
Bioorganic & Medicinal Chemistry Letters 22 (2012) 5739–5743
Contents lists available at SciVerse ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier .com/ locate/bmcl
Synthesis and antibacterial activity of 6-O-(heteroaryl-isoxazolyl)propynyl
2-fluoro ketolides

Tomohiro Sugimoto ⇑, Yoichi Shimazaki, Akira Manaka, Tetsuya Tanikawa, Keiko Suzuki,
Kayoko Nanaumi, Yoshie Kaneda, Yukiko Yamasaki, Hiroyuki Sugiyama
Medicinal Research Laboratories, Taisho Pharmaceutical Co. Ltd, 1-403 Yoshino-cho, Kita-ku, Saitama-shi, Saitama 331-9530, Japan

a r t i c l e i n f o
Article history:
Received 30 April 2012
Revised 16 June 2012
Accepted 18 June 2012
Available online 6 July 2012
0960-894X/$ - see front matter � 2012 Elsevier Ltd. A
http://dx.doi.org/10.1016/j.bmcl.2012.06.092

⇑ Corresponding author. Tel.: +81 48 669 3064; fax
E-mail address: tomohiro.sugimoto@po.rd.taisho.c
a b s t r a c t

Macrolide antibiotics are widely prescribed for the treatment of respiratory tract infections; however, the
increasing prevalence of macrolide-resistant pathogens is a public health concern. Therefore, the devel-
opment of new macrolide derivatives with activities against resistant pathogens is urgently needed. A
series of novel 6-O-(heteroaryl-isoxazolyl)propynyl 2-fluoro ketolides has been synthesized from eryth-
romycin A. These compounds have shown very promising in vitro and in vivo antibacterial activities
against key respiratory pathogens including erythromycin-susceptible/resistant strains.

� 2012 Elsevier Ltd. All rights reserved.
Macrolide antibiotics1–4 (see Fig. 1 for some structures) are a
safe and effective drug class for the treatment of bacterial infec-
tions in the respiratory tract. The first macrolide antibiotic, eryth-
romycin A (EM-A) 1, was commercialized in 1952. Since EM-A
decomposes to antibacterially inactive spiroketal products5 under
acidic conditions in the stomach, its bioavailability is relatively
low and varies interindividually.6 To improve the pharmacokinetic
profile of EM-A caused by its acid instability, an enteric coating is
applied to EM-A tablets and further chemical modifications of
EM-A have been performed.1–4 Second-generation macrolides,
such as clarithromycin7 (CAM) 2 and azithromycin8 (AZM) 3, were
investigated in the 1980s and were eventually launched in the
1990s as a result of these chemical modification efforts. These
macrolide antibiotics have been widely prescribed for more than
five decades. Because of their widespread use, the increasing prev-
alence of macrolide-resistant pathogens among clinical isolates has
become a public health concern.9–12 The major mechanisms of
resistance against Gram-positive pathogens are ribosome methyl-
ation by erm methyltransferase and efflux by macrolide efflux
pumps (mediated by the mef-gene product).13–15

Ketolides are a chemical class of semi-synthetic erythromycin
derivatives, in which the natural C3-cladinose sugar is replaced
by a keto group. The most advanced ketolides are telithromycin
4 and cethromycin 5. These agents are known to be effective
against erythromycin-susceptible and -resistant strains of
Streptococcus pneumoniae, Streptococcus pyogenes, and Haemophilus
influenzae.16,17 These two ketolides have similar structural features,
such as a 3-keto group and a heteroaryl-alkyl side chain. The
3-keto group is important for preventing efflux resistance. The het-
eroaryl-alkyl side chain is believed to play a key role in overcoming
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resistance caused by ribosome methylation.18–22 The aryl-alkyl
side chains are attached to different positions of the macrolactone
skeleton (11, 12-cabamate nitrogen for telithromycin and C-6
position for cethromycin). Despite this difference in the attached
positions, the side chains interact with similar sites in domain II
Figure 1. Structures of macrolide antibiotics.
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Scheme 2. Reagents and conditions: (a) (PhSO2)2NF, NaH, DMF; (b) MeOH, reflux,
54% for two steps; (c) iodide reagents (14a–c), PdCl2(PPh3)2, Et3N, CH3CN, 60–83%.
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of 23S rRNA.23 2-Fluoro ketolides are one of the most successful
modification of ketolides. Introduction of a fluorine atom to the
C-2 position tends to enhance the antibacterial activity of the cor-
responding ketolides both in vitro and in vivo.19,24

Modifications at the C-6 position, such as in cethromycin, are
thought to be a promising approach for improving the antibacterial
activity and pharmacokinetic profile. Most of these studies involv-
ing the modification of side chain linkage produced good activities
against erythromycin-resistant S. pneumoniae.18–22 These results
encouraged us to develop novel 2-fluoro ketolides with in vitro
and in vivo potency against resistant strains. As a result of our
continuing medicinal chemistry efforts, we have identified a novel
series of 2-fluoro ketolides in which the heteroaryl-isoxazolyl
group is attached to the 6-O-propargyl side chain.

