ISSN 1070-3632, Russian Journal of General Chemistry, 2008, Vol. 78, No. 2, pp. 281–285. © Pleiades Publishing, Ltd., 2008. Original Russian Text © E.A. Dikusar, N.G. Kozlov, V.I. Potkin, V.A. Azarko, A.P. Yuvchenko, 2008, published in Zhurnal Obshchei Khimii, 2008, Vol. 78, No. 2, pp. 303–307.

## Synthesis, Film-Forming Properties, and Thermal and Light Sensitivity of *N*,*N*'-Bis[4-hydroxy(alkoxy, acyloxy)-3-alkoxyphenylmethylidene]benzene-1,4-diamines

E. A. Dikusar<sup>a, b</sup>, N. G. Kozlov<sup>a, b</sup>, V. I. Potkin<sup>a</sup>, V. A. Azarko<sup>b</sup>, and A. P. Yuvchenko<sup>b</sup>

<sup>a</sup> Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, ul. Surganova 13, Minsk, 220072 Belarus e-mail: evgen 58@mail.ru

<sup>b</sup> Institute of New Materials Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus

Received June 5, 2007

**Abstract**—Previously unknown *E,E*-isomeric Schiff bases were synthesized by reaction of *p*-phenylenediamine with 4-hydroxy-3-methoxybenzaldehyde, 3-ethoxy-4-hydroxybenzaldehyde, and their *O*-alkyl and *O*-acyl derivatives in anhydrous methanol. Film-forming properties and thermal and light sensitivity of the products were studied.

**DOI:** 10.1134/S1070363208020175

We previously studied film-forming properties and light sensitivity of aromatic Schiff bases which were synthesized from vanillin derivatives and chrysen-2amine and biphenyl-4-amine [1, 2]. The present communication reports on the synthesis, physical and film-forming properties, and thermal and light sensitivity of new Schiff bases containing two azomethine moieties. These compounds were prepared by condensation of 4-hydroxy-3-methoxybenzaldehyde, 3-ethoxy-4-hydroxybenzaldehyde, and their *O*-alkyl and *O*-acyl derivatives with *p*-phenylenediamine in boiling anhydrous methanol. Previously unknown (E, E)-N, N'-bis[4-hydroxy(alkoxy, acyloxy)-3-alkoxy-phenylmethylidene]benzene-1,4-diamines **IIIa–IIIz** and **IVa–III** $\beta$  were isolated in 84–91% yields. The reactions were complete in 0.5 h and required no catalyst, so that labile ester groups in the initial aldehydes remained intact.



