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Identification and optimization of a novel series
of [2.2.1]-oxabicyclo imide-based androgen receptor antagonists
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Abstract—A novel series of [2.2.1]-oxabicyclo imide-based compounds were identified as potent antagonists of the androgen recep-
tor. Molecular modeling and iterative drug design were applied to optimize this series. The lead compound [3aS-(3aa,4b,5b,7b,7aa)]-
4-(octahydro-5-hydroxy-4,7-dimethyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl)-2-iodobenzonitrile was shown to have potent in vivo
efficacy after oral dosing in the CWR22 human prostate tumor xenograph model.
Published by Elsevier Ltd.
Carcinoma of the prostate (CaP) is the 2nd leading
cause of cancer related death in men in the United
States.1 The androgen receptor (AR) is a ligand binding
transcription factor in the nuclear hormone receptor
super family and is a key molecular target in the etiology
and progression of prostate cancer. Androgen ablation
via surgical castration or by chemical castration with a
luteinizing hormone releasing hormone agonist, in com-
bination with an anti-androgen,2 is currently the treat-
ment of choice for advanced CaP. Although this
therapy initially shows an 80–90% response rate,3

approximately 50% of patients progress to fatal andro-
gen independent CaP (AI-CaP) after about 18 months
of treatment.4 Recent data have shown that cytotoxic
0960-894X/$ - see front matter Published by Elsevier Ltd.

doi:10.1016/j.bmcl.2008.02.006

Keywords: Androgen receptor; Prostate cancer; AR antagonist;

CWR22R; [2.2.1]-Oxabicyclo.
* Corresponding author. Tel.: +1 609 818 5259; fax: +1 609 818

5880; e-mail: mark.salvati@bms.co
agents such as Docetaxel5 can be effective in the treat-
ment of AI-CaP, however the survival benefit is mini-
mal. Recent advances in the field have shown that
reactivation of the AR signaling pathway is the root
cause for the development of AI-CaP.6 The identifica-
tion of the role of the AR in AI-CaP suggests that
new agents which act at the level of the AR may be effec-
tive in the treatment of this disease. For this reason, we
are interested in identifying novel small molecule antag-
onists of the AR that are more effective than the current
AR antagonists at targeting the AR in AI-CaP.

Previous work from our laboratories has described a
series of bicyclic imide7 and hydantoin-based8 AR
antagonists (1, 2 & 3, Table 1). As found with the clin-
ically used anti-androgens bicalutamide3 (4) and
hydroxyflutamide3 (5), our series of AR antagonists
demonstrated potent binding (Ki) to, and functional
antagonism (IC50) of the wild type (WT) AR as found
in the MDA-453 cell line.9 Subsequent efforts led to
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Table 1. Initial AR antagonist leads
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Compound # MDA-453 Ki
a (nM) MDA-453 IC50

b (nM)

1 360 152

2 21 130

3 40 774

4 64 173

5 43 26

6 3.0 >5000

a Binding (Ki) determined through direct displacement with [3H]-DHT in the MDA-453 cell line.9

b Functional antagonist activity (IC50) determined through a transiently transfected reporter assay system utilizing the secreted alkaline phosphatase

reporter gene driven by the AR-dependent, PSA promoter.9
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the discovery of a new series of [2.2.1]-oxabicyclo imide-
based analogs (6)9,10 which demonstrated potent bind-
ing to, but weak antagonism of the WT AR. Mouse oral
PK studies of key analogs from our imide, hydantoin
and oxabicyclo series of AR antagonists, as well as bica-
lutamide (Table 2), revealed that of our three series, the
oxabicyclo series possessed the most optimal oral PK
Table 2. Mouse oral PK profiles11

Compound # Dose

(mmol/kg)

Cmax

(lM)

Tmax

(h)

AUC (0–6 h)

lM h

Bicalutamide (4) 0.1 110 0.5 768

1 0.1 0.023 0.5 0.056

2 0.1 1.74 0.5 11.4

6 0.1 100 0.5 11.4

Table 3. SAR around aniline and naphthyl portiona
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a Synthesis previously described.10,12 See Scheme 1.
profile. As our goal was to identify a new orally active
anti-androgen for the treatment of CaP, we focused on
improving the in vitro profile of our new [2.2.1]-oxabicy-
clo imide-based AR antagonists.

For our first approach to improve upon the lead com-
pound 6, we explored replacement of the 4-nitronaph-
thyl group with a series of substituted aniline and
naphthyl groups which had previously been shown to
improve antagonist activity in our earlier series.7,8,10,12

As shown in Table 3, all attempts to replace the 4-nitro-
naphthyl group led to a dramatic drop in binding to the
AR (Ki), but improved overall antagonist activity (IC50).

