 0.28 mmol) in CH₂Cl₂ (10 mL) was added dimethyl acetylenedicarboxylate (36 μ L, 0.29 mmol). The resulting solution was stirred for 1.5 h and filtered through a short pad of Celite, the solution was concentrated under vacuum (1 mL), and a mixture of Et₂O and *n*-pentane (1:3, 20 mL) was added. The suspension was filtered, and the solid was washed successively with the same solvent mixture $(3 \times 3 \text{ mL})$ and with Et₂O (3 mL) to give 12 (131 mg, 0.20 mmol, 71%). Mp: 167 °C. ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 1.37 (s, 18 H, Me, ^tBu), 2.24 (s, 3 H, Me⁸), 3.47 (s, 3 H, CO₂Me), 3.77 (s, 3 H, CO₂Me), 6.11-6.15 (m, 1 H, $H^{4, 5 \text{ or } 6}$), 6.78–6.83 (m, 2 H, $H^{4, 5 \text{ and/or } 6}$), 6.84–6.87 (m, 1 H, H³), 7.30 (dd, 2 H, H¹⁸, 'Bubpy, ${}^{3}J_{HH} = 6$ Hz, ${}^{4}J_{HH} = 2$ Hz), 8.64 (d, 1 H, H¹⁹, 'Bubpy, ${}^{3}J_{HH} = 6$ Hz), 8.66 (d, 2 H, H¹⁶, 'Bubpy, ${}^{4}J_{HH} = 2$ Hz). ${}^{3}C{}^{1}H$ NMR (100 MHz, CDCl₃, 25 °C): δ 11.7 (Me⁸), 30.3 (Me, ^tBu), 35.3 (CMe₃), 50.7 (CO₂Me), 52.2 (CO₂Me), 121.2 (C¹⁸), 121.8 (C¹⁶), 123.8 (C^{4, 5 or 6}), 125.4 (C³), 130.4 (C^{4, 5 or 6}), 132.8 (C^{4, 5 or 6}), 144.0 (C^{9 or 10}), 147.8 (C²), 150.0 (C¹⁹), 152.0 (C^{9 or 10}), 157.6 (C¹⁵), 157.9 (CO₂Me), 161.4 (C¹⁷), 163.8 (C¹), 169.4 (C⁷), 173.3 (CO₂Me). IR (cm⁻¹): ν (C=O) 1718, 1688. Anal. Calcd for C₃₂H₃₇N₃O₅Pd: C, 59.13; H, 5.74; N, 6.46. Found: 59.01; H, 5.79; N, 6.42.

Synthesis of [Pd{C,N,C'-C₆H₄{C(Me)=NOC(CO₂Me)=C- (CO_2Me) -2(L)] (L = CICH₂py-2 (13), XyNC (14), ^tBuNC (15)). To a solution of 2a (for 13, 160 mg, 0.32 mmol; for 14, 102 mg, 0.20 mmol; for 15, 124 mg, 0.24 mmol) in CH₂Cl₂ (10 mL) was added dimethyl acetylenedicarboxylate (for 13, 40 μ L, 0.32 mmol; for 14, 26 μ L, 0.21 mmol; for 15, 32 μ L, 0.26 mmol). The resulting solution was stirred for 1 h, and the appropriate ligand was then added (for 13, ClCH₂py-2 prepared in situ from (ClCH₂pyH-2)Cl (66 mg, 0.4 mmol) and K^tBuO (44 mg, 0.37 mmol) in CH₂Cl₂ (5 mL); for 14, CNXy, 27 mg, 0.21 mmol; for 15, 'BuNC, 56 µL, 0.50 mmol). After 1.5 or 2 h (15) of stirring, the reaction mixture was filtered through a short pad of Celite. For 13, the solution was concentrated under vacuum (1 mL), Et₂O (15 mL) was added, and the suspension was filtered to remove some impurities. The filtrate was concentrated to dryness, the residue was dissolved in CH2Cl2 (2 mL), and a mixture of Et2O/npentane (1:3, 20 mL) was added. The suspension was filtered, and the solid collected was successively washed with the same mixture of solvents $(3 \times 3 \text{ mL})$ and with Et₂O (3 mL). For 14 and 15, the solution was concentrated (0.5-1 mL), Et₂O (15 mL) was added, the suspension was filtered, and the solid collected was washed with Et₂O $(3 \times 2 \text{ mL})$. The yellow compounds were all dried by suction, and 15 was additionally dried under vacuum.

