Hydrogen bonding Part 38. IR and thermodynamic study of phosphorylcholine chloride calcium salt tetrahydrate and monohydrate

Kenneth M. Harmon and Anne C. Akin

Department of Chemistry, Oakland University, Rochester, MI 48309 (USA) (Received 11 April 1991)

Abstract

Vapor pressure vs. H_2O content studies demonstrate that phosphorylcholine chloride calcium salt forms two hydrates, a monohydrate and a tetrahydrate, in the range 0-4 mol H_2O mol⁻¹ of salt; there is no dihydrate or trihydrate. Equilibrium vapor pressure measurements show that ΔH^0 of dissociation per mol H_2O lost is greater for the tetrahydrate (16.08 kcal mol⁻¹) than for the monohydrate (12.49 kcal mol⁻¹); the lower stability of the tetrahydrate arises from entropy effects. The IR spectrum of the tetrahydrate is that of a framework clathrate hydrate and suggests that the -PO₃ group may act as a very weak hydrogen-bond acceptor. In the monohydrate the -PO₃ group is not involved in hydrogen bonding. Neither hydrate contains P-OH bonds.

INTRODUCTION

As an initial step in a program directed toward the study of hydration of model compounds for the head group of phosphatidylcholine we chose to examine the lower hydrates of phosphorylcholine chloride calcium salt (PCCCa). The objectives of this study were to examine hydrate stoichiometry through H_2O content vs. vapor pressure measurements and to determine thermodynamic parameters for the dissociation of hydrates by equilibrium vapor pressure studies. In addition we wished to examine the IR spectra of PCCCa hydrates to determine the extent to which the $-PO_3$ group might act as an acceptor to hydrogen bonds from H_2O .

EXPERIMENTAL

Phosphorylcholine chloride was obtained from Sigma (St. Louis, MO); NMR analysis [1] showed it to be a tetrahydrate (4.00 mol H_2O mol⁻¹ salt). Anhydrous phosphorylcholine chloride was prepared by drying the tetrahydrate in

vacuo at 60° C over P_2O_5 for one week. The sample of the monohydrate used for the IR spectrum was taken from the vapor pressure cell after the water content had been reduced to the monohydrate level.

The vapor pressure apparatus has been described elsewhere [2]. IR spectra were recorded on a Perkin-Elmer Model 283 Spectrophotometer as Nujol mulls on CsI plates. The monohydrate and anhydrous samples were handled in an efficient glove box under dry N_2 .

RESULTS AND DISCUSSION

Stoichiometry and thermodynamics

A plot of vapor pressure vs. H_2O content (Fig. 1) shows plateaus for the tetrahydrate and monohydrate, and the absence of a trihydrate or dihydrate. There is a significant fall off of pressure in the region between 2.5 and 1.0 mol H_2O mol⁻¹ salt which may indicate a solid solution in this region, but no plateau which can be associated with a dihydrate.

In variable temperature studies both PCCCa· H_2O and PCCCa· $4H_2O$ gave excellent straight line plots of $\ln P^n$ vs. 1/T (Figs. 2 and 3). Thermodynamic values derived from these plots are shown in Table 1.

The enthalpy of dissociation of a higher hydrate to a lower hydrate cannot be used to estimate hydrogen bond strength or other forces binding H₂O in the higher hydrate, as the bonds in the lower hydrate will be of a different type [3]. It is better to consider the total dissociation of the higher hydrate, followed by reformation of the lower hydrate. Application of Hess's law shows that the total ΔH^0_{diss} for a higher hydrate is the sum of ΔH^0_{diss} for that hydrate and the ΔH^0_{diss} values for any lower hydrates [3]. This yields 64.33 kcal mol⁻¹ for the enthalpy of dissociation of PCCCa·4H₂O to PCCCa and 4H₂O; or 16.08 kcal mol⁻¹ per H₂O lost. This is significantly higher than the value of 12.49 kcal

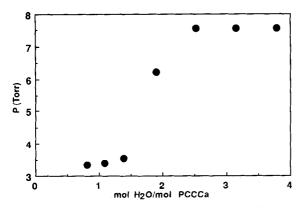


Fig. 1. Plot of H_2O vapor pressure over phosphorylcholine chloride calcium salt at 70 °C.

