Bioorganic & Medicinal Chemistry Letters 22 (2012) 5739-5743

Contents lists available at SciVerse ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Synthesis and antibacterial activity of 6-O-(heteroaryl-isoxazolyl)propynyl 2-fluoro ketolides

Tomohiro Sugimoto*, Yoichi Shimazaki, Akira Manaka, Tetsuya Tanikawa, Keiko Suzuki, Kayoko Nanaumi, Yoshie Kaneda, Yukiko Yamasaki, Hiroyuki Sugiyama

Medicinal Research Laboratories, Taisho Pharmaceutical Co. Ltd, 1-403 Yoshino-cho, Kita-ku, Saitama-shi, Saitama 331-9530, Japan

ARTICLE INFO

Article history: Received 30 April 2012 Revised 16 June 2012 Accepted 18 June 2012 Available online 6 July 2012

ABSTRACT

Macrolide antibiotics are widely prescribed for the treatment of respiratory tract infections; however, the increasing prevalence of macrolide-resistant pathogens is a public health concern. Therefore, the development of new macrolide derivatives with activities against resistant pathogens is urgently needed. A series of novel 6-O-(heteroaryl-isoxazolyl)propynyl 2-fluoro ketolides has been synthesized from erythromycin A. These compounds have shown very promising in vitro and in vivo antibacterial activities against key respiratory pathogens including erythromycin-susceptible/resistant strains.

© 2012 Elsevier Ltd. All rights reserved.

Macrolide antibiotics¹⁻⁴ (see Fig. 1 for some structures) are a safe and effective drug class for the treatment of bacterial infections in the respiratory tract. The first macrolide antibiotic, erythromycin A (EM-A) 1, was commercialized in 1952. Since EM-A decomposes to antibacterially inactive spiroketal products⁵ under acidic conditions in the stomach, its bioavailability is relatively low and varies interindividually.⁶ To improve the pharmacokinetic profile of EM-A caused by its acid instability, an enteric coating is applied to EM-A tablets and further chemical modifications of EM-A have been performed.¹⁻⁴ Second-generation macrolides, such as clarithromycin⁷ (CAM) **2** and azithromycin⁸ (AZM) **3**, were investigated in the 1980s and were eventually launched in the 1990s as a result of these chemical modification efforts. These macrolide antibiotics have been widely prescribed for more than five decades. Because of their widespread use, the increasing prevalence of macrolide-resistant pathogens among clinical isolates has become a public health concern.⁹⁻¹² The major mechanisms of resistance against Gram-positive pathogens are ribosome methylation by *erm* methyltransferase and efflux by macrolide efflux pumps (mediated by the *mef*-gene product).^{13–15}

Ketolides are a chemical class of semi-synthetic erythromycin derivatives, in which the natural C3-cladinose sugar is replaced by a keto group. The most advanced ketolides are telithromycin **4** and cethromycin **5**. These agents are known to be effective against erythromycin-susceptible and -resistant strains of *Streptococcus pneumoniae, Streptococcus pyogenes,* and *Haemophilus influenzae.*^{16,17} These two ketolides have similar structural features, such as a 3-keto group and a heteroaryl-alkyl side chain. The 3-keto group is important for preventing efflux resistance. The heteroaryl-alkyl side chain is believed to play a key role in overcoming

resistance caused by ribosome methylation.^{18–22} The aryl-alkyl side chains are attached to different positions of the macrolactone skeleton (11, 12-cabamate nitrogen for telithromycin and C-6 position for cethromycin). Despite this difference in the attached positions, the side chains interact with similar sites in domain II

Figure 1. Structures of macrolide antibiotics.

^{*} Corresponding author. Tel.: +81 48 669 3064; fax: +81 48 652 7254. *E-mail address:* tomohiro.sugimoto@po.rd.taisho.co.jp (T. Sugimoto).