III, R = Me, R' = H (a), Me (b), MeC(O) (c), EtC(O) (d), PrC(O) (e), Me<sub>2</sub>CHC(O) (f), Me(CH<sub>2</sub>)<sub>6</sub>C(O) (g), Me(CH<sub>2</sub>)<sub>7</sub>C(O) (h), Me(CH<sub>2</sub>)<sub>8</sub>C(O) (i), Me(CH<sub>2</sub>)<sub>16</sub>C(O) (j), H<sub>2</sub>C=C(Me)C(O) (k), *cyclo*-C<sub>6</sub>H<sub>11</sub>C(O) (l), C<sub>6</sub>H<sub>5</sub>CH<sub>2</sub>C(O) (m), C<sub>6</sub>H<sub>5</sub>(CH<sub>2</sub>)<sub>2</sub>. C(O) (n), C<sub>6</sub>H<sub>5</sub>CH(Me)CH<sub>2</sub>C(O) (o), (*Z*)-C<sub>6</sub>H<sub>5</sub>CH=C(CN)C(O) (p), C<sub>6</sub>H<sub>5</sub>C(O) (q), 4-ClC<sub>6</sub>H<sub>4</sub>C(O) (r), 2,4-Cl<sub>2</sub>C<sub>6</sub>H<sub>3</sub>C(O) (s), 2,4-Cl<sub>2</sub>C<sub>6</sub>H<sub>3</sub>OCH<sub>2</sub>C(O) (t), 4-BrC<sub>6</sub>H<sub>4</sub>C(O) (u), 3-O<sub>2</sub>NC<sub>6</sub>H<sub>4</sub>C(O) (v), 3,5-(O<sub>2</sub>N)<sub>2</sub>C<sub>6</sub>H<sub>3</sub>C(O) (w), MeOC(O) (x), EtOC(O) (y), MeOC(O)(CH<sub>2</sub>)<sub>2</sub>C(O) (z); **IV**, R = Et, R' = H (a), Me (b), MeC(O) (c), EtC(O) (d), PrC(O) (e), Me<sub>2</sub>CHC(O) (f), Me<sub>2</sub>CHCH<sub>2</sub>C(O) (g), Me(CH<sub>2</sub>)<sub>4</sub>C(O) (h), Me(CH<sub>2</sub>)<sub>5</sub>C(O) (i), Me(CH<sub>2</sub>)<sub>6</sub>C(O) (j), Me(CH<sub>2</sub>)<sub>7</sub>C(O) (k), Me(CH<sub>2</sub>)<sub>8</sub>C(O) (l), Me(CH<sub>2</sub>)<sub>11</sub>C(O) (m), Me(CH<sub>2</sub>)<sub>16</sub>C(O) (n), *cyclo*-C<sub>6</sub>H<sub>11</sub>C(O) (o), C<sub>6</sub>H<sub>5</sub>(CH<sub>2</sub>)<sub>2</sub>C(O) (p), C<sub>6</sub>H<sub>5</sub>CH(Me)CH<sub>2</sub>C(O) (q), *trans*-C<sub>6</sub>H<sub>5</sub>CH=CHC(O) (r), (*Z*)-C<sub>6</sub>H<sub>5</sub>CH=C(CN)C(O) (s), 4-MeC<sub>6</sub>H<sub>4</sub>C(O) (t), 2,4-Cl<sub>2</sub>C<sub>6</sub>H<sub>3</sub>C(O) (u), 2,4-Cl<sub>2</sub>C<sub>6</sub>H<sub>3</sub>OCH<sub>2</sub>. C(O) (v), 3-O<sub>2</sub>NC<sub>6</sub>H<sub>4</sub>C(O) (w), 4-O<sub>2</sub>NC<sub>6</sub>H<sub>4</sub>C(O) (x), 3,5-(O<sub>2</sub>N)<sub>2</sub>C<sub>6</sub>H<sub>3</sub>C(O) (y), MeOC(O) (z), EtOC(O) (a), MeOC(O). (CH<sub>2</sub>)<sub>2</sub>C(O) (β).

Schiff bases **IIIa–IIIz** and **IVa–III** $\beta$  are colored (mostly yellow) crystalline substances that are soluble in benzene, chloroform, and acetone and insoluble in methanol, ethanol, and hexane. Compounds **III** and **IV** required no additional purification, for they contained no impurities of initial compounds. Their structure was confirmed by elemental analysis, molecular weight determination by cryoscopy (see table), and IR, UV, and <sup>1</sup>H NMR spectroscopy. According to the <sup>1</sup>H NMR data, Schiff bases **III** and **IV** were isolated as individual *E,E* isomers [3] with a purity of 97±1%.

The IR spectra of Schiff bases IIIa–IIIz and IVa–III $\beta$  contained absorption bands in the regions 3100–3000 and 870–720 (C–H<sub>arom</sub>), 2990–2840 (C–H<sub>aliph</sub>), 1770–1740 (C=O; IIIc–IIIz, IVc–IV $\beta$ ), 1625–1620 (C=N), 1600–1370 (C–C<sub>arom</sub>), and 1280–1000 cm<sup>-1</sup> (C–O). The cyano group in molecules IIIp and IVs gave rise to absorption at 2225–2224 cm<sup>-1</sup>, and compounds IIIv, IIIw and IVv–IVy characteristically showed in the IR spectra absorption bands in the regions 1541–1525 and 1349–1343 cm<sup>-1</sup> due to stretching vibrations of the nitro groups. The follow-

Yields, melting points, elemental analyses, and molecular weights of Schiff bases IIIa–IIIz and IVa–IV $\beta$ 