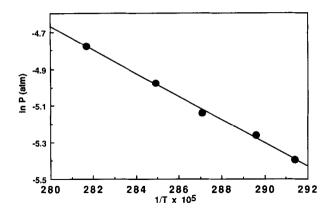


Fig. 2. Plot of $\ln P$ vs. 1/T for phosphorylcholine chloride calcium salt monohydrate.

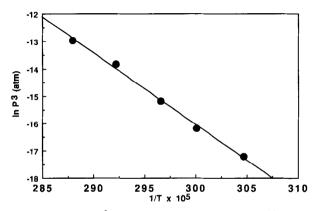


Fig. 3. Plot of $\ln P^3$ vs. 1/T for phosphorylcholine chloride calcium salt tetrahydrate.

TABLE 1

Constants in the equations $\ln P^n = -(a/T) + b$ for phosphorylcholine chloride calcium salt (tetrahydrate and monohydrate) and derived thermodynamic data for the dissociation of these hydrates at 25 °C

Hydrate	$H_2O \\ lost = n$	a	b	R ²	St. error	ΔG^{0} (kcal mol ⁻¹)	ΔH^0 (kcal mol ⁻¹)	⊿S ⁰ (e.u.)
Tetrahydrate Monohydrate	3 1				0.133 0.016	14.97 4.83	51.84 12.49	123.6 25.68

 mol^{-1} found for loss of one mol H₂O from PCCCa·H₂O. PCCCa·4H₂O is less stable than PCCCa·H₂O; that is, it develops higher pressures of H₂O over a lower temperature range (about 2.5–10 Torr at 55–74°C) than PCCCa·H₂O does (about 3.5–6.5 Torr at 70–82°C). This arises from the greater ΔS^0_{diss} per mol H_2O in PCCCa·4 H_2O ; hydrogen bonds or other intermolecular forces binding H_2O are stronger in the tetrahydrate than in the monohydrate.

It is not possible to apportion $\Delta H^0_{\rm diss}$ among the possible modes of binding H_2O in these hydrates in the absence of structural information. There are four possible hydrogen-bond acceptor sites $(H_2O, Cl^-, -PO_3^{2-} \text{ group and } C-O-P \text{ oxygen})$, and H_2O may also be complexed by the Ca^{2+} ion. Since H_2O is likely to be at least as tightly complexed with Ca^{2+} in PCCCa· H_2O as in PCCCa· $4H_2O$, the extra $\Delta H^0_{\rm diss}$ per mol H_2O in the tetrahydrate presumably comes from stronger hydrogen bonding, but we cannot at this time determine precisely which hydrogen bonds are involved.

IR spectra

The IR absorptions associated with bound H_2O in PCCCa· H_2O and PCCCa· $4H_2O$ are listed in Table 2. The spectrum of PCCCa· $4H_2O$ is that of a typical framework clathrate hydrate, in which H_2O and anionic sites form an extended structure. The presence of two stretching absorptions indicates that both stronger and weaker hydrogen bonds are present. However, the relatively high frequency for ν_s H–O–H and the low frequency for ν_r H–O–H demonstrate that such hydrogen bonds are not particularly strong. The H₂O molecule in PCCCa·H₂O is very weakly hydrogen bonded, if at all; ν_s H–O–H is at 3400 cm⁻¹, and ν_r H–O–H, the librational mode characteristic of hydrogen-bonded H₂O, cannot be observed. With the additional fact that H₂O in PCCCa·H₂O is primarily complexed by Ca²⁺, with the possibility of very weak hydrogen bonds to Cl⁻.