13: Yield: 83 mg, 0.16 mmol, 52%. Mp: 163 °C (dec). ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 2.36 (s, 3 H, Me⁸), 3.36 (s, 3 H, CO₂Me), 3.75 (s, 3 H, CO₂Me), 5.21 (AB system, 2 H, CH₂, ν_A = 5.20, ν_B = 5.23, J_{AB} = 14 Hz), 6.25–6.29 (m, 1 H, H⁴ or ⁶), 6.94–7.01 (m, 2 H, H⁵⁺⁴ or ⁶), 7.03–7.07 (m, 1 H, H³), 7.37 (ddd, 1 H, H¹⁸, py-2, ³J_{HH} = 7 Hz, ³J_{HH} = 6 Hz, ⁴J_{HH} = 1 Hz), 7.85 (d, 1 H, H¹⁶, py-2, ³J_{HH} = 8 Hz), 7.92 (td, 1 H, H¹⁷, py-2, ³J_{HH} = 8 Hz, ⁴J_{HH} = 2 Hz), 8.81 (d, 1 H, H¹⁹, ³J_{HH} = 6 Hz). ³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): δ 12.0 (Me⁸), 46.0 (CH₂), 50.8 (CO₂Me), 52.1 (CO₂Me), 123.8 (C¹⁸), 124.6 (C¹⁶), 124.7 (C⁴ or ⁶), 126.3 (C³), 131.0 (C⁵), 132.7 (C⁴ or ⁶), 138.0 (C¹⁷), 145.0 (C⁹ or ¹⁰), 148.7 (C²), 150.1 (C⁹ or ¹⁰), 151.3 (C¹⁹), 157.5 (C¹⁵), 157.7 (CO₂Me), 164.2 (C¹), 170.2 (C⁷), 173.0 (CO₂Me). IR (cm⁻¹): ν (C=O) 1721, 1702. Anal. Calcd for C₂₀H₁₉ClN₂O₃Pd: C, 47.17; H, 3.76; N, 5.50. Found: C, 46.83; H, 3.79; N, 5.35. Crystals suitable for an X-ray diffraction study were grown by slow diffusion of *n*-pentane into a solution of **13** in acetone.

14: Yield: 70 mg, 0.14 mmol, 68%. Mp: 165 °C (dec). ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 2.37 (s, 3 H, Me⁸), 2.48 (s, 6 H, Me, Xy), 3.73 (s, 3 H, CO₂Me), 3.77 (s, 3 H, CO₂Me), 7.03 (m, 1 H, H⁴), 7.07–7.12 (m, 2 H, H³⁺⁵), 7.16 (d, 2 H, meta-Xy, ³J_{HH} = 8 Hz), 7.25–7.29 (m, 1 H, para-Xy), 7.31 (d, 1 H, H⁶, ³J_{IHH} = 7/7.1 Hz). ³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): δ 11.9 (Me⁸), 18.8 (Me, Xy), 51.4 (CO₂Me), 52.3 (CO₂Me), 125.0 (C⁴H), 126.5 (*ipso*-C, Xy), 127.1 (C³), 128.1 (*meta*-CH, Xy), 129.7 (*para*-CH, Xy), 131.9 (C⁵), 135.4 (*ortho*-C, Xy), 136.9 (C⁶), 147.5 (C⁹ or ¹⁰), 147.9 (C⁹ or ¹⁰), 148.8 (C²), 158.1 (CO₂Me), 163.2 (C¹), 172.1 (C⁷), 174.2 (CO₂Me). IR (cm⁻¹): ν (C \equiv N) 2172; ν (C=O) 1715, 1691. Anal. Calcd for C₂₂H_{22N₂O₅Pd: C, 53.87; H, 4.32; N, 5.46. Found: C, 53.90; H, 4.46; N, 5.33.}

15: Yield: 71 mg, 0.15 mmol, 63%. Mp: 153 °C (dec). ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 1.58 (s, 9 H, Me, ¹Bu), 2.33 (s, 3 H, Me⁸), 3.76 (s, 6 H, CO₂Me), 6.98–7.04 (m, 2 H, H³⁺⁴), 7.08 (td, 1 H, H⁵, ³J_{HH} = 7 Hz, ⁴J_{HH} = 2 Hz), 7.14 (d, 1 H, H⁶, ³J_{HH} = 7 Hz). ³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): δ 11.8 (Me⁸), 30.3 (Me, ¹Bu), 51.1 (CO₂Me), 52.1 (CO₂Me), 58.0 (CMe₃), 124.7 (C⁴), 126.8 (C³), 131.7 (C⁵), 134.3 (1:1:1, t, C≡N, ¹J_{CN} = 17 Hz), 136.5 (C⁶), 147.0 (C⁹ or ¹⁰), 148.2 (C⁹ or ¹⁰), 148.8 (C²), 158.0 (CO₂Me), 163.2 (C¹), 171.6 (C⁷), 173.9 (CO₂Me). IR (cm⁻¹): ν(C≡N) 2195; ν(C=O) 1716, 1704. Anal. Calcd for C₁₉H₂₂N₂O₅Pd: C, 49.10.87; H, 4.77; N, 6.03. Found: C, 48,82; H, 4.53; N, 5.74.

