Invertible Enantioselectivity in 6'-Deoxy-6'-acylamino-β-isocupreidine-Catalyzed Asymmetric Aza-Morita—Baylis—Hillman Reaction: Key Role of Achiral Additive

ORGANIC LETTERS 2009 Vol. 11, No. 20 4648-4651

Nacim Abermil, Géraldine Masson,* and Jieping Zhu*

Institut de Chimie des Substances Naturelles, CNRS, 91198 Gif-sur-Yvette Cedex, France zhu@icsn.cnrs-gif.fr; masson@icsn.cnrs-gif.fr

Received August 18, 2009

ABSTRACT

The β -ICD (1a) or β -ICD-amide (1e)-catalyzed aza-Morita—Baylis—Hillman reaction between *N*-sulfonylimines 3 and alkyl vinyl ketones 4 produced the (*R*)-enriched adducts 5. By adding a catalytic amount of β -naphthol (2a), the enantioselectivity of the same reaction was inversed leading to (*S*)-5 in excellent yields and enantioselectivities. Both aromatic and aliphatic imines are accepted as substrates for this reaction.

The aza–Morita–Baylis–Hillman reaction (aza-MBH) produces α -methylene- β -aminocarbonyl derivatives from simple imines and electron-deficient alkenes in an atom-economic fashion.¹ During the past decade, this reaction has been extensively investigated especially in its catalytic asymmetric version² due to the high synthetic value of its adduct. The β -isocupreidine (β -ICD **1a**), originally synthesized by Hoffmann³ and developed by Hatakeyama for enantioselective MBH reaction,⁴ has later been demonstrated to be one of the most efficient catalysts for the aza-MBH reaction thanks to the work of Shi,⁵ Hatakeyama,⁶ and Adolfsson.⁷ Notwithstanding the catalytic efficiency and the broad applicability of β -ICD, one serious drawback is that the enantiomer or pseudoenantiomer of **1a** is not easily avail-

(5) (a) Shi, M.; Xu, Y.-M. Angew. Chem., Int. Ed. 2002, 41, 4507. (b) Shi, M.; Xu, Y.-M.; Shi, Y.-L. Chem.–Eur. J. 2005, 11, 1794.

Reviews: (a) Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811. (b) Singh, V.; Batra, S. Tetrahedron 2008, 64, 4511.
 (c) Declerck, V.; Martinez, J.; Lamaty, F. Chem. Rev. 2009, 109, 1. (d) Ciganek, E. Organic Reactions; Paquette, L., Ed.; Wiley: New York, 1997; Vol. 51, p 201. (e) Basavaiah, D.; Rao, P. D.; Hyma, R. S. Tetrahedron 1996, 52, 8001. (f) Drewes, S. E.; Roos, G. H. P. Tetrahedron 1988, 44, 4653.

 ^{(2) (}a) Masson, G.; Housseman, C.; Zhu, J. Angew. Chem., Int. Ed. 2007, 46, 4514.
 (b) Shi, Y. L.; Shi, M. Eur. J. Org. Chem. 2007, 18, 2905.
 (c) Basavaiah, D.; Rao, K. V.; Reddy, R. J. Chem. Soc. Rev. 2007, 36, 1581.

^{(3) (}a) Braje, W.; Frakenpohl, J.; Langer, P.; Hoffmann, H. M. R. *Tetrahedron* **1998**, *54*, 3495. (b) Hoffmann, H. M. R.; Frackenpohl, J. *Eur. J. Org. Chem.* **2004**, 4293. (c) Marcelli, T.; van Maarseveen, J. H.; Hiemstra, H. *Angew. Chem., Int. Ed.* **2006**, *45*, 7496. (d) Doyle, A. G.; Jacobsen, E. N. *Chem. Rev.* **2007**, *107*, 5713. (e) Gaunt, M. J.; Johansson, C. C. C. *Chem. Rev.* **2007**, *107*, 5596. (f) France, S.; Guerin, D. J.; Miller, S. J.; Lectka, T. *Chem. Rev.* **2003**, *103*, 2985 β -ICD was used as an efficient catalyst in other reactions. See, for example: (g) Saaby, S.; Bella, M.; Jørgensen, K. A. J. *Am. Chem. Soc.* **2004**, *126*, 8120. (h) Van stennis, D. J. V. C.; Marcelli, T.; Lutz, M.; Speck, A. J.; van Maarseveen, J. H.; Hiemstra, H. *Adv. Synth. Catal.* **2007**, *349*, 281.