| Comp.<br>no.             | Yield,<br>% | mp, °C  | Found, % |      |       | Earmula                                                                       | Calculated, % |      |       | М     |            |
|--------------------------|-------------|---------|----------|------|-------|-------------------------------------------------------------------------------|---------------|------|-------|-------|------------|
|                          |             |         | С        | Н    | N     | rormuia                                                                       | С             | Н    | N     | found | calculated |
| IIIa                     | 89          | 189–190 | 70.36    | 5.48 | 7.21  | C <sub>22</sub> H <sub>20</sub> N <sub>2</sub> O <sub>4</sub>                 | 70.20         | 5.36 | 7.44  | 368.7 | 376.4      |
| IIIb                     | 91          | 175-176 | 71.42    | 6.10 | 6.82  | $C_{24}H_{24}N_2O_4$                                                          | 71.27         | 5.98 | 6.93  | 397.1 | 404.5      |
| IIIc                     | 90          | 206-207 | 68.03    | 5.32 | 5.78  | $C_{26}H_{24}N_2O_6$                                                          | 67.82         | 5.25 | 6.08  | 445.4 | 460.5      |
| IIId                     | 90          | 134-135 | 69.12    | 5.93 | 5.50  | $C_{28}H_{28}N_2O_6$                                                          | 68.84         | 5.78 | 5.73  | 460.9 | 488.5      |
| IIIe                     | 90          | 133-134 | 70.01    | 6.38 | 5.05  | $C_{30}H_{32}N_2O_6$                                                          | 69.75         | 6.24 | 5.42  | 500.6 | 516.6      |
| IIIf                     | 91          | 148-149 | 70.08    | 6.32 | 5.05  | C <sub>30</sub> H <sub>32</sub> N <sub>2</sub> O <sub>6</sub>                 | 69.75         | 6.24 | 5.42  | 502.2 | 516.6      |
| IIIg                     | 84          | 111-112 | 72.73    | 7.84 | 4.12  | $C_{38}H_{48}N_2O_6$                                                          | 72.58         | 7.69 | 4.46  | 617.7 | 628.8      |
| IIIh                     | 90          | 97–98   | 73.29    | 8.11 | 3.95  | $C_{40}H_{52}N_2O_6$                                                          | 73.14         | 7.98 | 4.26  | 638.2 | 656.9      |
| IIIi                     | 91          | 92–93   | 73.88    | 8.32 | 3.87  | $C_{42}H_{56}N_2O_6$                                                          | 73.65         | 8.24 | 4.09  | 661.9 | 684.9      |
| IIIj                     | 90          | 80-81   | 76.90    | 9.84 | 2.83  | $C_{58}H_{88}N_2O_6$                                                          | 76.61         | 9.75 | 3.08  | 880.6 | 909.3      |
| IIIk                     | 86          | 174–174 | 70.57    | 5.52 | 5.39  | $C_{30}H_{28}N_2O_6$                                                          | 70.30         | 5.51 | 5.47  | 498.2 | 512.6      |
| IIII                     | 89          | 157-158 | 72.69    | 6.86 | 4.35  | $C_{36}H_{40}N_2O_6$                                                          | 72.46         | 6.76 | 4.69  | 580.8 | 596.7      |
| IIIm                     | 91          | 183-184 | 74.65    | 5.41 | 4.30  | $C_{38}H_{32}N_2O_6$                                                          | 74.50         | 5.26 | 4.57  | 587.5 | 612.7      |
| IIIn                     | 90          | 158-159 | 75.16    | 5.78 | 4.05  | $C_{40}H_{36}N_2O_6$                                                          | 74.98         | 5.66 | 4.37  | 449.0 | 460.7      |
| IIIo                     | 90          | 161-162 | 75.87    | 6.21 | 3.90  | $C_{42}H_{40}N_2O_6$                                                          | 75.43         | 6.03 | 4.19  | 651.7 | 668.8      |
| IIIp                     | 91          | 242-243 | 73.62    | 4.43 | 7.87  | $C_{42}H_{30}N_4O_6$                                                          | 73.46         | 4.40 | 8.16  | 658.4 | 686.7      |
| IIIq                     | 86          | 229-230 | 74.17    | 4.98 | 4.55  | $C_{36}H_{28}N_2O_6$                                                          | 73.96         | 4.83 | 4.79  | 562.9 | 584.6      |