X-ray Structure Determinations of Complexes 3aBr, 3bCl, 5a3, 6a1, 8a·CH₂Cl₂, 9a1, and 13. All complexes were measured on a Bruker Smart APEX machine at 100 K. Data were collected using monochromated Mo K α radiation in ω -scan mode. The structures were solved by direct methods. All were refined anisotropically on F^2 . The methyl groups were refined using rigid groups (AFIX 137), and the others were refined using a riding model.

Crystallography data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre, CCDC numbers 891028 (3aBr), 891029 (3bCl), 891030 (5a3), 891031 (6a1), 891032 ($8a \cdot CH_2Cl_2$) 891033 (9a1), and 891968 (13). Copies of these data can be obtained free of charge on application to the Director, CCDC, 12 Union Road, Cambridge CB2 IEZ, UK (fax: +44-1223-336033; e-mail: deposit@ ccdc.ac.uk; or http://www.ccdc.cam.ac.hk).

ASSOCIATED CONTENT

S Supporting Information

CIF files and tables giving crystal data. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: jvs1@um.es. Web: http://www.um.es/gqo/.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the Ministerio de Educación y Ciencia (Spain), FEDER (CTQ2007-60808/BQU), and Fundación Séneca (04539/GERM/06 and 03059/PI/05) for financial support and for a grant to A.A.-L.

REFERENCES

(1) Jacquot-Rousseau, S.; Khatyr, A.; Schmitt, G.; Knorr, M.; Kubicki, M. M.; Blacque, O. Inorg. Chem. Commun. 2005, 8, 610. Sole, D.; Vallverdu, L.; Solans, X.; FontBardia, M.; Bonjoch, J. Organometallics 2004, 23, 1438. Pérez, S.; López, C.; Caubet, A.; Pawelczyk, A.; Solans, X.; Fontbardia, M. Organometallics 2003, 22, 2396. Benito, M.; Lopez, C.; Morvan, X.; Solans, X.; Font-Bardia, M. J. Dalton Trans. 2000, 4470. Cvengros, J.; Schutte, J.; Schlorer, N.; Neudorfl, J.; Schmalz, H. G. Angew. Chem., Int. Ed. 2009, 48, 6148. Sole, D.; Vallverdu, L.; Solans, X.; Fontbardia, M.; Bonjoch, J. J. Am. Chem. Soc. 2003, 125, 1587. Vila, J. M.; Pereira, M. T.; Alberdi, G.; Marino, M.; Fernandez, J. J.; Torres, M. U.; Ares, R. J. Organomet. Chem. 2002, 659, 67. Alami, M.; Amatore, C.; Bensalem, S.; Choukchoubrahim, A.; Jutand, A. Eur. J. Inorg. Chem. 2001, 2675.

(2) Gül, N.; Nelson, J. H.; Willis, A. C.; Rae, A. D. Organometallics 2002, 21, 2041.

(3) Vicente, J.; Abad, J. A.; Lopez-Saez, M.-J.; Jones, P. G. Organometallics 2010, 29, 409.

(4) See for example: Vicente, J.; Abad, J. A.; Gil-Rubio, J.; Jones, P. G. Organometallics **1995**, *14*, 2677.

(5) Vicente, J.; Abad, J. A.; López-Pelaez, B.; Martínez-Viviente, E. Organometallics 2002, 21, 58.

(6) Vicente, J.; Abad, J. A.; Gil-Rubio, J.; Jones, P. G.; Bembenek, E. Organometallics 1993, 12, 4151.

(7) Vicente, J.; Abad, J. A.; Martinez-Viviente, E.; Ramirez de Arellano, M. C.; Jones, P. G. Organometallics 2000, 19, 752.

(8) See for example: Vicente, J.; Abad, J. A.; Fernandez-de-Bobadilla, R.; Jones, P. G.; Ramirez de Arellano, M. C. *Organometallics* **1996**, *15*, 24.

(9) Frutos-Pedreño, R.; González-Herrero, P.; Vicente, J.; Jones, P. G. Organometallics **2012**, *31*, 3361.

(10) See for example: Oliva-Madrid, M. J.; García-López, J. A.; Saura-Llamas, I.; Bautista, D.; Vicente, J. Organometallics **2012**, *31*, 3647.

(11) Vicente, J.; Abad, J. A.; Shaw, K. F.; Gil-Rubio, J.; Ramirez de Arellano, M. C.; Jones, P. G. Organometallics **1997**, *16*, 4557.

(12) Vicente, J.; Abad, J. A.; López-Serrano, J.; Jones, P. G.; Nájera, C.; Botella-Segura, L. *Organometallics* **2005**, *24*, 5044.

(13) Vicente, J.; Chicote, M. T.; Abellán-López, A.; Bautista, D. Dalton Trans. 2012, 41, 752.

(14) Martínez-Martínez, A. J.; Chicote, M. T.; Vicente, J.; Bautista, D. Organometallics **2012**, *31*, 3711.

