Journal of Medicinal Chemistry

© Copyright 2001 by the American Chemical Society

Volume 44, Number 24

November 22, 2001

Letters

Synthesis and Antibacterial Activity of Acylides (3-*O*-Acyl-erythromycin Derivatives): A Novel Class of Macrolide Antibiotics

Tetsuya Tanikawa,^{*,†,‡} Toshifumi Asaka,[†] Masato Kashimura,[†] Yoko Misawa,[†] Keiko Suzuki,[†] Masakazu Sato,[†] Kazuya Kameo,[†] Shigeo Morimoto,[†] and Atsushi Nishida[‡]

Medicinal Research Laboratories, Taisho Pharmaceutical Co. Ltd., 1-403 Yoshino-cho, Saitama-shi 330-8530, Japan, and Graduate School of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba-shi 263-8522, Japan

Received August 30, 2001

Abstract: Introduction of an acyl group to the 3-*O*-position of erythromycin A derivatives instead of L-cladinose led to a novel class of macrolide antibiotics that we named "acylides". The 3-*O*-nitrophenylacetyl derivative TEA0777 showed significantly potent activity against not only erythromycin-susceptible Gram-positive pathogens but also inducibly macrolides-lincosamides-streptogramin B (MLS_B)-resistant *Staphylococcus aureus* and efflux-resistant *Streptococcus pneumoniae*. These results indicated that acylides have potential as next-generation macrolide antibiotics.

Introduction. Macrolide antibiotics such as erythromycin A have been clinically used for more than 45 years and are considered preferable for the treatment of upper and lower respiratory tract infections. However, the first-generation macrolide erythromycin A easily loses its antibacterial activity under acidic conditions by degradation, and the degraded products are known to be responsible for undesirable gastrointestinal side effects.¹ Numerous chemical modifications of erythromycin A, to overcome this acid-instability problem, have been investigated by many groups. As a result, several

second-generation macrolide antibiotics have been launched for clinical use.

Clarithromycin² (CAM, 6-*O*-methylerythromycin A) and azithromycin³ (15-membered aza-macrolide) are widely prescribed due to their efficacy and safety, but this has led to rapid increases in the rates of resistance in bacteria isolated clinically.⁴ Therefore, we have sought to identify a next-generation macrolide that exhibits greater efficacy and safety, has a broader spectrum of activities, and is particularly effective against resistant pathogens.

In our search for next-generation macrolide antibiotics, we initially focused on the L-cladinosyl moiety at the 3-O-position of the macrolactone skeleton as a target: modification of this moiety has not yet been systemically investigated since it has been considered to be essential for activity.⁵ By substituting L-cladinose with various functional groups, we have obtained some new classes of macrolide antibiotics, such as 3-oxo derivatives,⁶ so-called "ketolides", and 3-alkoxy,⁷ 3-car-bamoyloxy,⁸ 3-alkoxycarbonyloxy,^{9a} and acyloxy⁹ derivatives. In this paper, we describe the synthesis and biological properties of 3-O-acyl-erythromycin A derivatives, which we named "acylides", as a novel class of macrolide antibiotics which show good antibacterial activities against Gram-positive pathogens including a macrolides-lincosamides-streptogramin B (MLS_B)-resistant strain and an efflux-resistant strain.

Chemistry. 3-*O*-Substituted-6-*O*-methylerythromycin A derivatives were synthesized as follows. Treat-

^{*} To whom correspondence should be addressed. Tel: 81-48-669-3029. Fax: 81-48-652-7254. E-mail: tetsuya.tanikawa@po.rd.taisho.co.jp. † Taisho Pharmaceutical Co. Ltd.

[‡] Chiba University.

Scheme 1^a

 a (a) 2 M HCl, rt, 53%; (b) AcCl, DMAP, pyridine, THF, rt, 68%; (c) MeOH, rt, 98%.

Scheme 2^a

^a (a) Ac₂O, Me₂CO, rt, 96%; (b) Boc-glycine or Cbz-glycine, EDC-HCl, DMAP, CH₂Cl₂, rt, 96–97%; (c) MeOH; (d) HCO₂NH₄, 10% Pd-C, MeOH, 50%; (e) RCO₂H, EDC-HCl, DMAP, CH₂Cl₂, rt, 80–98% or PhCH₂COCl, DMAP, pyridine, rt, 49%; (f) 1-fluoro-2-nitrobenzene, NaH, THF, rt, 39%; (g) PhCH₂SO₂Cl, pyridine, CH₂Cl₂, rt, 87%.

ment of clarithromycin with 2 M aqueous hydrochloric acid at room temperature afforded selective cleavage of the 3-*O*-sugar moiety to give 3-OH derivative **1** (Scheme 1).