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.bmcl.2012.06.092

of 23S rRNA.²³ 2-Fluoro ketolides are one of the most successful modification of ketolides. Introduction of a fluorine atom to the C-2 position tends to enhance the antibacterial activity of the corresponding ketolides both in vitro and in vivo.^{19,24}

Modifications at the C-6 position, such as in cethromycin, are thought to be a promising approach for improving the antibacterial activity and pharmacokinetic profile. Most of these studies involving the modification of side chain linkage produced good activities against erythromycin-resistant *S. pneumoniae*.^{18–22} These results encouraged us to develop novel 2-fluoro ketolides with in vitro and in vivo potency against resistant strains. As a result of our continuing medicinal chemistry efforts, we have identified a novel series of 2-fluoro ketolides in which the heteroaryl-isoxazolyl group is attached to the 6-O-propargyl side chain.

The synthesis of novel 6-O-(heteroaryl-isoxazolyl)propynyl 2fluoro ketolides is shown in Schemes 1-3. Compound 6 was prepared from EM-A in 2 steps.²⁵ EM-A was treated with hydroxylamine to produce 9-oxime erythromycin. Subsequent transketalization with O-isopropyl cyclohexylketal led to cyclohexyl ketal 6. Intermediate 10 was prepared from ketal 6 using a previously reported method.²⁶ Briefly, the selective protection of 2',4''hydroxyl groups was achieved using benzoyl anhydride (Bz₂O) in the presence of triethyl amine and 4-dimethylaminopyridine, and the subsequent selective 6-O-propargylation was achieved by treatment with propargyl bromide in the presence of potassium tert-butoxide as the base. Deoximation with sodium nitrate produced compound 8. The formation of the carbamate functionality was performed using a three-step, one-pot sequence to yield compound **9**. The cladinose sugar of **9** was removed under acidic conditions, and the subsequent Corey-Kim oxidation of the 3-hydroxyl group produced the 3-ketolide derivative **10** (Scheme 1).

Compound **10** was treated with NaH followed by N-fluorobenzene sulfonamide, and the 2'-O-benzoyl group was then deprotected with methanol to yield intermediate **12**. Sonogashira coupling of **12** with iodide reagents **14a–c** was achieved using bis(triphenylphosphino)palladium dichloride in the solvent as

Scheme 1. Reagents and conditions: (a) Bz₂O, DMAP, Et₃N, AcOEt, 73%; (b) propargylbromide, *t*-BuOK, THF-DMSO, 61%; (c) NaNO₂, HCl, 60%; (d) DBU, CDI, NH₃, *t*-BuOK, THF, 63%; (e) 2 M HCl, EtOH; (f) dimethylsulfide, NCS, Et₃N, THF, 93% for two steps.

Scheme 2. Reagents and conditions: (a) (PhSO₂)₂NF, NaH, DMF; (b) MeOH, reflux, 54% for two steps; (c) iodide reagents (14a-c), PdCl₂(PPh₃)₂, Et₃N, CH₃CN, 60–83%.

Scheme 3. Reagents and conditions: (a) *t*-BuOK, *t*-BuNO₂, THF, 71%; (b) tributylethynylstannane, NCS, sat. NaHCO₃–AcOEt; (c) I_2 , THF, 17–35%; (d) HONH₂–HCl, pyridine, EtOH; (e) HONH₂–HCl, NaOMe, MeOH, 78%; (f) NaNO₂, HCl, 68%; (g) tributylethynylstannane, Et₃N, THF; (h) I_2 , THF, 62% for two steps.

triethylamine and acetonitrile to give 6-0-(heteroaryl-isoxazolyl) propynyl 2-fluoro ketolides **13a–c**(Scheme 2). The stereochemistry of the fluorine was determined from an X-ray crystal structure of **12** (Fig. 2).²⁷

The preparation of 3-heteroaryl-5-iodoisoxazole reagents **14a**-**c** is shown in Scheme 3. Generally, isoxazoles are constructed by the [2+3] cycloaddition of a nitrile oxide to an alkyne. In particular, 5-iodoisoxazoles are synthesized by the electrophilic halogenation of 5-tributylstannylisoxazole,²⁸⁻³⁰ prepared by the 1,3-dipolar cycloaddition of tributylethynylstannane with nitrile oxides. We applied this methodology to the preparation of 3-heteroaromatic-substituted 5-iodoisoxazoles. Isoxazole **14a** and **14b** were prepared as follows. The oximation of 3-methyl pyridazine **15** with