^{(4) (}a) Iwabuchi, Y.; Nakatani, M.; Yokoyama, N.; Hatakeyama, S. J. Am. Chem. Soc. 1999, 121, 10219. (b) Iwabuchi, Y.; Hatakeyama, S. J. Synth. Org. Chem. Jpn. 2002, 60, 2. (c) Nakano, A.; Kawahara, S.; Akamatsu, S.; Morokuma, K.; Nakatani, M.; Iwabuchi, Y.; Takahashi, K.; Ishihara, J.; Hatakeyama, S. Tetrahedron 2006, 62, 38. (d) Nakano, A.; Takahashi, K.; Ishihara, J.; Hatakeyama, S. Org. Lett. 2006, 8, 5357. (e) Iwabuchi, Y.; Furukawa, M.; Esumi, T.; Hatakeyama, S. J. Chem. Soc., Chem. Commun. 2001, 2030. (f) Iwabuchi, Y.; Sugihara, T.; Esumi, V.; Hatakeyama, S. Tetrahedron Lett. 2001, 42, 7867.

able,⁸ making the access to both enantiomers of aza-MBH adducts difficult.⁹ Intriguingly, it was noticed that the sense of asymmetric induction in the β -ICD-catalyzed aza-MBH reactions depended on the structure of electron-poor alkenes. Indeed, the aza-MBH reaction of methyl or ethyl vinyl ketone (MVK or EVK) with *N*-tosylimine afforded the (*R*)-enriched allylamine, whereas the (*S*)-enriched allylamine was obtained when acrylates, acrylonitrile, and acrolein were used as Michael acceptors.^{5,6}

We recently reported that 6'-deoxy-6'-acylamino- β -ICD (β -ICD-amide, **1b**, Table 1) was capable of catalyzing the

Table Catalys	I. Dua sis ^a	al Enan	tioselective aza-MBH F	Reaction: Sur	vey of
Ph 3		+ N N DR 1aβ- 1g R	$\begin{array}{c} 0 \\ 4a \\ \hline \\ H \\ H$	ArSO ₂ HN Ph Ar = p -metho 1b R ¹ = Boch 1c R ¹ = <i>i</i> -PrC 1d R ¹ = Ph 1e R ¹ = 9-An 1f R ¹ = α -Nag	O Me 5a xyphenyl IHCH ₂ H ₂ thracenyl phthyl
entry	cat.	temp	additive	yield ^{b} (%)	ee ^c (%)
1^d	1a	-30	none	26	-44(R)
2	1a	-50	β -naphthol $\mathbf{2a}$	39	55(S)
3	1b	-30	β -naphthol ${f 2a}$	99	60(S)
4	1c	-30	β -naphthol ${f 2a}$	>99	72(S)
5	1d	-30	β -naphthol $\mathbf{2a}$	>99	73(S)
6^d	1d	-30	none	80	-69(R)
7	1d	-30	3,5-CF ₃ -C ₆ H ₃ OH 2b	95	46(S)
8	1d	-30	4-MeO-C ₆ H ₄ OH $2c$	>99	59(S)
9	1e	-30	β -naphthol ${f 2a}$	>99	89(S)
10	1e	-30	(R)-BINOL 2d	>99	51(S)
11	1e	-30	(S)-BINOL $2e$	>99	60(S)
12^e	1e	-30	β -naphthol $\mathbf{2a}$	83	84(S)
13^d	1e	-30	none	71	-39(R)
14	1f	-30	β -naphthol $2a$	>99	71(S)
15^d	1f	-30	none	91	-52(R)
16	1e	-50	β -naphthol $\mathbf{2a}$	>99	96(S)

^{*a*} Reaction conditions: imine (**3a**) (0.1 mmol), MVK (**4a**) (0.2 mmol), additive **2** (0.01 mmol), **1** (0.01 mmol) in CH₂Cl₂ (0.35 mL) for 48 h. ^{*b*} Isolated yield after column chromatography. ^{*c*} Determined by chiral HPLC analysis. ^{*d*} Reaction time: 72 h. ^{*e*} With 5 mol % of **2a**.