As we have noted before [4,5], it is sometimes useful to discuss the vibrations of a portion of a molecular structure in terms of the local symmetry of that region. The local symmetry of the phosphorus atom and the four oxygens attached to it in PCCCa is C_{3v} , since three oxygens are identical and one (the ester oxygen) is different. The absorptions associated with P–O vibrations in

TABLE 2

Infrared absorptions associated with $\rm H_2O$ vibrations in phosphorylcholine chloride calcium salt and its $\rm hydrates^{a,b,c}$

Vibration Assignment		PCCCa·H ₂ O	PCCCa·4H ₂ O	
ν _s H-O-H	H-O-H stretch	3430, 3230 bvs	3400 bm	
ν _b H-O-H	H-O-H bend	1680 sh, 1605 s	1650 w	
ν _r H-O-H	H-O-H rock	630 bs ^d	e	

^aUnits are cm⁻¹ (wavenumbers). ^bNujol mulls on CsI plates. ^cSymbols used: s, strong; m, medium; w, weak; b, broad; v, very; sh, shoulder. ^dPartially masked by P-O absorptions. ^eNot observed.

PCCCa·4H₂O, PCCCa·H₂O and anhydrous PCCCa are listed in Table 3, and are assigned for the purposes of this discussion under local C_{3v} symmetry. Since the phosphorylcholine anion very likely assumes a conformation in which the C-N and C-O bonds are gauche about the C-C σ -bond [6] the actual symmetry of the molecule would be C_1 . However, the principal absorptions of the PO₄ subunit would be those allowed by the local symmetry, which are expected to have the greatest transition dipole moments [7].

The assignments listed in Table 3 were derived by consideration of how the known vibrational modes of the PO_4^{3-} ion [8] would be expected to change as symmetry changes from T_d to C_{3v} [9], and are in good agreement with assignments made on a large number of R–PO₃ species [10]. There is some debate over the assignment of the C–O–P stretching mode; our assignment is similar to that of Nyquist [11]. Proton transfer from H₂O to the phosphorus oxygen has not occurred in either hydrate as there are no absorptions in the 2700–2500 cm⁻¹ region assigned to P–OH bonds (for a review see ref. 10).

Examination of the IR spectra of PCCCa \cdot H₂O and anhydrous PCCCa (Fig. 4B and C; Table 3) shows that the absorptions associated with P–O vibrations are essentially superimposable on each other. There is no indication that the –PO₃ group in PCCCa \cdot H₂O is in any way perturbed by the presence of the H₂O molecule, and we therefore assume that hydrogen bonding between the –PO₃ group and H₂O is entirely absent in this compound.

In contrast to the case with PCCCa·H₂O, the P-O absorptions of PCCCa·4H₂O (Fig. 4A, Table 3) are different in appearance, though similar in overall pattern, from those in anhydrous PCCCa. The -PO₃ stretching frequencies, $\nu_5(e)$ and $\nu_1(a_1)$, which are blurred together in the anhydrous salt, are sharply cleaved from each other, and a similar effect is observed for the pair of z component bends, $\nu_6(e)$ and $\nu_3(a_1)$. In addition $\nu_4(e)$ is resolved into two bands. This suggests that the motions of the -PO₃ group are perturbed by

TABLE 3

Vibration	Assignment	PCCCa anhyd.	PCCCa·H ₂ O	PCCCa·4H ₂ O	
$\nu_5(e)$	unsym. PO ₃ stretch	1140 sh	1140 sh		
$\nu_1(a_1)$	sym. PO ₃ stretch	1090 bvs	1095 bvs	1085 vs	
$\nu_{2}(a_{1})$	C-O-P stretch	950 bs	960 bs	965 vs	
$v_6(e)$	unsym. PO_3 bend (z)	550 bs	560 bs	540 s	
$v_{3}(a_{1})$	sym. PO ₃ bend (z)	510 sh	515 sh	510 s	
$v_4(e)$	unsym. PO ₃ bend (x,y)	410 bw	440 byw	450 w, 410 w	

Infrared absorptions associated with P–O vibrations in phosphorylcholine chloride calcium salt and its hydrates^{a,b,c}

^aUnits are cm⁻¹ (wavenumbers). ^bNujol mulls on CsI plates. ^cSymbols used: s, strong; m, medium; w, weak; b, broad; v, very; sh, shoulder.