(15) Vicente, J.; Chicote, M. T.; Martínez-Martínez, A. J.; Jones, P. G.; Bautista., D. *Organometallics* **2008**, *27*, 3254.

(16) Vicente, J.; Arcas, A.; Blasco, M. A.; Lozano, J.; Ramirez de Arellano, M. C. Organometallics **1998**, *17*, 5374.

(17) Vicente, J.; Chicote, M. T.; Martinez-Martinez, A. J.; Abellan-Lopez, A.; Bautista, D. *Organometallics* **2010**, *29*, 5693.

(18) Vicente, J.; Arcas, A.; Juliá-Hernández, F.; Bautista, D. Angew. Chem., Int. Ed. 2011, 50, 6896.

(19) Vicente, J.; Arcas, A.; Juliá-Hernández, F.; Bautista, D. Chem. Commun. 2010, 46, 7253. Vicente, J.; Arcas, A.; Juliá-Hernández, F.; Bautista, D. Inorg. Chem. 2011, 5339; Inorg. Chem. 2011, 50, 5339.

(20) Langer, R.; Iron, M. A.; Konstantinovski, L.; Diskin-Posner, Y.; Leitus, G.; Ben-David, Y.; Milstein, D. Chem.-Eur. J. 2012, 18, 7196. Herbert, D. E.; Miller, A. D.; Ozerov, O. V. Chem.-Eur. J. 2012, 18, 7696. Schwartsburd, L.; Iron, M. A.; Konstantinovski, L.; Ben-Ari, E.; Milstein, D. Organometallics 2011, 30, 2721. Chuchuryukin, A. V.; Huang, R. B.; Lutz, M.; Chadwick, J. C.; Spek, A. L.; van Koten, G. Organometallics 2011, 30, 2819. Li, J.; Lutz, M.; Spek, A. L.; van Klink, G. P. M.; van Koten, G.; Gebbink, R. Organometallics 2010, 29, 1379. Kozlov, V. A.; Aleksanyan, D. V.; Nelyubina, Y. V.; Lyssenko, K. A.; Vasil'ev, A. A.; Petrovskii, P. V.; Odinets, I. L. Organometallics 2010, 29, 2054. Morgan, E.; MacLean, D. F.; McDonald, R.; Turculet, L. J. Am. Chem. Soc. 2009, 131, 14234. Pandarus, V.; Zargarian, D. Organometallics 2007, 26, 4321. Ozerov, O. V.; Watson, L. A.; Pink, M.; Caulton, K. G. J. Am. Chem. Soc. 2007, 129, 6003. MacInnis, M. C.; MacLean, D. F.; Lundgren, R. J.; McDonald, R.; Turculet, L. Organometallics 2007, 26, 6522. Salem, H.; Ben-David, Y.; Shimon, L. J. W.; Milstein, D. Organometallics 2006, 25, 2292. Gagliardo, M.; Rodriguez, G.; Dam, H. H.; Lutz, M.; Spek, A. L.; Havenith, R. W. A.; Coppo, P.; De Cola, L.; Hartl, F.; van Klink, G. P. M.; van Koten, G. Inorg. Chem. 2006, 45, 2143. Frech, C. M.; Milstein, D. J. Am. Chem. Soc. 2006, 128, 12434. Castonguay, A.; Sui-Seng, C.; Zargarian, D.; Beauchamp, A. L. Organometallics 2006, 25, 602. Kossoy, E.; Iron, M. A.; Rybtchinski, B.; Ben-David, Y.; Shimon, L. J. W.; Konstantinovski, L.; Martin, J. M. L.; Milstein, D. Chem.-Eur. J. 2005, 11, 2319. Stiriba, S. E.; Slagt, M. Q.; Kautz, H.; Gebbink, R.; Thomann, R.; Frey, H.; van Koten, G. Chem.-Eur. J. 2004, 10, 1267. Slagt, M. Q.; Rodriguez, G.; Grutters, M. M. P.; Gebbink, R.; Klopper, W.; Jenneskens, L. W.; Lutz, M.; Spek, A. L.; van Koten, G. Chem.-Eur. J. 2004, 10, 1331. Poverenov, E.; Gandelman, M.; Shimon, L. J. W.; Rozenberg, H.; Ben-David, Y.; Milstein, D. Chem.-Eur. J. 2004, 10, 4673. Koridze, A. A.; Kuklin, S. A.; Sheloumov, A. M.; Dolgushin, F. M.; Lagunova, V. Y.; Petukhova, I. I.; Ezernitskaya, M. G.; Peregudov, A. S.; Petrovskii, P. V.; Vorontsov, E. V.; Baya, M.; Poli, R. Organometallics 2004, 23, 4585. Fan, L.; Yang, L.; Guo, C. Y.; Foxman, B. M.; Ozerov, O. V. Organometallics 2004, 23, 4778. Fan, L.; Foxman, B. M.; Ozerov, O. V. Organometallics 2004, 23, 326. Danopoulos, A. A.; Wright, J. A.; Motherwell, W. B.; Ellwood, S. Organometallics 2004, 23, 4807. Danopoulos, A. A.; Tsoureas, N.; Wright, J. A.; Light, M. E. Organometallics 2004, 23, 166. Canty, A. J.; Denney, M. C.; van Koten, G.; Skelton, B. W.; White, A. H. Organometallics 2004, 23, 5432. Rodriguez, G.; Albrecht, M.; Schoenmaker, J.; Ford, A.; Lutz, M.; Spek, A. L.; van Koten, G. J. Am. Chem. Soc. 2002, 124, 5127. Gusev, D. G.; Maxwell, T.; Dolgushin, F. N.; Lyssenko, M.; Lough, A. J. Organometallics 2002, 21, 1095. Gusev, D. G.; Lough, A. J. Organometallics 2002, 21, 5091. Sundermann, A.; Uzan, O.; Milstein, D.; Martin, J. M. L. J. Am. Chem. Soc. 2000, 122, 7095. Gusev, D. G.; Madott, M.; Dolgushin, F. M.; Lyssenko, K. A.; Antipin, M. Y. Organometallics 2000, 19, 1734. Gusev, D. G.; Dolgushin, F. M.; Antipin, M. Y. Organometallics 2000, 19, 3429. Babu, R. P. K.; McDonald, R.; Cavell, R. G. Organometallics 2000, 19, 3462. Gossage, R. A.; Ryabov, A. D.; Spek, A. L.; Stufkens, D. J.; van Beek, J. A. M.; van Eldik, R.; van Koten, G. J. Am. Chem. Soc. 1999, 121, 2488. del Rio, I.; Gossage, R. A.; Hannu, M. S.; Lutz, M.; Spek, A. L.; van Koten, G. Organometallics 1999, 18, 1097. Babu, R. P. K.; McDonald, R.; Decker, S. A.; Klobukowski, M.; Cavell, R. G. Organometallics 1999, 18, 4226. Abbenhuis, H. C. L.; Feiken, N.; Grove, D. M.; Jastrzebski, J.;