Treatment of the alcohol **1** with excess acetyl chloride in the presence of 4-(dimethylamino)pyridine (DMAP) in tetrahydrofuran (THF)/pyridine gave 2',3-diacetate **2**. 3-Acetate **3a** was easily obtained by selective 2'-*O*deacetylation of **2** in methanol (MeOH) at room temperature. The 2'-acetate **4**¹⁰ was used as a common intermediate to introduce various functional groups at the 3-*O*-position (Scheme 2). Treatment of the alcohol

	0				
Entry		MIC (µg/mL)			
	R	S. aureus			
		209P-JC"	B1 [*]	SR138 ^c	
CAM	L-cladinose	0.10	>100	>100	
1	Н	>100	>100	>100	
3a	s st Me	50	>100	>100	
3b	^{sst} ↓ CN	25	>100	>100	
3c	^s ^s , NH₂ O	12.5	>100	>100	
3d	N N K	12.5	>100	>100	
Зе	J N O O H	3.13	>100	>100	
3f	0 * *	12.5	>100	>100	
3g	NO ₂	3.13	>100	>100	
3h	3 de la compañía de	0.78	>100	>100	
3i	st of o	100	>100	>100	
3j (TEA0777)	st NO2	0.20	0.39	>100	
3k	st NO ₂	50	>100	>100	

^{*a*} *S. aureus* 209P-JC: erythromycin-susceptible strain. ^{*b*} *S. aureus* B1: inducibly MLS_B-resistant strain. ^{*c*} *S. aureus* SR138: constitutively MLS_B-resistant strain encoded by an *ermA* gene.

1 with acetic anhydride in acetone at room temperature selectively gave 2'-acetate **4** as a sole product.

3-*O*-Acyl derivatives **3b**,**d**,**e**,**h**,**j**,**k** were prepared in good yields (65–97%) by acylation of **4** with the corresponding carboxylic acids and 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (EDC–HCl) in the presence of DMAP in dichloromethane (CH₂Cl₂), followed by selective removal of the 2'-*O*-acetyl group

and a minibatterial Encers of TENOTT against representative randgens								
				MIC (µg/mL)				
	S	. pneumoniae		E. faecalis	E. faecium	H. influenzae		
compd	IID553 ^a	210 ^b	221 ^c	ATCC29212	ATCC19434	ATCC43095		
TEA0777	0.20	0.20	>100	0.20	0.05	25		
erythromycin A	0.10	1.56	>100	1.56	3.13	6.25		
clarithromycin	0.05	1.56	>100	1.56	1.56	6.25		

Table 2. Antibacterial Effects of TEA0777 against Representative Pathogens

^{*a*} *S. pneumoniae* IID553: erythromycin-susceptible strain. ^{*b*} *S. pneumoniae* 210: efflux-resistant strain. ^{*c*} *S. pneumoniae* 221: MLS_B-resistant strain encoded by an *erm B* gene.

Scheme 3^a

^{*a*} (a) 2 M HCl, rt, 45%; (b) BnCl, *n*-Bu₄NI, KOH, THF, 62%; (c) Ac₂O, Me₂CO, rt, (d) (i) 3,4-dihydro-2*H*-pyran, *p*-TsOH-H₂O, MS-4A, CH₂Cl₂, (ii) MeOH, 56% in three steps; (e) (i) 10% Pd-C, HCO₂H, HCO₂NH₄, MeOH, 50 °C, (ii) NaHSO₃, HCO₂H, EtOH, H₂O, reflux, 51% in two steps.

by heating with methanol for 2 h. Acylation of **4** with the corresponding acyl chlorides or mixed acid anhydrides led to reduced yields (36-74%). Glycinate **3c** was prepared by deprotection of the benzyloxycarbonyl group of **3e** by catalytic transfer hydrogenation (CTH). Sulfonate **3i** was obtained in 40% yield by treatment of the alcohol **4** with benzylsulfonyl chloride in the presence of pyridine in CH₂Cl₂ followed by methanolysis.