The synthesis of novel 6-O-(heteroaryl-isoxazolyl)propynyl 2-
fluoro ketolides is shown in Schemes 1–3. Compound 6 was
prepared from EM-A in 2 steps.25 EM-A was treated with hydrox-
ylamine to produce 9-oxime erythromycin. Subsequent trans-
ketalization with O-isopropyl cyclohexylketal led to cyclohexyl
ketal 6. Intermediate 10 was prepared from ketal 6 using a previ-
ously reported method.26 Briefly, the selective protection of 20,400

hydroxyl groups was achieved using benzoyl anhydride (Bz2O) in
the presence of triethyl amine and 4-dimethylaminopyridine, and
the subsequent selective 6-O-propargylation was achieved by
treatment with propargyl bromide in the presence of potassium
tert-butoxide as the base. Deoximation with sodium nitrate pro-
duced compound 8. The formation of the carbamate functionality
was performed using a three-step, one-pot sequence to yield
compound 9. The cladinose sugar of 9 was removed under acidic
conditions, and the subsequent Corey-Kim oxidation of the 3-hy-
droxyl group produced the 3-ketolide derivative 10 (Scheme 1).

Compound 10 was treated with NaH followed by N-fluoroben-
zene sulfonamide, and the 20-O-benzoyl group was then deprotec-
ted with methanol to yield intermediate 12. Sonogashira coupling
of 12 with iodide reagents 14a–c was achieved using
bis(triphenylphosphino)palladium dichloride in the solvent as
Scheme 1. Reagents and conditions: (a) Bz2O, DMAP, Et3N, AcOEt, 73%; (b)
propargylbromide, t-BuOK, THF-DMSO, 61%; (c) NaNO2, HCl, 60%; (d) DBU, CDI,
NH3, t-BuOK, THF, 63%; (e) 2 M HCl, EtOH; (f) dimethylsulfide, NCS, Et3N, THF, 93%
for two steps.

Scheme 3. Reagents and conditions: (a) t-BuOK, t-BuNO2, THF, 71%; (b) tributy-
lethynylstannane, NCS, sat. NaHCO3–AcOEt; (c) I2, THF, 17–35%; (d) HONH2–HCl,
pyridine, EtOH; (e) HONH2–HCl, NaOMe, MeOH, 78%; (f) NaNO2, HCl, 68%; (g)
tributylethynylstannane, Et3N, THF; (h) I2, THF, 62% for two steps.
triethylamine and acetonitrile to give 6-O-(heteroaryl-isoxazolyl)
propynyl 2-fluoro ketolides 13a–c(Scheme 2). The stereochemistry
of the fluorine was determined from an X-ray crystal structure of
12 (Fig. 2).27

The preparation of 3-heteroaryl-5-iodoisoxazole reagents 14a–
c is shown in Scheme 3. Generally, isoxazoles are constructed by
the [2+3] cycloaddition of a nitrile oxide to an alkyne. In particular,
5-iodoisoxazoles are synthesized by the electrophilic halogenation
of 5-tributylstannylisoxazole,28–30 prepared by the 1,3-dipolar
cycloaddition of tributylethynylstannane with nitrile oxides. We
applied this methodology to the preparation of 3-heteroaro-
matic-substituted 5-iodoisoxazoles. Isoxazole 14a and 14b were
prepared as follows. The oximation of 3-methyl pyridazine 15 with



Figure 2. X-ray crystal structure of 12.
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tert-butylnitrate produced oxime 16a. The oximation of aldehyde
18 produced oxime 16b. The formation of isoxazole 17a/b was
smoothly advanced by the addition of NCS to the ethyl acetate
solution of oxime 16a/b, tributylethynylstannane, and aq. NaHCO3

as a base. In this reaction, nitrile oxide was generated in situ from
hydroximoyl chloride, formed by the chlorination of oxime 16a/b
with NCS, and the subsequent [2+3] cycloaddition of the nitrile
oxide with tributylethynylstannane was performed in one-pot to
yield isoxazole 17a/b. The iodination of 17a/b was smoothly re-
acted with iodine in THF to give iodoisoxazole 14a/b.31 14c was
prepared as follows. Aminooxime 20 was prepared from cyanide
19, and the subsequent chlorination of 20 with sodium nitrate in
hydrogen chloride yielded hydroximoyl chloride 21. The 1,3-dipo-
lar cycloaddition of tributylethynylstannane with nitrile oxides
generated from 21, and the subsequent iodination yielded isoxaz-
ole 14c.