Kooijman, H.; Vandersluis, P.; Smeets, W. J. J.; Spek, A. L.; van Koten, G. J. Am. Chem. Soc. **1992**, 114, 9773.

(21) Zhang, X. Q.; Wang, Z. X. J. Org. Chem. 2012, 77, 3658. Juliá-Hernández, F.; Arcas, A.; Bautista, D.; Vicente, J. Organometallics 2012, 31, 3736. Juliá-Hernández, F.; Arcas, A.; Vicente, J. Chem.-Eur. J. 2012, 18, 7780. Liu, N.; Wang, Z. X. J. Org. Chem. 2011, 76, 10031. Zhang, J.; Balaraman, E.; Leitus, G.; Milstein, D. Organometallics 2011, 30, 5716. Li, H. X.; Wang, X. T.; Huang, F.; Lu, G.; Jiang, J. L.; Wang, Z. X. Organometallics 2011, 30, 5233. Pilarski, L. T.; Szabo, K. J. Current Org. Chem. 2011, 15, 3389. Wang, Z. X.; Feng, X. K.; Fang, W. W.; Tu, T. Synlett 2011, 951. Gnanaprakasam, B.; Ben-David, Y.; Milstein, D. Adv. Synth. Catal. 2010, 352, 3169. Li, J.; Siegler, M.; Lutz, M.; Spek, A. L.; Gebbink, R.; van Koten, G. Adv. Synth. Catal. 2010, 352, 2474. Punji, B.; Emge, T. J.; Goldman, A. S. Organometallics 2010, 29, 2702. Bonnet, S.; Lutz, M.; Spek, A. L.; van Koten, G.; Gebbink, R. Organometallics 2010, 29, 1157. Kundu, S.; Choliy, Y.; Zhuo, G.; Ahuja, R.; Emge, T. J.; Warmuth, R.; Brookhart, M.; Krogh-Jespersen, K.; Goldman, A. S. Organometallics 2009, 28, 5432. McDonald, A. R.; Dijkstra, H. P.; Suijkerbuijk, B.; van Klink, G. P. M.; van Koten, G. Organometallics 2009, 28, 4689. Wang, Z. H.; Tonks, I.; Belli, J.; Jensen, C. M. J. Organomet. Chem. 2009, 694, 2854. Aydin, J.; Larsson, J. M.; Selander, N.; Szabo, K. J. Org. Lett. 2009, 11, 2852. Li, J.; Minnaard, A. J.; Gebbink, R.; van Koten, G. Tetrahedron Lett. 2009, 50, 2232. Bonnet, S.; van Lenthe, J. H.; Siegler, M. A.; Spek, A. L.; van Koten, G.; Gebbink, R. Organometallics 2009, 28, 2325. Yang, J.; Brookhart, M. Adv. Synth. Catal. 2009, 351, 175. Huang, Z.; Brookhart, M.; Goldman, A. S.; Kundu, S.; Ray, A.; Scott, S. L.; Vicente, B. C. Adv. Synth. Catal. 2009, 351, 188. Aydin, J.; Conrad, C. S.; Szabo, K. J. Org. Lett. 2008, 10, 5175. Sun, K.; Wang, L.; Wang, Z. X. Organometallics 2008, 27, 5649. Aydin, J.; Ryden, A.; Szabo, K. J. Tetrahedron: Asymmetry 2008, 19, 1867. Aydin, J.; Szabo, K. J. Org. Lett. 2008, 10, 2881. Aydin, J.; Kumar, K. S.; Eriksson, L.; Szabo, K. J. Adv. Synth. Catal. 