o-Nitrophenyl ether 3g was straightforwardly synthesized by the 3-O-substitution reaction of the alcohol 1 using 2-fluoronitrobenzene and sodium hydride in THF without protection of the 2'-hydroxy group (39% yield). Tetrahydropyranyl (THP) etherification of the alcohol 4 was achieved by protection of 9-keto with a benzyloxime group (Scheme 3), since treatment of 4 under acidic conditions caused degradation to form the 9,12-ketal compound. 3-O-Acetalization of 6 with 3,4dihydro-2*H*-pyran in the presence of *p*-toluenesulfonic acid and 4 Å molecular sieves in CH₂Cl₂ afforded the desired 3-O-THP. Deprotection of the benzyl group of the 3-O-THP ether with CTH followed by conversion of the oxime to a ketone at the 9-position using sodium hydrogen sulfite and formic acid in aqueous ethanol¹² gave the desired ether **3f**.

Results and Discussion. The 3-*O*-substituted-6-*O*-methylerythromycin A derivatives and clarithromycin as a reference were tested for in vitro antibacterial activity against three strains of *Staphylococcus aureus*. The activities are reported in Table 1 as minimum inhibitory concentrations (MICs) determined according

to the Japan Society of Chemotherapy.¹³ *S. aureus* 209P-JC is an erythromycin-susceptible strain, *S. aureus* B1 is an inducibly MLS_B -resistant strain, and *S. aureus* SR138 is a constitutively MLS_B -resistant strain that is also encoded by an *ermA* gene.

Removal of the L-cladinosyl moiety of clarithromycin resulted in a complete loss of antibacterial activity as defined (MICs \geq 100 $\mu g/mL$). Simple introduction of an acetyl group at the 3-O-position did not completely restore the antibacterial activity, although it did seem to be slightly effective against the erythromycin-susceptible strain.

Accordingly, cyanoacetate **3b** and aminoacetates **3c**-e were synthesized to investigate the structure-activity relationship at the acetyl position. Both the electronwithdrawing group in **3b** and the electron-releasing group in **3c** appeared to be effective at increasing the activity against the erythromycin-susceptible strain. Carbamates **3d**, **e** showed greater activities than the parent acetate 3a; benzyloxycarbamate 3e was 16-fold more potent than **3a**. In contrast to the weak activity of THP ether **3f**, *o*-nitrophenyl ether **3g** showed potent antibacterial activity. The results described above suggested that a phenyl group may increase the activity against the erythromycin-susceptible strain. Therefore, we tried to introduce a phenyl group at the 3-O-acetyl group. Phenylacetate 3h showed considerably potent antibacterial activity against the erythromycin-susceptible strain, as anticipated (MIC $0.78 \,\mu g/mL$). In marked contrast, the corresponding sulfonate **3i** did not show any antibacterial activity. Therefore, a carbonyl function in the 3-O-linkage appeared to have a profound effect on this activity.

After further investigation, we identified 3-O-(4nitrophenyl)acetyl-5-O-desosaminyl-6-O-methylerythronolide **3j** (TEA0777), which showed 250-fold greater activity against the erythromycin-susceptible strain than that of the parent acetate **3a**. In addition, this acylide showed significantly potent activity against the inducibly MLS_B-resistant strain (0.39 μ g/mL). Conversion of the phenylacetyl group (**3j**) to a corresponding benzoyl group (**3k**) resulted in a drastic decrease in antibacterial activity. The poor activity is consistent with the results with 3-O-benzoyl-erythromycin A oxime derivatives reported by LeMahieu.⁵ The phenylacetyl group was a promising mimic for L-cladinose at the 3-Oposition.

The antibacterial activities of TEA0777 against representative pathogens are summarized in Table 2. This acylide demonstrated potent activity against the erythromycin-susceptible strain of *Streptococcus pneumoniae*, like other macrolides. Furthermore, it was also highly effective against *Enterococcus* strains and the efflux-resistant strain of *S. pneumoniae*.

Table 3. In Vivo Efficacy of Acylide TEA0777 in Mouse Protection Tests (ED_{50} , mg/kg)

	S. aureus Smith ^a			
compd	MIC (µg/mL)	ED ₅₀ (95% CL ^b)		
TEA0777	0.39	15.4 (11.2-21.1)		
erythromycin A	0.20	56.6 (40.4-79.2)		
clarithromycin	0.20	7.6 (4.9-12.0)		

 a S. aureus Smith: erythromycin-susceptible strain. b CL: confidence limits.