The in vitro antibacterial activity of 6-O-(heteroaryl-isoxazol-
yl)propynyl 2-fluoro ketolides 13a–c was evaluated, as shown in
Table 1.

The minimal inhibitory concentrations (MICs) were determined
against selected respiratory pathogens including erythromycin-
susceptible S. pneumoniae ATCC49619, erythromycin-resistant
S. pneumoniae 210 with the mef(A) efflux pump gene coded,
Table 1
In vitro antibacterial activities of 6-O-(heteroaryl-isoxazolyl)propynyl 2-fluoro ketolides

Compound X

S. pneumonia

ATCC49619 Ery-S 210 mef

CAM (2) 0.03 2
AZM (3) 0.06 2

13a
N
N 0.008 0.03

13b
N

N NH2
0.008 0.03

13c
N

N
0.008 0.03
erythromycin-resistant 205 and 1104 with the erm(B) ribosomal
methylase gene coded, erythromycin-resistant S. pyogenes with
the erm(B) gene coded, and Haemophilus influenzae ATCC43095.32

All three ketolides 13a–c were at least four-fold more active
(lower MIC values) than CAM and AZM against erythromycin-sus-
ceptible S. pneumoniae. Furthermore, 13a–c had excellent activities
against mef(A) and erm(B) gene coded erythromycin-resistant S.
pneumoniae. Especially, the MIC values of 13a–c against erm(B)
gene coded erythromycin-resistant S. pneumoniae were dramati-
cally improved, compared with those of second-generation macro-
lides (CAM and AZM). The activities of 13a–c against S. pyogenes
were sufficient but were slightly weaker than the case in S. pneu-
moniae. Compounds 13a–c were two-fold more active than CAM
against H. influenzae, but four-fold less active than AZM.

The in vivo efficacy of 2-fluoro ketolides 13a–c was evaluated in
murine pulmonary infection models,33,34 as shown in Figures 3 and
4. In an erythromycin-resistant S. pneumoniae infection model,
13a–c decreased the lung bacterial count in a dose-dependent
manner. In a H. influenzae infection model, 13a–c decreased the
lung bacterial count in a dose-dependent manner. Compound
13a had the most potent effect at a dose of 50 mg/kg. Although,
13a was four-fold less active in vitro than AZM, its in vivo efficacy
was comparable to that of AZM.
MIC (lg/mL)

e S. pyogenes H. influenzae

(A) 205 erm (B) 1104 erm (B) ATCC43095 Amp-S

>128 >128 4
>128 >128 0.5

0.008 1 2

0.008 0.06 2

0.008 2 2



Figure 4. In vivo efficacy of 13a–c against murine pulmonary infection caused by H. influenzae ATCC43095 in mice. Values are mean ± S.E. Statistical analysis was performed
using Steel’s test. ⁄p <0.05, ⁄⁄p <0.01 versus control, #p <0.05, ##p <0.01 versus 13a (comparison at 50 mg/kg).

Figure 3. In vivo efficacy of 13a–c against murine pulmonary infection caused by S. pneumoniae 1101 (erm(B) gene coded) in mice. Values are mean ± S.E. Statistical analysis
was performed using Steel’s test. ⁄p <0.05 versus control.
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In conclusion, a novel 6-O-(heteroaryl-isoxazolyl)propynyl 2-
fluoro ketolides has been synthesized. These 2-fluoro ketolides
showed very promising in vitro antibacterial activity against key
respiratory pathogens including erythromycin-susceptible/
resistant S. pneumoniae, erythromycin-resistant S. pyogenes and
H. influenzae. These ketolides exhibited good in vivo efficacy
against erm-containing S. pnuemoniae. Especially, piridazinyl
derivative 13a showed most potent efficacy comparable to AZM.
Further exploration of these heteroaryl-isoxazolyl ketolide will
be reported in the future.
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