| <b>IIIr</b> <sup>a</sup> | 90          | 232-233 | 66.36    | 4.19 | 4.06  | C <sub>36</sub> H <sub>26</sub> Cl <sub>2</sub> N <sub>2</sub> O <sub>6</sub> | 66.16         | 4.01 | 4.29  | 634.7 | 653.5      |
| IIIs <sup>b</sup>        | 90          | 215-216 | 60.04    | 3.42 | 3.57  | $C_{36}H_{24}Cl_4N_2O_6$                                                      | 59.85         | 3.35 | 3.88  | 703.6 | 722.4      |
| <b>IIIt</b> <sup>c</sup> | 88          | 155-156 | 58.49    | 3.76 | 3.23  | $C_{38}H_{28}Cl_4N_2O_8$                                                      | 58.33         | 3.61 | 3.58  | 760.0 | 782.5      |
| IIIu <sup>d</sup>        | 91          | 228-229 | 58.44    | 3.64 | 3.52  | $C_{36}H_{26}Br_2N_2O_6$                                                      | 58.24         | 3.53 | 3.77  | 725.3 | 742.4      |
| IIIv                     | 90          | 210-211 | 64.18    | 4.02 | 8.04  | $C_{36}H_{26}N_4O_{10}$                                                       | 64.09         | 3.88 | 8.30  | 655.2 | 674.6      |
| IIIw                     | 90          | 267-268 | 56.73    | 3.29 | 10.67 | $C_{36}H_{24}N_6O_{14}$                                                       | 56.55         | 3.16 | 10.99 | 755.8 | 764.6      |
| IIIx                     | 89          | 214-215 | 63.72    | 5.05 | 5.36  | $C_{26}H_{24}N_2O_8$                                                          | 63.41         | 4.91 | 5.69  | 481.7 | 492.5      |
| IIIy                     | 89          | 174-175 | 64.80    | 5.62 | 5.11  | $C_{28}H_{28}N_2O_8$                                                          | 64.61         | 5.42 | 5.38  | 503.0 | 520.5      |
| IIIz                     | 90          | 135-136 | 63.83    | 5.45 | 4.40  | $C_{32}H_{32}N_2O_{10}$                                                       | 63.57         | 5.33 | 4.63  | 584.3 | 604.6      |
| IVa                      | 88          | 65-66   | 71.42    | 6.09 | 6.76  | $C_{24}H_{24}N_2O_4$                                                          | 71.27         | 5.98 | 6.93  | 390.2 | 404.5      |
| IVb                      | 91          | 182-183 | 72.41    | 6.63 | 6.20  | $C_{26}H_{28}N_2O_4$                                                          | 72.20         | 6.52 | 6.48  | 416.8 | 432.5      |
| IVc                      | 85          | 195-196 | 68.99    | 5.85 | 5.57  | $C_{28}H_{28}N_2O_6$                                                          | 68.84         | 5.78 | 5.73  | 467.5 | 488.5      |
| IVd                      | 90          | 170-171 | 69.94    | 6.24 | 5.24  | $C_{30}^{20}H_{32}N_{2}O_{6}$                                                 | 69.75         | 6.24 | 5.42  | 498.4 | 516.6      |
| IVe                      | 91          | 152-153 | 70.75    | 6.70 | 4.83  | $C_{32}H_{36}N_2O_6$                                                          | 70.57         | 6.66 | 5.14  | 528.1 | 544.6      |
| IVf                      | 90          | 168-169 | 70.73    | 6.75 | 4.87  | $C_{32}H_{36}N_2O_6$                                                          | 70.57         | 6.66 | 5.14  | 530.4 | 544.6      |
| IVg                      | 89          | 137–138 | 71.64    | 7.21 | 4.60  | $C_{34}H_{40}N_2O_6$                                                          | 71.31         | 7.04 | 4.89  | 558.6 | 572.7      |
| IVh                      | 87          | 132-133 | 72.00    | 7.46 | 4.17  | $C_{36}H_{44}N_{2}O_{6}$                                                      | 71.79         | 7.38 | 4.66  | 581.9 | 600.8      |
| IVi                      | 89          | 126-127 | 72.67    | 7.84 | 4.16  | $C_{38}H_{48}N_2O_6$                                                          | 72.58         | 7.69 | 4.46  | 610.3 | 628.8      |
| IVj                      | 90          | 122–123 | 73.47    | 8.13 | 3.95  | $C_{40}H_{52}N_2O_6$                                                          | 73.14         | 7.98 | 4.26  | 637.0 | 656.9      |
|                          | 1           | 1       | 1        | 1    | 1     | 1                                                                             | 1             |      | 1     | 1     | 1          |

RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 78 No. 2 2008

| Table (C | ontd.) |
|----------|--------|
|----------|--------|

| Comp.<br>no.     | Yield,<br>% | mp, °C  | Found, % |       |       | Ermul                                                         | Calculated, % |      |       | М     |            |
|------------------|-------------|---------|----------|-------|-------|---------------------------------------------------------------|---------------|------|-------|-------|------------|
|                  |             |         | С        | Н     | N     | Formula                                                       | С             | Н    | N     | found | calculated |
| IVk              | 90          | 96–97   | 73.91    | 8.29  | 3.88  | C <sub>42</sub> H <sub>56</sub> N <sub>2</sub> O <sub>6</sub> | 73.65         | 8.24 | 4.09  | 671.7 | 682.9      |
| IVI              | 90          | 85-86   | 74.36    | 8.58  | 3.85  | $C_{44}H_{60}N_2O_6$                                          | 74.12         | 8.48 | 3.93  | 697.2 | 713.0      |
| IVm              | 87          | 92–93   | 72.85    | 8.89  | 3.06  | $C_{50}H_{72}N_2O_6$                                          | 72.61         | 8.77 | 3.39  | 804.4 | 827.1      |
| IVn              | 90          | 73–74   | 77.03    | 10.02 | 2.77  | $C_{60}H_{92}N_2O_6$                                          | 76.88         | 9.89 | 2.99  | 917.5 | 937.4      |
| IVo              | 89          | 176–177 | 73.24    | 7.19  | 4.13  | $C_{38}H_{44}N_2O_6$                                          | 73.05         | 7.10 | 4.48  | 613.8 | 624.8      |
| IVp              | 89          | 143-144 | 75.68    | 6.23  | 3.96  | $C_{42}H_{40}N_2O_6$                                          | 75.43         | 6.03 | 4.19  | 645.3 | 668.8      |
| IVq              | 90          | 191–192 | 75.97    | 6.51  | 3.77  | $C_{44}H_{44}N_2O_6$                                          | 75.84         | 6.36 | 4.02  | 680.2 | 696.8      |
| IVr              | 88          | 193–194 | 76.14    | 5.58  | 3.96  | $C_{42}H_{36}N_2O_6$                                          | 75.89         | 5.46 | 4.21  | 643.7 | 664.8      |
| IVs              | 90          | 248-249 | 74.20    | 4.92  | 7.57  | $C_{44}H_{34}N_4O_6$                                          | 73.94         | 4.79 | 7.84  | 694.6 | 714.8      |
| IVt              | 89          | 198–199 | 75.22    | 5.81  | 4.09  | $C_{40}H_{36}N_2O_6$                                          | 74.98         | 5.66 | 4.37  | 447.0 | 460.7      |
| IVu <sup>e</sup> | 89          | 210-211 | 60.97    | 3.78  | 3.56  | $C_{38}H_{28}Cl_4N_2O_6$                                      | 60.82         | 3.76 | 3.73  | 737.1 | 750.5      |
| IVv <sup>f</sup> | 88          | 176–177 | 58.56    | 4.13  | 3.20  | $C_{40}H_{32}Cl_4N_2O_8$                                      | 59.28         | 3.98 | 3.46  | 786.3 | 810.5      |
| IVw              | 90          | 240-241 | 65.20    | 4.44  | 7.81  | $C_{38}H_{30}N_4O_{10}$                                       | 64.95         | 4.30 | 7.97  | 679.4 | 702.7      |
| IVx              | 90          | 265-266 | 65.15    | 4.38  | 7.86  | $C_{38}H_{30}N_4O_{10}$                                       | 64.95         | 4.30 | 7.97  | 682.5 | 702.7      |
| IVy              | 88          | 303-304 | 75.86    | 3.63  | 10.22 | $C_{38}H_{28}N_6O_{14}$                                       | 75.58         | 3.56 | 10.60 | 770.5 | 792.7      |
| IVz              | 91          | 202-203 | 64.69    | 5.50  | 5.05  | $C_{28}H_{28}N_2O_8$                                          | 64.61         | 5.42 | 5.38  | 503.7 | 520.5      |
| IVα              | 90          | 193–194 | 65.72    | 5.97  | 4.88  | $C_{30}H_{32}N_2O_8$                                          | 65.58         | 5.88 | 5.11  | 527.9 | 548.6      |
| <b>IV</b> β      | 90          | 148–149 | 64.76    | 5.85  | 4.14  | $C_{34}H_{36}N_2O_{10}$                                       | 64.55         | 5.74 | 4.43  | 618.8 | 632.7      |

<sup>a</sup> Found Cl, %: 10.60. Calculated Cl, %: 10.85. <sup>b</sup> Found Cl, %: 19.26. Calculated Cl, %: 19.63. <sup>c</sup> Found Cl, %: 17.88. Calculated Cl, %: 18.12. <sup>d</sup> Found Br, %: 21.32. Calculated Br, %: 21.53. <sup>e</sup> Found Cl, %: 18.65. Calculated Cl, %: 18.90. <sup>f</sup> Found Cl, %: 17.18. Calculated Cl, %: 17.50.

ing absorption maxima were observed in the UV spectra of **IIIa–IIIz** and **IVa–III** $\beta$ ,  $\lambda_{max}$ , nm (log  $\varepsilon$ ): 209 (4.48), 221 (3.38), 273 (4.20), 354 (3.38).