2007, 349, 2585. Wang, L.; Wang, Z. X. Org. Lett. 2007, 9, 4335. Aydin, J.; Kumar, K. S.; Sayah, M. J.; Wallner, O. A.; Szabo, K. J. J. Org. Chem. 2007, 72, 4689. Gagliardo, M.; Chase, P. A.; Brouwer, S.; van Klink, G. P. M.; van Koten, G. Organometallics 2007, 26, 2219. Aydin, J.; Selander, N.; Szabo, K. J. Tetrahedron Lett. 2006, 47, 8999. Gomez-Benitez, V.; Baldovino-Pantaleon, O.; Herrera-Alvarez, C.; Toscano, R. A.; Morales-Morales, D. Tetrahedron Lett. 2006, 47, 5059. Szabo, K. J. Synlett 2006, 811. Baldovino-Pantaleon, O.; Hernandez-Ortega, S.; Morales-Morales, D. Adv. Synth. Catal. 2006, 348, 236. Hahn, F. E.; Jahnke, M. C.; Gomez-Benitez, V.; Morales-Morales, D.; Pape, T. Organometallics 2005, 24, 6458. Solin, N.; Wallner, O. A.; Szabo, K. J. Org. Lett. 2005, 7, 689. Wallner, O. A.; Szabo, K. J. Org. Lett. 2004, 6, 1829. Slagt, M. Q.; Stiriba, S. E.; Kautz, H.; Gebbink, R.; Frey, H.; van Koten, G. Organometallics 2004, 23, 1525. Beletskaya, I. P.; Chuchuryukin, A. V.; van Koten, G.; Dijkstra, H. P.; van Klink, G. P. M.; Kashin, A. N.; Nefedov, S. E.; Eremenko, I. L. Russ. J. Org. Chem. 2003, 39, 1268. Slagt, M. Q.; Jastrzebski, J.; Gebbink, R.; van Ramesdonk, H. J.; Verhoeven, J. W.; Ellis, D. D.; Spek, A. L.; van Koten, G. Eur. J. Org. Chem. 2003, 1692. Guillena, G.; Rodriguez, G.; van Koten, G. Tetrahedron Lett. 2002, 43, 3895. Dijkstra, H. P.; Meijer, M. D.; Patel, J.; Kreiter, R.; van Klink, G. P. M.; Lutz, M.; Spek, A. L.; Canty, A. J.; van Koten, G. Organometallics 2001, 20, 3159. Morales-Morales, D.; Lee, D. W.; Wang, Z. H.; Jensen, C. M. Organometallics 2001, 20, 1144. Lee, D. W.; Kaska, W. C.; Jensen, C. M. Organometallics 1998, 17, 1. O'Reilly, M. E.; Del Castillo, T. J.; Falkowski, J. M.; Ramachandran, V.; Pati, M.; Correia, M. C.; Abboud, K. A.; Dalal, N. S.; Richardson, D. E.; Veige, A. S. J. Am. Chem. Soc. 2011, 133, 13661.

(22) Lee, C. S.; Zhuang, R. R.; Wang, J. C.; Hwang, W. S.; Lin, I. J. B. Organometallics 2012, 31, 4980. Kang, P.; Cheng, C.; Chen, Z. F.; Schauer, C. K.; Meyer, T. J.; Brookhart, M. J. Am. Chem. Soc. 2012, 134, 5500. Luca, O. R.; Konezny, S. J.; Blakemore, J. D.; Colosi, D. M.; Saha, S.; Brudvig, G. W.; Batista, V. S.; Crabtree, R. H. New J. Chem. 2012, 36, 1149. D'Auria, I.; Mazzeo, M.; Pappalardo, D.; Lamberti, M.; Pellecchia, C. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 403. Gunanathan, C.; Gnanaprakasam, B.; Iron, M. A.; Shimon, L. J. W.; Milstein, D. J. Am. Chem. Soc. 2010, 132, 14763. Ma, G. B.; Ferguson,