enantioselective aza-MBH reaction between *N*-sulfonylimines and β -naphthyl acrylate and documented that the presence of an achiral additive β -naphthol (**2a**) can significantly improve the ee of the product **5**.¹⁰ A nucleophilic addition of the *Z*-enolate onto the Re-face of the *E*-imine was proposed to account for the observed *S*-enantioselectivity. We also surmised that in the presence of this dual catalyst the enantioselectivity of the aza-MBH reflected directly that of the Mannich reaction. On the basis of this mechanistic assumption, we assumed that this dual catalytic system (**1** and **2**) should favor the (*S*)-aza-MBH product regardless of the nature of Michael acceptor used and set out to investigate the reaction between *N*-tosylimine **3** and MVK **4** which is known to provide the (*R*)-aza-MBH adduct. We report herein that the presence of an achiral additive (**2**) can indeed switch the enantioselectivity from *R* to *S* for the aza-MBH reaction between **3** and **4**. We also identified a new β -ICD-amide **1e**, which in combination with **2** was highly efficient for the access of (*S*)-**5** from **3** and **4**.

We initially selected (E)-N-benzylidene-4-methoxybenzene sulfonamide (3a) and MVK 4a as model substrates. Performing the reaction in the presence of β -ICD-amides (1b, R = BocNHCH₂, 0.1 equiv, CH₂Cl₂) and β -naphthol (2a, 0.1) equiv), the (S)-adduct 5a was indeed isolated in 99% yield with 60% ee. Encouraged by this result, we screened β -ICD and various β -ICD-amides¹⁰ with β -naphthol as cocatalyst. The results are summarized in Table 1. In general, the β -ICDamides gave higher yields of the aza-MBH product than β -ICD. The catalysts having an aromatic residue at the C-6' position (1d-1f) were found to be more efficient than those bearing an aliphatic chain (1b, 1c), with 1e ($R^1 = 9$ -anthracenyl) being the most effective (ee: 89%, entry 9). It has to be noted that, in the absence of **2a**, all these β -ICD-based catalysts afforded the (R)-5a, albeit with reduced ee, indicating thus the crucial role of the achiral additive in achieving the S-selectivity.^{11,12} We have also briefly examined the effect of other achiral protic additives. As is seen, addition of 3,5-bis(trifluoromethyl)phenol (2b) and 4-methoxyphenol (2c) instead of naphthol (2a) into the catalytic reaction afforded (S)-5a in excellent yields but with diminished ee (entries 7, 8, vs 5). Both (R)- and (S)-BINOL were used in association with 1e, and the (S)-adduct was obtained with reduced enantioselectivity regardless of the absolute configuration of the BINOL (entries 10 and 11). These experiments

⁽⁶⁾ Kawahara, S.; Nakano, A.; Esumi, T.; Iwabuchi, Y.; Hatakeyama, S. Org. Lett. 2003, 5, 3103.

⁽⁷⁾ Balan, D.; Adolfsson, H. Tetrahedron Lett. 2003, 44, 2521.

^{(8) (}a) Nakano, A.; Ushiyama, M.; Iwabuchi, Y.; Hatakeyama, S. Adv. Synth. Catal. 2005, 347, 1790. (b) Nakano, A.; Takahashi, K.; Ishihara, J.; Hatakeyama, S. Heterocycles 2005, 66, 371. Raheem, I. T.; Goodman, S. N.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 706. (c) Igarashi, J.; Katsukawa, M.; Wang, Y.-G.; Acharya, H. P.; Kobayashi, Y. Tetrahedron Lett. 2004, 45, 3783.

⁽⁹⁾ Other enantioselective catalysts, see: (a) Matsui, K.; Takizawa, S.; Sasai, H. J. Am. Chem. Soc. 2005, 127, 3680. (b) Matsui, K.; Tanaka, K.; Horii, A.; Takizawa, S.; Sasai, H. Tetrahedron: Asymmetry 2006, 17, 578. (c) Takizawa, S.; Matsui, K.; Sasai, H. J. Synth. Org. Chem. Jpn. 2007, 65, 1089. (d) Matsui, K.; Takizawa, S.; Sasai, H. Synlett 2006, 761. (e) Shi, M.; Chen, L. H. Chem. Commun. 2003, 1310. (f) Shi, M.; Chen, L.-H.; Li, C.-Q. J. Am. Chem. Soc. 2005, 127, 3790. (g) Shi, M.; Chen, L. H.; Teng, W.-D. Adv. Synth. Catal. 2005, 347, 1781. (h) Liu, Y.-H.; Chen, L. H.; Shi, M. Adv. Synth. Catal. 2006, 348, 973. (i) Shi, M.; Chen, L. H.; Li, C.-Q. Tetrahedron: Asymmetry 2005, 16, 1385. (j) Qi, M.-J.; Ai, T.; Shi, M.; Li, G. Tetrahedron 2008, 64, 1181. (k) Raheem, I. T.; Jacobsen, E. N. Adv. Synth. Catal. 2005, 347, 1701. (1) Gausepohl, R.; Buskens, P.; Kleinen, J.; Bruckmann, A.; Lehmann, C. W.; Klankermayer, J.; Leitner, W. Angew. Chem., Int. Ed. 2006, 45, 3689. (m) Garnier, J.-M.; Anstiss, C.; Liu, F. Adv. Synth. Catal. 2009, 351, 331. (n) Garnier, J.-M.; Liu, F. Org. Biomol. Chem. 2009, 7, 1272.