In the <sup>1</sup>H NMR spectra of Schiff bases **IIIa–IIIz** and **IVb**, protons in the methoxy group resonated as a singlet at  $\delta$  3.85–3.92 ppm; ethoxy group in **IVa–IV** $\beta$  gave a triplet at  $\delta$  1.35–1.70 ppm (Me) and a quartet at  $\delta$  4.00– 4.40 ppm (CH<sub>2</sub>). Aromatic proton signals were located in the  $\delta$  region 7.00–7.80 ppm, and the azomethine HC=N proton resonated as a singlet at  $\delta$  8.40–8.50 ppm; the position of the latter signal is typical of *E* isomers of Schiff bases [3].

Some relatively high-melting Schiff bases (mp >100°C, see table) showed thermochromic effect [4] arising from reversible transformation of *E*,*E* isomer into less thermodynamically stable *Z*,*Z* isomer prior to melting. This process was accompanied by change of the crystal shape and reduction in the color intensity just before melting. No thermochromic effect was observed for low-melting Schiff bases **IIIh–IIIj**, **IVa**, and **IVk–IVn**. In order to verify the nature of thermochromic effect observed upon melting, we performed semiempirical MNDO PM3 calculations of heats of formation ( $\Delta H_f$ ) of the *E*,*E*, *E*,*Z*, and *Z*,*Z* isomers of Schiff bases **IIIq** and **IVc** with complete optimization

of all bond lengths and bond and dihedral angles using GAMESS program [5]. The following  $\Delta H_{\rm f}$ values were obtained (kcal mol<sup>-1</sup>): *E,E* isomers: -48.8 (**IIIq**), -132.5 (**IVc**); *E,Z* isomers: -46.6 (**IIIq**), -131.7 (**IVc**); *Z,Z* isomers: -46.2 (**IIIq**), -128.4 (**IVc**). Thus, the *E,E* configuration is more stable than *E,Z* (by 0.8–2.2 kcal mol<sup>-1</sup>) and *Z,Z* (by 2.6–4.1 kcal mol<sup>-1</sup>). The calculated energy barriers to the transformations of one isomer into another were estimated at 8– 12 kcal mol<sup>-1</sup>. Thus Schiff bases **III** and **IV** attract interest as potential heat-sensitive molecular switches [6].

By thermal vacuum evaporation (TVE) of 0.1-mmol (0.038–0.094-g) samples of powdered Schiff bases **IIIa–IIIz** and **IVa–III** $\beta$  we obtained mainly glossy films with a thickness of 0.5–1.6 µm, which had a pale yellow or orange hue and exhibited a good adhesion to various supports (monocrystalline silicon, quartz, pyroceram, polymeric layers, etc.). In most cases, samples evaporated completely or with a small residue (0.1–0.3%). Exceptions were dinitro derivatives **IIIw** and **IVy**; their evaporation was accompanied by decomposition (up to 36%) and formation of a carbon residue. Nevertheless, the IR spectra of the obtained films were similar to those of the corresponding initial



samples. The glossiness and transparency of films prepared from all Schiff bases did not changed for a long time (over a month).

The films turned out to be sensitive to UV light in the  $\lambda$  range from 260 to 380 nm. Their exposure to UV light through a photomask gave rise to a latent image, and the subsequent vacuum evaporation at the same temperature as for film deposition resulted in formation of a negative relief pattern. The resolution of films obtained by thermal vacuum evaporation of the examined Schiff base was 1 to 3  $\mu$ m in optical photolithography.

Using laser ablation lithography (energy exposure up to 150 kJ cm<sup>-3</sup>), a submicron relief pattern may be generated in TVE films based on the prepared Schiff bases. The films are resistant to atmospheric air and visible light, and they can be used as yellow light filters. They also may be interesting for nanotechnology of organic light-emitting diodes as a buffer layer preventing diffusion of oxygen atoms from transparent anode (ITO film) and reducing the energy barrier to hole injection [12].