To aid us in our efforts to improve the potency of our
[2.2.1]-oxabicyclo imide series, we turned to a modeling
und # R Ki (nM) MDA 453 IC50
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Table 4. SAR around aniline portion for 4,7-dimethyl analogsa
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approach. Previous efforts from this lab have led to the
first crystal structures of the AR with DHT as well as
small molecule analogs from our earlier bicyclic imide
series.13,7 Using our available structural information,
we constructed a model of compound 6 bound into
the AR ligand binding domain (LBD).14 Utilizing the
minimized model shown in Figure 1, we explored poten-
tial sites where we could engineer interactions between
compound 6 and the AR LBD protein backbone. As
seen in Figure 1, we noted that adjacent to the C-4
and C-7 positions of the oxabicyclo ring system are
two methionine residues (M780 and M895). M780 is lo-
cated on the linker region between helix 6 and 7, on one
side of the ligand binding pocket, while M895 resides on
the hinge region of helix 12, on the opposite side of the
ligand binding pocket. Extending a methyl group from
the C-4 and C-7 position of the oxabicyclo core should
result in positive lipophilic interactions with each of
the methionine residues, generating improved binding
of the ligand to the LBD. The crystal structure of AR
Figure 1. (A) Docking of a probe compound into the AR LBD. View

of AR LBD binding site with a portion of the backbone ribbon (red)

removed for clarity. Key side chains are displayed and colored by atom

type (C white, N blue, O red). Residues M780 and M895 are in gold

CPK rendering. Probe compound is shown in stick form colored by

atom type (C yellow, N blue, O red) with the C-4 and C-7 methyl

groups in green.
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Figure 2. Effects of methyl groups at C-4 and C7 positions.
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Figure 3. Lead compounds 34a and 34b.
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with DHT shows a similar interaction between M780
and the C15-C16 atoms of DHT.13 Additional AR co-
crystal structures demonstrate interactions between
M895 and residues from several non-steroidal AR
agonists.15

To validate this model, we designed a series of [2.2.1]-
oxabicyclo imide analogs having a methyl at the C-4
or both the C-4 and C-7 positions of the molecule.10,12

Figure 2 shows the results of one set of analogs synthe-
sized. Compound 15 demonstrates weak binding to and
antagonism of the AR. Addition of a C-4 methyl group
(compound 16), demonstrates a 10-fold improvement in
binding and antagonist activity. The opposite antipode
of compound 16 showed a similar increase in binding
to the AR (data not shown). Addition of a second
methyl at the C-7 position yields compound 17, which
again results in a 10 fold increase in both binding and
potency as compared to the mono-methyl analog 16.
To expand on this observation, we once again explored
an array of substitutions at the aniline portion of the
molecule. As seen in Table 4, addition of a methyl group
at the C-4 and C-7 position of the [2.2.1]-oxabicyclo
imide core consistently resulted in improved binding to
and antagonism of the AR though a wide variety of ani-
line replacements. Through this exercise, we were able to
identify compound 19 as the most potent analog in our
series. Compound 19 demonstrates a 64-fold improve-
ment in binding affinity and a 25-fold improvement in
antagonist activity as compared to bicalutamide (4). De-
spite the potent activity of compound 19, this compound
was found to be rapidly metabolized by liver micro-
somes (human liver microsome rate: 0.8 nmol/min/mg
protein),16 and thus was not suitable for progression
as an oral agent.

Past work in our group and literature reports10,12,17 had
shown that functionalization at the C-5 position of the
oxo-bicyclo ring system resulted in improved metabolic
stability. Based on this observation, we synthesized the
C-5 hydroxyl analog of compound 19. Scheme 1 shows
the general pathway used to make the two enantiomers
of the C-5 hydroxylated analog of compound 19, details
of which have previously been published.12 The synthe-
sis begins with commercially available 4-nitroaniline
which is treated with I2 in the presence of AgSO4 to yield
NH2
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Scheme 1. Synthesis of C-5 hydroxy compounds 34a and 34b. Reagents and

0 �C, then NaBF4, 0 �C; (c) CuCN (0.1 equiv), KCN (1.0 equiv), H2O, 22 �C

EtOH, 60 �C (97%); (e) AcOH, 110 �C (90%); (f) neat 2,5-dimethylfuran, 60 �
(pH 7), H2O2, 0 �C (25%); (h) chiral HPLC.
2-iodo-4-nitroaniline. 2-Iodo-4-nitroaniline was treated
with NaNO2 to form the diazonium salt, which was then
treated with a mixture of CuCN and KCN to yield 2-
iodo-4-nitrobenzonitrile. Reduction of the nitro group
was achieved with iron powder to give 4-amino-2-
iodobenzonitrile (30). 4-Amino-2-iodobenzonitrile and
furan-2,5-dione (31) were heated together in the pres-
ence of acetic acid to yield 4-(2,5-dioxo-2,5-dihydro-
1H-pyrrol-1-yl)-2-iodobenzonitrile (32), which was car-
ried forward in a Diels–Alder reaction with 2,5-dimeth-
ylfuran to yield intermediate 33. Hydroboration of
intermediate 33 is achieved through treatment with bor-
ane-dimethylsulfide to yield the racemic mixture of com-
pounds 34a and 34b, which were separated by chiral
HPLC using standard conditions. The crystal structure
of compound 34a was determined, establishing the abso-
lute stereochemistry of both enantiomers.18

