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Synthesis of 3-benzyl-2-substituted quinoxalines
as novel monoamine oxidase A inhibitors
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Abstract—A new series of 3-benzyl-2-substituted quinoxalines have been synthesized by means of microwave enhancement of nucle-
ophilic substitution reaction involving the corresponding 2-chloroquinoxaline analogs and substituted amines or hydrazine. The
synthesized compounds were evaluated for their monoamine oxidase A and B inhibitory activity by determination of their IC50.
All the newly synthesized compounds showed more selective inhibitory activity toward MAO-A than MAO-B. In addition, the acute
toxicity of the synthesized compounds was determined. This work may be a fruitful matrix of the synthesis of a new series of novel
MAO-A inhibitors with good safety margins.
� 2005 Elsevier Ltd. All rights reserved.
Human monoamine oxidases A and B (MAO-A and B)
are the most intensively investigated flavin-dependent
amine oxidases. This is due to their roles in the metabo-
lism of neurotransmitters such as serotonin and dopa-
mine.2,3 MAO-A and MAO-B are separate gene
products of �70% sequence identity with both isoforms
containing 8 a-S-cysteinyl-FAD coenzymes as the sole
redox cofactors and retaining different but partly over-
lapping substrate and inhibitor specificities. Due to the
key role played by monoamine oxidases (MAOs) in
the metabolism of neurotransmitters, MAO inhibitors
(MAOIs) represent a useful tool for the treatment of
several neurological diseases.4 MAOs are implicated in
a large number of neurological disorders such as Parkin-
son’s disease and depression, and have been important
targets for drug, therapy over the past 40 years.2 Among
selective MAOIs, MAO-A inhibitors are used as antide-
pressant and antianxiety drugs and are claimed to pro-
tect neuronal cells against apoptosis.5 There are many
different structures of MAOIs due to the fact that the ac-
tive sites of the MAO-A are still unknown today which
limits the design of potent selective MAOIs.6,7 The
three-dimensional structures of both MAO-A and
MAO-B are therefore of interest. However, both en-
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zymes are bound to the outer mitochondrial membrane
through a C-terminal polypeptide segment and this fea-
ture has made structural investigation by X-ray crystal-
lography more difficult. With the recent high resolution
crystal structure of human MAO-B8 and a lower resolu-
tion structure of rat MAO-A,9 new insights into the
molecular basis of MAO inhibition are now available.
MAOIs can be classed into three categories: (1) irrevers-
ible inhibitors, (2) �quasi-irreversible’ inhibitors, and (3)
reversible inhibitors. Those belonging to the irreversible
class include the acetylenic inhibitors and the arylalkyl
hydrazines.8 These mechanism-based inhibitors form
covalent adducts with the flavin. Stable N (5) flavocya-
nine adducts (acetylenic inhibitors) and C (4a) adducts
(proposed) are formed on hydrazine inhibition. Inhibi-
tion by acetylenic inhibitors occurs in a single turnover
event, while phenethylhydrazine inhibition requires
�15 turnovers/inhibition event. Attempts to determine
the structure of hydrazine-inactivated MAO-B have
been unsuccessful due to the lability of the adduct in
the X-ray beam. The �quasi-irreversible’ inhibitors are
so classified since denaturation of the inhibited enzyme
results in their dissociation and include phenylcyclopro-
pylamine (�tranylcypromine’) and the N-(2-aminoeth-
yl)benzamides (which belong to the �lazabemide’ class
of MAO-B inhibitors). It was worthy to design a hybride
structure of reversible and irreversible inhibitors to
study the effect of such molecular variation on MAO
inhibitor activity.
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As part of our medicinal chemistry program aimed at
the search for novel quinoxaline-based bioactive mole-
cules,10,11 we report herein our attempt to design a
new lead compound by combining the different possible
active sites of two previously known MAO-A inhibitors
(namely, moclobemide and pargyline) in a quinoxaline
model as shown in Figure 1.

Attempt to synthesize the 3-benzyl-2-(2-morpholin-4-
yl-ethyl)amino-quinoxaline 4a from the reaction of
3-benzyl-2-chloroquinoxaline with the 2-morpholin-4-
ylethylamine in n-butanol for 48 h reflux gave a mixture
of products, while the separation of the target molecule
was troublesome. The reaction was repeated in the pres-
ence of ammonium chloride,12 affording also a mixture
of undesired products. However, we were able to obtain
our aimed product in very high yield by effecting the
reaction using microwave radiation of the reactants in
isopropanol in a Pyrex-glass open vessel. The reaction
mixture was irradiated in a domestic microwave oven
for 15 min. Similarly, compounds 4b–4h were pre-
pared.13,14 Their structures were established by IR, 1H
NMR, and elemental analyses.14
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Figure 1. Planned modification and newly designed MAO-A inhibitor.
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Scheme 1.
For the synthesis of desired compounds, Scheme 1 was
adopted.