M. J.; McDonald, R.; Cavell, R. G. Organometallics 2010, 29, 4251. Mazzeo, M.; Lamberti, M.; D'Auria, I.; Milione, S.; Peters, J. C.; Pellecchia, C. J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 1374. Csok, Z.; Vechorkin, O.; Harkins, S. B.; Scopelliti, R.; Hu, X. L. J. Am. Chem. Soc. 2008, 130, 8156. Zhou, X.; Pan, Q. H.; Li, M. X.; Xia, B. H.; Zhang, H. X. J. Mol. Struct. (Theochem) 2007, 822, 65. Batema, G. D.; van de Westelaken, K. T. L.; Guerra, J.; Lutz, M.; Spek, A. L.; van Walree, C. A.; Donega, C. D.; Meijerink, A.; van Klink, G. P. M.; van Koten, G. Eur. J. Inorg. Chem. 2007, 1422. Ghosh, R.; Zhang, X. W.; Achord, P.; Emge, T. J.; Krogh-Jespersen, K.; Goldman, A. S. J. Am. Chem. Soc. 2007, 129, 853.

(23) Kuwabara, J.; Kanbara, T. J. Photopolym. Sci. Technol. 2008, 21, 349. Okamoto, K.; Kanbara, T.; Yamamoto, T.; Wada, A. Organometallics 2006, 25, 4026. Akaiwa, M.; Kanbara, T.; Fukumoto, H.; Yamamoto, T. J. Organomet. Chem. 2005, 690, 4192.

(24) Moreno, I.; SanMartín, R.; Inés, B.; Herrero, M.-T.-.; Domínguez, E. *Curr. Org. Chem.* **2009**, *13*, 878. Fogler, E.; Balaraman, E.; Ben-David, Y.; Leitus, G.; Shimon, L. J. W.; Milstein, D. *Organometallics* **2011**, *30*, 3826. Vuzman, D.; Poverenov, E.; Shimon, L. J. W.; Diskin-Posner, Y.; Milstein, D. *Organometallics* **2008**, *27*, 2627. Poverenov, E.; Gandelman, M.; Shimon, L. J. W.; Rozenberg, H.; Ben-David, Y.; Milstein, D. *Organometallics* **2005**, *24*, 1082.

(25) Aragay, G.; Pons, J.; García-Antón, J.; Solans, X.; Font-Bardía, M.; Ros, J. J. Organomet. Chem. 2008, 693, 3396. Wallis, C. J.; Kraft, I. L.; Murphy, J. N.; Patrick, B. O.; Mehrkhodavandi, P. Organometallics 2009, 28, 3889. Fuertes, S.; Brayshaw, S. K.; Raithby, P. R.; Schiffers, S.; Warren, M. R. Organometallics 2012, 31, 105. Lusby, P. J.; Müller, P.; Pike, S. J.; Slawin, A. M. Z. J. Am. Chem. Soc. 2009, 131, 16398. Crosby, S. H.; Clarkson, G. J.; Rourke, J. P. J. Am. Chem. Soc. 2009, 131, 14142.

(26) Crosby, S. H.; Clarkson, G. J.; Deeth, R. J.; Rourke, J. P. Organometallics **2010**, *29*, 1966.

(27) Thomas, H. R.; Deeth, R. J.; Clarkson, G. J.; Rourke, J. P. Organometallics **2011**, 30, 5641.

(28) Vicente, J.; Abad, J. A.; Jones, P. G. Organometallics **1992**, *11*, 3512.

(29) Vicente, J.; Abad, J.-A.; Rink, B.; Hernández-Mata, J. S.; Ramírez de Arellano, M. C. *Organometallics* **1997**, *16*, 5269.

(30) Takenaka, K.; Minakawa, M.; Uozumi, Y. J. Am. Chem. Soc. 2005, 127, 12273.

(31) Reitsamer, C.; Stallinger, S.; Schuh, W.; Kopacka, H.; Wurst, K.; Obendorf, D.; Peringer, P. *Dalton Trans.* **2012**, 3503.

(32) Vicente, J.; Abad, J. A.; Gil-Rubio, J.; Jones, P. G. Inorg. Chim. Acta 1994, 222, 1.

(33) Garcia-Lopez, J. A.; Oliva-Madrid, M. J.; Saura-Llamas, I.; Bautista, D.; Vicente, J. Chem. Commun. 2012, 48, 6744.

(34) See for example: Vicente, J.; Abad, J. A.; Lopez-Nicolas, R.-M.; Jones, P. G. Organometallics **2011**, 30, 4983.

(35) Vicente, J.; Saura-Llamas, I.; Turpín, J.; Ramírez de Arellano, M. C.; Jones, P. G. *Organometallics* **1999**, *18*, 2683.

(36) Vicente, J.; Abad, J. A.; Lopez-Serrano, J.; Clemente, R.; Ramirez de Arellano, M. C.; Jones, P. G.; Bautista, D. *Organometallics* **2003**, *22*, 4248.