In Vivo Evaluation. The in vivo efficacies of acylide TEA0777, erythromycin A, and clarithromycin were assessed by mouse protection tests, using the erythromycin-susceptible strain of *S. aureus* Smith. The mice were inoculated with 5.80×10^7 CFU/mouse intraperitoneally, and the macrolides were then administered orally 1 h after inoculation. The efficacy of each macrolide was reported as the effective drug dosage (ED₅₀) which gave a survival rate of 50% following lethal infection over the duration of the trial (Table 3).

Acylide TEA0777 was significantly more active than erythromycin A and comparable to clarithromycin.

Conclusion. In summary, a series of acylides (3-*O*-acyl-erythromycin A derivatives) were synthesized and evaluated as a novel class of macrolide antibiotics. By introducing a phenylacetyl group instead of L-cladinose at the 3-*O*-position, the abolished antibacterial activity could be restored. In particular, the 3-*O*-(4-nitrophenyl)-acetyl erythromycin A derivative TEA0777 exhibited significantly potent antibacterial activity against not only erythromycin-susceptible Gram-positive pathogens but also inducibly MLS_B-resistant *S. aureus* and efflux-resistant *S. pneumoniae*. It has been demonstrated that acylides are innovative semisynthetic macrolides that have potential as next-generation macrolide antibiotics.

Acknowledgment. We thank Mr. H. Sugiyama for his helpful comments and critical reading of the manuscript. We are grateful to Mr. T. Ono and K. Numata for providing microbiological data.

Supporting Information Available: Experimental procedures, and spectral and analytical data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (a) Itoh, Z.; Nakaya, K.; Suzuki, H.; Aria, H.; Wakabayashi, K. Erythromycin mimics exogenous motilin in gastrointestinal contractile activity in the dog. *Am. J. Physiol.* **1984**, *247*, G688– G694. (b) Omura, S.; Tsuzuki, K.; Sunazuka, T.; Marui, S.; Toyoda, H.; Inatomi, N.; Itoh, Z. Macrolides with Gastrointestinal Motor Stimulating Activity. *J. Med. Chem.* **1987**, *30*, 1943– 1948.
- (2) Morimoto, S.; Takahashi, Y.; Watanabe, Y.; Omura, S. Chemical Modification of Erythromycins. I. Synthesis and Antibacterial Activity of 6-O-Methylerythromycins A. J. Antibiot. 1984, 37, 187–189.
- (3) (a) Djokic, S.; Kobrehel, G.; Lazarevski, G.; Lopotar, N.; Tamburasev, Z. Erythromycin Series. Part 11. Ring Expansion of Erythromycin A Oxime by the Beckmann Rearrangement. J.

Chem. Soc., Perkin Trans. 1 **1986**, 1881–1890. (b) Djokic, S.; Kobrehel, G.; Lazarevski, G. Erythromycin series XII. Antibacterial in vitro Evaluation of 10-Dihydro-10-deoxy-11-azaerythromycin A: Synthesis and Structure–Activity Relationship of Its Acyl Derivatives. J. Antibiot. **1987**, 40, 1006–1015. (c) Bright, G. M.; Nagel, A. A.; Bordner, J.; Desai, K. A.; Dibrino, J. N.; Nowakowska, J.; Vincent, L.; Watrous, R. M.; Sciavolino, F. C.; English, A. R.; Retsema, J. A.; Anderson, M. R.; Brennan, L. A.; Borovoy, R. J.; Cimochowsky, C. R.; Fiaella, J. A.; Girard, A. E.; Girard, D.; Herbert, C.; Manousos, M.; Mason, R. Synthesis, in vitro and in vivo Activity of Novel 9-Deoxo-9a-aza-9a-homoerythromycin A derivatives; A New Class of Macrolide Antibiotics, The Azalides. J. Antibiot. **1988**, 41, 1029–1047.