5741

Figure 2. X-ray crystal structure of 12.

tert-butylnitrate produced oxime 16a. The oximation of aldehyde 18 produced oxime 16b. The formation of isoxazole 17a/b was smoothly advanced by the addition of NCS to the ethyl acetate solution of oxime **16a/b**, tributylethynylstannane, and aq. NaHCO₃ as a base. In this reaction, nitrile oxide was generated in situ from hydroximoyl chloride, formed by the chlorination of oxime 16a/b with NCS, and the subsequent [2+3] cycloaddition of the nitrile oxide with tributylethynylstannane was performed in one-pot to yield isoxazole 17a/b. The iodination of 17a/b was smoothly reacted with iodine in THF to give iodoisoxazole 14a/b.³¹ 14c was prepared as follows. Aminooxime 20 was prepared from cyanide 19, and the subsequent chlorination of 20 with sodium nitrate in hydrogen chloride yielded hydroximoyl chloride 21. The 1,3-dipolar cycloaddition of tributylethynylstannane with nitrile oxides generated from 21, and the subsequent iodination yielded isoxazole 14c.

The in vitro antibacterial activity of 6-*O*-(heteroaryl-isoxazolyl)propynyl 2-fluoro ketolides **13a–c** was evaluated, as shown in Table 1.

The minimal inhibitory concentrations (MICs) were determined against selected respiratory pathogens including erythromycin-susceptible *S. pneumoniae* ATCC49619, erythromycin-resistant *S. pneumoniae* 210 with the *mef*(A) efflux pump gene coded,

erythromycin-resistant 205 and 1104 with the *erm*(B) ribosomal methylase gene coded, erythromycin-resistant *S. pyogenes* with the *erm*(B) gene coded, and *Haemophilus influenzae* ATCC43095.³²

All three ketolides **13a–c** were at least four-fold more active (lower MIC values) than CAM and AZM against erythromycin-susceptible *S. pneumoniae.* Furthermore, **13a–c** had excellent activities against *mef*(A) and *erm*(B) gene coded erythromycin-resistant *S. pneumoniae.* Especially, the MIC values of **13a–c** against *erm*(B) gene coded erythromycin-resistant *S. pneumoniae* were dramatically improved, compared with those of second-generation macrolides (CAM and AZM). The activities of **13a–c** against *S. pneumoniae.* Suppresses were sufficient but were slightly weaker than the case in *S. pneumoniae.* Compounds **13a–c** were two-fold more active than CAM against *H. influenzae*, but four-fold less active than AZM.

The in vivo efficacy of 2-fluoro ketolides **13a–c** was evaluated in murine pulmonary infection models,^{33,34} as shown in Figures 3 and 4. In an erythromycin-resistant *S. pneumoniae* infection model, **13a–c** decreased the lung bacterial count in a dose-dependent manner. In a *H. influenzae* infection model, **13a–c** decreased the lung bacterial count in a dose-dependent manner. Compound **13a** had the most potent effect at a dose of 50 mg/kg. Although, **13a** was four-fold less active in vitro than AZM, its in vivo efficacy was comparable to that of AZM.

Table	1
-------	---

In vitro antibacterial activities of 6-O-(heteroaryl-isoxazolyl)propynyl 2-fluoro ketolides

Compound	Х	MIC (µg/mL)					
		S. pneumoniae			S. pyogenes	H. influenzae	
		ATCC49619 Ery-S	210 mef (A)	205 erm (B)	1104 erm (B)	ATCC43095 Amp-S	
CAM (2)		0.03	2	>128	>128	4	
AZM (3)		0.06	2	>128	>128	0.5	
13a	N ^{-N}	0.008	0.03	0.008	1	2	
13b	N NH2	0.008	0.03	0.008	0.06	2	
13c		0.008	0.03	0.008	2	2	

Figure 3. In vivo efficacy of 13a-c against murine pulmonary infection caused by *S. pneumoniae* 1101 (*erm*(B) gene coded) in mice. Values are mean ± S.E. Statistical analysis was performed using Steel's test. **p* <0.05 versus control.