As seen in Figure 3, enantiomers 34a and 34b, demon-
strated high metabolic stability in liver microsomes
and potent binding to, and antagonism of, the AR.
Enantiomer 34b demonstrated an 3-fold increase in
binding relative to 34a, even though this compound
showed a slight decrease in antagonist activity. With this
data, we returned to our original model to try to better
understand the difference in binding found between the
two enantiomers. Figure 4A and B shows the binding
models for both enantiomers 34a and 34b in the AR
LBD structure. Interestingly, the models suggest that
for both enantiomers 34a and 34b a H-bond can exist
between the bridgehead oxygen as well as the C-5 hydro-
NO
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32

34a(S) and 34b(R)

conditions: (a) I2, AgSO4, EtOH, 22 �C (95%); (b) NaNO2, HCl, H2O,

(44% over b and c); (d) iron powder (325 mesh), NH4Cl (aq), THF,

C (94%); (g) borane-dimethylsulfide, 0–25 �C, then Na2HPO4/KH2PO4



Table 5. CWR22R xenograft study: mice were dosed orally in a vehicle

of PEG-400/Tween 80 (80:20) for 62 consecutive days with compound

34a or bicalutamide (4)

Drug 34a 34a bicalutamide (4)
Dose (mpk) 10 90 50

Mean exposure  @ 
1 and 24 h (μM) 26, 8 55.5, 23.6 48.5, 86.0

Stdev (μM) 3, 1.7 4.6, 15.6 19.4, 11.0
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xyl group and N-705 of helix 3, in the AR LBD binding
pocket. In previous AR co-crystal structures, the N705
residue has been shown to make critical hydrogen bond
interactions with the C-17 hydroxyl group of DHT13 as
well as key hydroxyl residues of other non-steroidal AR
agonist ligands.15 In the case of enantiomer 34b, an
additional H-bond may occur from the C-5 hydroxyl
group to T877 of the AR LBD, which completely reca-
pitulates the bifurcated hydrogen bond network seen
with the C-17 hydroxyl of DHT to T877 of the AR
LBD in the co-crystal structure.13 Thus, the model ap-
pears to predict the observed binding data and suggests
that compound 34b should have improved binding rela-
tive to compound 34a, due to the additional formation
of an H-bond to T-877. As is often noted for ligands
of nuclear hormone receptors, the binding affinities of
compounds 34a and 34b do not correlate with their
functional antagonist activities.

Due to the improved metabolic stability16 and suitable
antagonist activity found with compound 34a, we ad-
vanced this compound forward into efficacy studies in
the CW22R human tumor xenograft model.19 Compound
Figure 4. (A) Docking of compound 34a into the AR LBD. (B)

Docking of compound 34b into the AR LBD. View of AR LBD

binding site with a portion of the backbone ribbon (red) removed for

clarity. Key side chains are displayed and colored by atom type (C

white, N blue, O red). Dotted lines signify potential hydrogen bonds

from key amino acid residues (N705 and T877) to specific atoms on

ligands with the distance of each potential hydrogen bond listed in

angstroms. Compound 34a and 34b are shown in stick form colored by

atom type (C yellow, N blue, O red).

Plasma samples were taken 1 and 24 h post-dose on day 60 and drug

concentrations were measured.21 Tumor volumes were measured twice

weekly.21
34a was tested along side bicalutamide (4) in this model,
with daily oral dosing. As can been seen in Table 5, com-
pound 34a demonstrated superior efficacy in this model
despite achieving significantly lower plasma levels than
that of bicalutamide. It should be noted that the dose of
bicalutamide used in these studies generates plasma levels
consistent with levels clinically found in humans.20

In summary, we have identified a novel series of [2.2.1]-
oxabicycloimide-based AR antagonists. Through molec-
ular modeling approaches and an iterative drug design
process we identified several unique contact points in
the AR LBD binding pocket which we were able to ex-
ploit to increase the affinity of our early [2.2.1]-oxabicy-
clo imide-based leads. Ultimately, we were able to
identify the highly potent compounds 34a and 34b.
Compound 34a demonstrated significantly improved
efficacy relative to the clinically used anti-androgen bica-
lutamide (4) in the CWR22R human prostate xenograft
model. This work serves to demonstrate pre-clinical
proof of concept that novel AR antagonists can be
developed that may demonstrate improved efficacy for
the treatment of advanced CaP. The unique interactions
identified through our application of modeling have
since been exploited in the design of additional novel
AR antagonists for the treatment of advanced CaP,
the subject of which will be described elsewhere.
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