(37) See for example: Vicente, J.; Martinez-Viviente, E.; Fernandez-Rodriguez, M.-J.; Jones, P. G. *Organometallics* **2009**, *28*, 5845.

(38) Maassarani, F.; Pfeffer, M.; Le Borgne, G. J. Chem. Soc., Chem. Commun. 1986, 488. Maassarani, F.; Pfeffer, M.; Le Borgne, G. Organometallics 1987, 6, 2029. Dupont, J.; Pfeffer, M.; Le Borgne, G. Organometallics 1987, 6, 2043. Dupont, J.; Pfeffer, M.; Le Borgne, G. Organometallics 1987, 6, 2043. Dupont, J.; Pfeffer, M.; Le Borgne, G. Organometallics 1987, 6, 2043. Dupont, J.; Pfeffer, M.; Daran, J. C.; Gouteron, J. J. Chem. Soc., Dalton Trans. 1988, 2421. Maassarani, F.; Pfeffer, M.; van Koten, G. Organometallics 1989, 8, 871. de Felice, V.; Cucciolito, M. E.; de Renzi, A.; Ruffo, F.; Tesauro, D. J. Organomet. Chem. 1995, 493, 1. Yagyu, T.; Osakada, K.; Brookhart, M. Organometallics 2000, 19, 2125. Reddy, K. R; Surekha, K; Lee, G.-H.; Peng, S.-M.; Liu, S.-T. Organometallics 2001, 20, 5557. Campora, J.; Lopez, J. A.; Palma, P.; del Rio, D.; Carmona, E.; Valerga, P.; Graiff, C.; Tiripicchio, A. Inorg. Chem. 2001, 40, 4116. Yagyu, T.; Hamada, M.; Osakada, K.; Yamamoto, T. Organometallics 2001, 20, 1087. Yagyu, T.; Osakada, K. Bull. Chem. Soc. Jpn. 2001, 74, 1435. Knorr, M.; Jourdain, I.; Braunstein, P.; Strohmann, C.; Tiripicchio, A.; Ugozzoli, F. Dalton Trans. 2006, 5248. Albert, J.; Granell, J.; Luque, A.; Font-Bardia, M.; Solans, X. Polyhedron 2006, 25, 793. Gonzalez, A.; Lopez, C.; Solans, X.; Font-Bardia, M.; Molins, E. J. Organomet. Chem. 2008, 693, 2119. Nieto, S.; Arnau, P.; Serrano, E.; Navarro, R.; Soler, T.; Cativiela, C.; Urriolabeitia, E. P. Inorg. Chem. 2009, 48, 11963.

(39) Pinna, G. A.; Pirisi, M. A.; Paglietti, G. J. Chem. Res., Synop. 1990, 360. Ngwerume, S.; Camp, J. E. J. Org. Chem. 2010, 75, 6271. Ngwerume, S.; Camp, J. E. Chem. Commun. 2011, 47, 1857.

(40) Heaney, F.; McCarthy, T.; Mahonb, M.; McKeec, V. Org. Biomol. Chem. 2005, 3, 4351.

(41) The bromo derivatives 3aBr and 3bBr were obtained contaminated with about 5% of the corresponding chloro complex, 3aCl or 3bCl. This result must be attributed to the presence of (BrCH₂pyH-2)Cl in the pyridine reagent because its ¹H NMR spectrum showed only one cationic species and the impurity formed whether or not a chlorinated solvent was used. Analytically pure complexes 3aBr and 3bBr were isolated after treating the crude compounds with excess NaBr in acetone.

(42) HRMS (ESI+, m/z): calcd for $C_{17}H_{21}N_2O_4$ ([M]⁺ + 2 H⁺) 317.1501, found 317.1506. ¹H NMR (300 MHz, CDCl₃, 25 °C): 2.32 (s, 3 H, Me), 3.85 (s, 3 H, OMe⁴), 3.88 (s, 6 H, OMe³⁺⁵), 5.39 (s, 2 H, CH₂), 6.87 (s, 2 H, H²⁺⁶, Ar), 7.21 (m, 1 H, py), 7.42 (d, 1 H, py, ³J_{HH} = 8 Hz), 7.70 (td, 1 H, py, ³J_{HH} = 8 Hz, ⁴J_{HH} = 2 Hz), 8.59 (m, 1 H, py). ¹³C{¹H}-APT NMR (75 MHz, CDCl₃, 25 °C): 13.1 (Me), 56.1(OMe³⁺⁵), 60.8 (OMe⁴), 76.6 (CH₂), 103.5 (CH²⁺⁶, Ar), 121.6 (CH, py), 12.3 (CH, py), 131.9 (C), 136.5 (CH, py), 139.1 (C), 149.1 (CH, py), 153.0 (C³⁺⁵), 155.2 (C), 158.4 (C).

(43) CCDC version 5.33, updated Nov 2011.

(44) Broring, M.; Brandt, C. D.; Link, S. Inorg. Chim. Acta 2005, 358, 3122.