- (4) (a) Neu, H. C. The Crisis in Antibiotic Resistance. *Science* 1992, 257, 1064. (b) Appelbaum, P. C. *Clin. Infect. Dis.* 1992, 15, 77. (c) Katz, L.; Chu, D. T. W.; Plattner, J. J. New Directions in Antibacterial Research. *J. Med. Chem.* 1996, 39, 3853.
- (5) LeMahieu, R. A.; Carson, M.; Kierstead, R. W. Aromatic Esters of 5-O-Desosaminylerythronolide A Oxime. *J. Med. Chem.* 1975, *18*, 849–851.
- (6)(a) (i) Asaka, T.; Kashimura, M.; Misawa, Y.; Ono, T.; Suzuki, K.; Yoshida, T.; Akashi, T.; Yokoo, C.; Nagate, T.; Morimoto, S. A New Macrolide Antibiotic, TE-802; Synthesis and Biological Properties. 35th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, CA, Sept. 17-20, 1995; Abstr. No. F176. (ii) Asaka, T.; Kashimura, M.; Misawa, Y. Morimoto, S.; Hatayama, K. U.S. Patent 5,631,355, 1997. (iii) Kashimura, M.; Asaka, T.; Misawa, Y.; Matsumoto, K.; Morimoto. S. Synthesis and Antibacterial Activity of the Tricyclic Ketolides TE-802 and Its Analogues. J. Antibiot. 2001, 54, 664-678. (b) (i) Asaka, T.; Kashimura, M.; Misawa, Y.; Ono, T.; Suzuki, K.; Yoshida, T.; Akashi, T.; Yokoo, C.; Nagate, T.; Morimoto, S. A New Macrolide Antibiotic, TE-810; Synthesis and Biological Properties. 35th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, CA, Sept. 17-20, 1995; Abstr. No. F177. (ii) Asaka, T.; Kashimura, M.; Misawa, Y.; Morimoto, S.; Hatayama, K. U.S. Patent 5,591,837, 1997
- (7) Misawa, Y.; Asaka, T.; Kashimura, M.; Morimoto, S.; Hatayama, K. U.S. Patent 5,602,239, 1997.
- (8) Asaka, T.; Misawa, Y.; Kashimura, M.; Morimoto, S.; Hatayama, K. U.S. Patent 5,523,399, 1996.
- (9) (a) Asaka, T.; Misawa, Y.; Kashimura, M.; Morimoto, S.; Hatayama, K U.S. Patent 5,631,354, 1997. (b) Asaka, T.; Kashimura, M.; Tanikawa, T.; Ishii. T.; Matsuura, A.; Matsumoto, K.; Suzuki, K.; Numata, K.; Akashi, T.; Adachi, T.; Morimoto, S. New Macrolide Antibiotics, Acylides (3-O-acyl-5-O-de-sosaminylerythronolides); Synthesis and Biological Properties. 37th Interscience Conference on Antimicrobial Agents and Chemotherapy, Toronto, Canada, Sept. 28–Oct. 1, 1997; Abstr. No. F-262.
- (10) (a) Agouridas, C.; Benedetti, Y.; Chantot, J. F.; Denis, A.; Fromentin, C.; Le Martret, O. Eur. Pat. 487411, 1992. (b) Agouridas, C.; Denis, A.; Auger, J. M.; Benedetti, Y.; Bonnefoy, A.; Bretin, F.; Chantot, J. F.; Dussarat, A.; Fromentin, C.; D'Ambrieres, S. G.; Lachaud, S.; Laurin, P.; Le Martret, O.; Loyau, V.; Tessot, N. Synthesis and Antibacterial Activity of Ketolides (6-O-Methyl-3-oxoerythromycin Derivatives): A New Class of Antibacterials Highly Potent Against Macrolide-Resistant and -Susceptible Respiratory Pathogens. J. Med. Chem. 1998, 41, 4080-4100.
- (11) Morimoto, S.; Adachi, T.; Asaka, T.; Kashimura, M.; Watanabe, Y.; Sota, K. U.S. Patent 4,670,549, 1987.
- (12) Watanabe, Y.; Adachi, T.; Asaka, T.; Kashimura, M.; Matsunaga, T.; Morimoto, S. Chemical Modification of Erythromycins. XII. A Facile Synthesis of Clarithromycin (6-O-Methylerythromycins A) via 2-Silylethers of Erythromycin A Derivatives. *J. Antibiot.* **1993**, *46*, 1163–1167.
- (13) Japan Society of Chemotherapy: Method for the determination of minimum inhibitory concentration (MIC) of aerobic bacteria by agar dilution method. *Chemotherapy (Tokyo)* **1981**, *29*, 76–79.

JM015566S