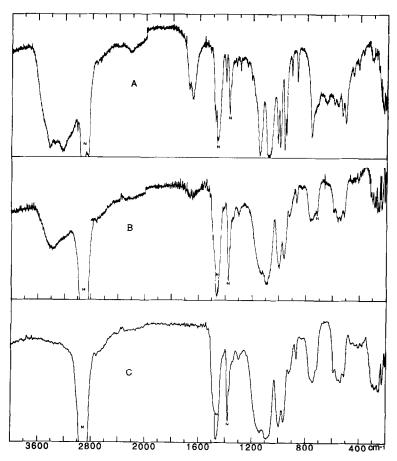


Fig. 4. IR spectra (Nujol mulls on CsI plates) of phosphorylcholine chloride calcium salt and its hydrates; A, tetrahydrate; B, monohydrate; C, anhydrous salt. Peaks marked N are from Nujol. Units are cm⁻¹ (wavenumbers); % T.

the presence of H_2O , which may indicate that this group acts as an acceptor to hydrogen bonds from H_2O . The inconsequential frequency shifts of the stretching modes, however, indicate that such hydrogen bonds, if present, are quite weak.

All hydrogens in PCCCa·4H₂O are involved in hydrogen bonding, as there is no absorption for free –OH. In PCCCa·4H₂O there are eight hydrogens available to form hydrogen bonds, and eight acceptor sites (nine if the C–O–P oxygen is included). Thus it is theoretically possible for each H₂O, each –PO₃ oxygen and the Cl⁻ ion to act as an acceptor to a single hydrogen bond. Since halide ions normally act as multiple hydrogen-bond acceptors in framework clathrate hydrates the above arrangement seems somewhat unlikely. It is more likely that some H_2O and/or $-PO_3$ oxygens are not acting as acceptors to hydrogen bonds.

CONCLUSION

Phosphorylcholine chloride calcium salt forms two hydrates; a tetrahydrate and a monohydrate. Hydrogen-bonding and ion-dipole forces binding H_2O in the tetrahydrate are stronger than in the monohydrate; the lesser stability of the former compound arises from entropic effects. IR studies show that the H_2O molecule in the monohydrate is clearly not hydrogen-bonded to the -PO₃ group. Perturbation of the IR absorptions of the -PO₃ group in the tetrahydrate may arise from hydrogen bonding from H_2O ; however, if such bonding is present it is very weak.

ACKNOWLEDGMENTS

Acknowledgment is gratefully made to the Donors of the Petroleum Research Fund, administered by the American Chemical Society, for a grant in support of this work, and to Patricia K. Keefer for technical assistance.

REFERENCES

- 1 K.M. Harmon, G.F. Avci, J.M. Gabriele and M.J. Jacks, J. Mol. Struct., 159 (1987) 255.
- 2 P.L. Toccalino, K.M. Harmon and J. Harmon, J. Mol. Struct., 189 (1988) 373.
- 3 K.M. Harmon, A.C. Akin and P.L. Keefer, J. Mol. Struct., 248 (1991) 111.
- 4 I. Gennick and K.M. Harmon, Inorg. Chem., 14 (1975) 2214.
- 5 K.M. Harmon, G.F. Avci and A.C. Thiel, J. Mol. Struct., 145 (1986) 83.
- 6 P. Pauling, in A. Rich and N. Davidson (Eds.), Structural Chemistry and Molecular Biology, W.H. Freeman and Co., San Francisco, pp. 555 ff, and references cited therein.
- 7 S. Krimm, in M. Davis (Ed.), Infrared Spectroscopy and Molecular Structure, Elsevier, Amsterdam, 1963, p. 277.
- 8 K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, Wiley, New York, 1978, pp. 134 ff, and references cited therein.
- 9 G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules, D. Van Nostrand Company, New York, 1960, p. 319.
- 10 L.J. Bellamy, The Infrared Spectra of Complex Molecules, Chapman and Hall, London, 1975, pp. 347 ff.
- 11 R.A. Nyquist, Appl. Spectrosc., 11 (1957) 161.