## **EXPERIMENTAL**

The IR spectra were recorded in KBr on a Nicolet Protege-460 spectrometer with Fourier transform. The UV spectra were obtained on a Varian Cary-300 UV-Vis spectrophotometer from  $1 \times 10^{-4}$  M solutions in methanol. The <sup>1</sup>H NMR spectra were measured from 5% solutions in CDCl<sub>3</sub> on a Tesla BS-587A spectrometer (100 MHz) using tetramethylsilane as internal reference. The elemental compositions were determined with an accuracy of 0.1% on a Vario EL-III Elementar C,H,N,O,S analyzer. Thermal vacuum evaporation was performed using a VUP-4 setup according to the

procedure described in [1, 2, 8]; films were deposited from the gas phase onto a silicon support for IR spectroscopy. The deposition process was controlled with the aid of a quartz resonator, and film thickness was measured using an MII-4 Linnick interferometer. The IR spectra of the films deposited onto silicon supports were recorded on a Protege-460 spectrometer.

Initial esters **I** were synthesized according to the procedures described in [9–12]. Benzene-1,4-diamine (**II**) of analytical grade was used (purity 98%, mp  $139-140^{\circ}$ C).

(*E*,*E*)-*N*,*N*'-**Bis**[4-hydroxy(alkoxy, acyloxy)-3-alkoxyphenylmethylidene]benzene-1,4-diamines IIIa–IIIz and IVa–III $\beta$  (general procedure). A solution of 5 mmol of the corresponding aldehyde I and 2.5 mmol of *p*-phenylenediamine (II) in 30 ml of anhydrous methanol was heated for 0.5 h under reflux. The hot solution was filtered through a folded filter paper, the filtrate was cooled and left to stand for 10–15 h at 5°C, and the precipitate was filtered off through a glass filter, washed with a small amount of methanol, and dried in air.

## REFERENCES

- Dikusar, E.A., Kozlov, N.G., Potkin, V.I., Azarko, V.A., and Yuvchenko, A.P., *Russ. J. Gen. Chem.*, 2007, vol. 77, no. 2, p. 278.
- Dikusar, E.A., Kozlov, N.G., Potkin, V.I., Azarko, V.A., and Yuvchenko, A.P., *Russ. J. Gen. Chem.*, 2007, vol. 77, no. 10, p. 1766.
- Dyer, J.R., Applications of Absorption Spectroscopy of Organic Compounds, Englewood Cliffs: Prentice– Hall, 1965. Translated under the title Prilozheniya absorbtsionnoi spektroskopii organicheskikh soedinenii, Moscow: Khimiya, 1970, p. 92.

- 4. Hadjoudis, E. and Mavridis, I.M., *Chem. Soc. Rev.*, 2004, vol. 33, no. 9, p. 579.
- Shmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S.J., Windus, T.L., Dupuis, M., and Montgomery, J.A., Jr., *J. Comput. Chem.*, 1993, vol. 14, no. 11, p. 1347.
- Comprehensive Organic Chemistry, Barton, D. and Ollis, W.D., Eds., Oxford: Pergamon, 1979, vol. 4. Translated under the title Obshchaya organicheskaya khimiya, Moscow: Khimiya, 1982, vol. 3, p. 488.
- Zhuravlev, K.P. and Yakovlev, Yu.O., *Fiz. Tverd. Tela*, 2005, vol. 47, no. 8, p. 1518.

- Azarko, V.A., Potkin, V.I., Agabekov, V.E., Kaberdin, R.V., Sharendo, E.V., and Nechai, N.I., *Vestsi Nats. Akad. Navuk Belarusi, Ser. Khim. Navuk*, 2000, no. 4, p. 44.
- Dikusar, E.A., Vyglazov, O.G., Moiseichuk, K.L., Zhukovskaya, N.A., and Kozlov, N.G., *Russ. J. Appl. Chem.*, 2005, vol. 78, no. 1, p. 120.
- 10. Dikusar, E.A. and Kozlov, N.G., *Khim. Prirodn.* Soedin., 2005, no. 1, p. 74.
- 11. Dikusar, E.A. and Kozlov, N.G., Russ. J. Org. Chem., 2005, vol. 41, no. 7, p. 992.
- 12. Dikusar, E.A., *Russ. J. Appl. Chem.*, 2006, vol. 79, no. 6, p. 1035.