Figure 4. In vivo efficacy of 13a-c against murine pulmonary infection caused by *H. influenzae* ATCC43095 in mice. Values are mean ± S.E. Statistical analysis was performed using Steel's test. *p <0.05, **p <0.01 versus control, *p <0.01 versus control, *p <0.05, **p <0.01 versus control, *p <0.01 versus control, *p

In conclusion, a novel 6-O-(heteroaryl-isoxazolyl)propynyl 2fluoro ketolides has been synthesized. These 2-fluoro ketolides showed very promising in vitro antibacterial activity against key respiratory pathogens including erythromycin-susceptible/ resistant *S. pneumoniae*, erythromycin-resistant *S. pyogenes* and *H. influenzae*. These ketolides exhibited good in vivo efficacy against *erm*-containing *S. pnuemoniae*. Especially, piridazinyl derivative **13a** showed most potent efficacy comparable to AZM. Further exploration of these heteroaryl-isoxazolyl ketolide will be reported in the future.

Acknowledgments

We thank Mr. T. Asaka for good suggestions on this project and Dr. A. Okada for X-ray crystallography.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.bmcl.2012. 06.092.

References and notes

- 1. Omura, S. Macrolide Antibiotics. Chemistry, Biology, and Practice, 2nd ed.; Academic Press Inc., 2002.
- Kaneko, T.; Dougherty, T. J.; Magee, T. V. In Comprehensive Medicinal Chemistry II; Taylor, J. B., Triggle, D. J., Eds.; Elsevier Ltd: Oxford, 2006; Vol. 7, p 973.
- Blondeau, J. M. Expert Opin. Pharmacother. 2002, 3, 1131.
- Blondeau, J. M.; DeCarolis, E.; Metzer, K. L.; Hansen, G. T. Expert Opin. Investig. Drugs 2002, 11, 189.
- 5. Kurath, P.; Jones, P. H.; Egan, R. S.; Perun, T. J. Experientia 1971, 27, 362.
- 6. Wilson, J. T.; van Boxtel, C. J. Antibiot. Chemother. 1978, 25, 181.

- Morimoto, S.; Takahashi, Y.; Watanabe, Y.; Omura, S. Chem. J. Antibiot. 1984, 37, 187.
- 8. Djokić, S.; Kobrehel, G.; Lazarevski, G.; Lopotar, N.; Tamburasě, V. Z. J. Chem. Soc., Perkin Trans. 1 **1881**, 1986.
- Doern, G. V.; Heilmann, K. P.; Huynh, H. K.; Rhomberg, P. R.; Coffman, S. L.; Brueggemann, A. B. Antimicrob. Agents Chemother. 2001, 45, 1721.
- 10. Hoban, D. J.; Zhanel, G. G. Expert Rev. Anti Infect. Ther. 2006, 4, 973.
- 11. Jenkins, S. G.; Brown, S. D.; Farrell, D. J. Clin. Microbiol. Antimicrob. 2008, 7, 1.
- 12. Felmingham, D.; Cantón, R.; Jenkins, S. G. J. Infect. 2007, 55(2), 111.
- 13. Weisblum, B. Antimicrob. Agents Chemother. 1995, 39, 577.
- Roberts, M. C.; Sutcliffe, J.; Courvalin, P.; Jensen, L. B.; Rood, J.; Seppala, H. Antimicrob. Agents Chemother. 1999, 43, 2823.
- 15. Farrell, D. J.; Morrissey, I.; Bakker, S.; Felmingham, D. Antimicrob. Agents Chemother. 2002, 50, 39.
- Denis, A.; Agouridas, C.; Auger, J.-M.; Benedetti, Y.; Bonnefoy, A.; Bretin, F.; Chantot, J.-F.; Dussarat, A.; Fromentin, C.; D'Ambrieres, S. G.; Lachaud, S.; Laurin, P.; Martret, O. L.; Loyau, V.; Tessot, N.; Pejac, J.-M.; Perron, S. *Bioorg. Med. Chem. Lett.* **1999**, *9*, 3075.
- 17. Or, Y. S.; Clark, R. F.; Wang, S.; Chu, D. T. W.; Nilius, A. M.; Flamm, R. K.; Mitten, M.; Ewing, P.; Alder, J.; Ma, Z. J. Med. Chem. **2000**, 43, 1045.
- Ma, Z.; Clark, R. F.; Brazzale, A.; Wang, S.; Rupp, M. J.; Li, L.; Griesgraber, G.; Zhang, S.; Yong, H.; Phan, L. T.; Nemoto, P. A.; Chu, D. T. W.; Plattner, J. J.; Zhang, X.; Zhong, P.; Cao, Z.; Nilius, A. M.; Shortridge, V. D.; Flamm, R.; Mitten, M.; Meulbroek, J.; Ewing, P.; Alder, J.; Or, Y. S. J. Med. Chem. **2001**, 44, 4137.
- 19. Phan, L. T.; Clark, R. F.; Rupp, M.; Or, Y. S.; Chu, D. T. W.; Ma, Z. Org. Lett. **2000**, 2, 2951.
- Keyes, R. F.; Carter, J. J.; Englund, E. E.; Daly, M. M.; Stone, G. G.; Nilius, A. M.; Ma, Z. J. Med. Chem. 2003, 46, 1795.
- Zhu, B.; Marinelli, B. A.; Abbanat, D.; Foleno, B. D.; Bush, K.; Macielag, M. J. Bioorg. Med. Chem. Lett. 2007, 17, 3900.
- Tennakoon, M. A.; Henninger, T. C.; Abbanat, D.; Foleno, B. D.; Hilliard, J. J.; Bush, K.; Macielag, M. Bioorg. Med. Chem. Lett. 2006, 16, 6231.