The final compounds 4a–4h were evaluated for their
MAO-A inhibitory activity in vitro by the method de-
scribed by Undenfriend et al.15 using serotonin (5HT)
as substrate. The method depends on the determination
of MAO-A activity of rat liver mitochondria.16 All com-
pounds under test were used at a final concentration of
1 · 10�4 M. The results were expressed as percentage
inhibition of the activity of MAO-A (Table 1).

Furthermore, the synthesized compounds 4a–4h were
tested to determine their activity toward MAO-A and
MAO-B selectivity in the presence of the specific sub-
strate, serotonin or benzylamine, respectively. Bovine
brain mitochondria were isolated according to Bas-
ford.17 The activity of MAO-A and MAO-B was deter-
mined by the fluorimetric method, according to
Matsumoto et al.18 The mitochondrial fractions were
preincubated at 38 �C for 30 min before adding the spe-
cific inhibitor, L-depreny (l0.5 lM), to determine the
MAO-A activity and clorgyline (10.5 lM) to determine
the MAO-B activity. The incubation mixture contained
(0.1 ml, 0.25 M) phosphate buffer, pH 7.4, mitochondri-
al suspension (6 mg/1 ml), the specific substrate for
MAO-A or MAO-B (0.1 mM), and test compounds at
four different concentrations ranging from 5 lM to
0.1 mM dissolved in propylene glycol. The mixture
was incubated in a shaking water bath at 37 �C for
60 min. The reaction was quenched by adding perchloric
acid. The samples were centrifuged at 10000g for 5 min
and the supernatant was completed to 2.7 ml of 1 N
NaOH and measured on a Perkin-Elmer Lf 45 Spectro-
fluorimeter. Protein concentration was determined
according to the reported method.19 The MAO-A and
MAO-B results were expressed as IC50 (Table 1). The
selectivity index is also given in (Table 1).

The results revealed that all the test compounds 4a–4h
showed MAO-A inhibitory activity higher than that of
MAO-B. Compounds 4a, 4b, and 4g are the most selec-
tive compounds as MAO-A inhibitors.
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Table 1. Effect of some quinoxaline derivatives on the activity of MAO-A and MAO-B of rat liver mitochondria

Compound % MAO-A inhibition MAO-A IC50 MAO-B IC50 Selectivity index (SI)a

4a 46.13 ± 1.28 1.3 · 10�9 ± 0.03 8.4 · 10�4 ± 0.08 646153

4b 50.52 ± 1.46 1.7 · 10�9 ± 0.04 3.6 · 10�4 ± 0.16 211764

4c 39.99 ± 1.67 7.3 · 10�8 ± 0.12 9.6 · 10�4 ± 0.12 13150

4d 45.97 ± 1.54 3.7 · 10�9 ± 0.05 8.6 · 10�5 ± 0.24 23243

4e 40.92 ± 2.74 9.2 · 10�8 ± 0.04 7.9 · 10�4 ± 0.24 8977

4f 54.09 + 1.36 8.8 · 10�9 ± 0.06 8.4 · 10�4 ± 0.32 95454

4g 49.48 ± 1.84 2.1 · 10�9 ± 0.08 5.7 · 10�4 ± 0.42 271428

4h 41.99 ± 3.12 7.6 · 10�9 ± 0.06 7.4 · 10�5 ± 0.36 9736

The results are expressed as means ± SEM. Data were analyzed by one-way analysis of variance. Student’s t test for unpaired observations was used.

P value = <0.001 and was significant. The number of experiments was 6.
a SI = MAO-B IC50/MAO-A IC50.
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The test compounds 4a–4h were further evaluated for
their oral acute toxicity in male mice using a literature
method.20,21 The results indicated that test compounds
proved to be non-toxic and well tolerated by the exper-
imental animals up to 250 mg/kg, although no mortality
was recorded at 500 mg/kg. Moreover, these compounds
were tested for their toxicity through the parenteral
route.22 The results revealed that all the test compounds
were non-toxic up to 125 mg/kg. We could conclude that
the synthesis and biochemical evaluation of the new ser-
ies of compound 4 led to the design of a novel class of
MAO-A inhibitors with a good safety margin.
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