- Berisio, R.; Harms, J.; Schluenzen, F.; Zarivach, R.; Hansen, H.; Fucini, P.; Yonath, A. J. Bacteriol. 2003, 185, 4276.
- Denis, A.; Bretin, F.; Fromentin, C.; Bonnet, A.; Piltan, G.; Bonnefoy, A.; Agouridas, C. Bioorg. Med. Chem. Lett. 2000, 10, 2019.
- Morimoto, S.; Adachi, T.; Matsunaga, T.; Kashimura, M.; Asaka, T.; Watanabe, Y.; Soda, K.; Sekiuchi, K. JP. Patent 02,076,893, 1990.
- Kerdesky, F. J. A.; Premchandran, R.; Wayne, G. S.; Chang, S.-J.; Pease, J. P.; Bhagavatula, L.; Lallaman, J. E.; Arnold, W. H.; Morton, H. E.; King, S. A. Org. Process Res. Dev. 2002, 6, 869.
- Crystallographic data for compound 12 have been deposited at the Cambridge Crystallographic Data Centre, CCDC No. 886351. (E-mail: deposit@ccdc.cam. ac.uk).
- 28. Kozikowski, A. Acc. Chem. Res. 1984, 17, 410.
- 29. Caramella, P.; Grunanger, P. In Padwa, A., Ed.; 1,3-Dipolar Cycloaddition Chemistry; Wiley: New York, 1984.
- Ku, Y.-Y.; Grieme, T.; Sharma, P.; Pu, Y.-M.; Raje, P.; Morton, H.; King, S. Org. Lett. 2001, 3, 4185.
- 31. Sakamoto, T.; Kondo, Y.; Uchiyama, D.; Yamanaka, H. *Tetrahedron* **1991**, 47, 5111.
- 32. The minimal inhibitory concentration (MIC) was determined using the broth microdilution method according to the Clinical and Laboratory Standards Institute's guidelines for S. pnuemoniae, S. pyogenes and H. influenzae.
- 33. Five-week-old male CBA/JN mice were intranasally inoculated with *S. pneumoniae* 1101 (*erm*(B) gene coded, Challenge dose: 5.5×10^4 CFU/mouse). Oral administration was commenced on the day after inoculation and was continued for 2 days, with the drugs being administered once a day. The bacterial count in the lung was examined on the day after the last dosing.
- 34. Four-week-old male ICR mice were intratracheally inoculated with *H. influenzae* ATCC43095 (Challenge dose: 5.2×10^6 CFU/mouse). Oral administration was commenced on the day after inoculation and was continued for 2 days, with the drugs being administered once a day. The bacterial count in the lung was examined on the day after the last dosing.