⁽¹⁰⁾ Abermil, N.; Masson, G.; Zhu, J. J. Am. Chem. Soc. 2008, 130, 12596.

⁽¹¹⁾ Shi and co-workers have recently reported a substrate-directed reversal of enantioselectivity by using salicyl *N*-tosylimines. (a) Shi, M.; Qi, M.-J.; Liu, X.-G. *Chem. Commun.* **2008**, 6025. The effect of the *ortho*-hydroxy group on enantiodivergent phosphoric acid-catalyzed Povarov reaction has also been reported. See: (b) Akiyama, T.; Morita, H.; Fuchibe, K. *J. Am. Chem. Soc.* **2006**, *128*, 13070. (c) Liu, H.; Dagousset, G.; Masson, G.; Retailleau, P.; Zhu, J. J. Am. Chem. Soc. **2009**, *131*, 4598.

⁽¹²⁾ **1a**-catalyzed reaction between **3a** and MVK leading to (R)-adduct in 85% yield and 97% ee in DMF-MeCN. See ref 5.

indicated that the sense of asymmetric induction came from mainly the bifunctional catalyst **1e** rather than the chirality of protic additive. Overall, naphthol (**2a**) was identified as the best cocatalyst for this reaction. When the loading of **2a** was lowered to 5 mol %, both the yield and enantioselectivity decreased slightly (Table 1, entry 12). By performing the reaction at -50 °C in the presence of **1e** and **2a** (10 mol % each), we were pleased to find that (*S*)-**5a** can be produced in quantitative yield with 96% ee (entry 16).

Having established that naphthol (2a) can inverse the enantioselectivity of 1e-catalyzed aza-MBH reaction between 3a and 4a, we next examined the scope of the reaction using MVK and EVK as Michael acceptors and a range of sulfonylimines 3 as electrophiles. As shown in Table 2, the

 Table 2. Enantioselective aza-MBH Reaction with

 Representative Aromatic and Aliphatic N-Sulfonylimines

N II	SO ₂ Ar O	1e (10 2a (10) mol %)) mol %)	ArSO ₂ HN	I O
R ₁ 3	H + R ₂	CH ₂ Cl ₂			
entry	R_1	$ m R_2$	product	yield ^{b} (%)	ee^{c} (%)
1^a	$p-MeC_6H_4$ (3b)	Me (4a)	5b	>99	96
2^a	p-MeOC ₆ H ₄ (3c)	Me(4a)	5c	62	96
3^a	p-CF ₃ C ₆ H ₄ (3d)	Me(4a)	5d	>99	95
4^a	p-ClC ₆ H ₄ (3e)	Me(4a)	5 e	>99	94
5^a	m-BrC ₆ H ₄ (3f)	Me(4a)	5f	>99	96
6^a	m-MeC ₆ H ₄ (3g)	Me(4a)	5g	>99	97
7^a	$o\operatorname{-BrC}_{6}\operatorname{H}_{4}\left(\mathbf{3h}\right)$	Me(4a)	5h	>99	98
8^a	PhCH=CH(3i)	Me(4a)	5 i	85	96
9^a	$C_{6}H_{5}\left(\mathbf{3a}\right)$	Et (4b)	5j	$>99(46)^{d}$	$98(-68)^d$
10^a	$p-MeC_{6}H_{4}\left(\mathbf{3b}\right)$	Et (4b)	5k	>99	98
11^a	p-ClC ₆ H ₄ (3e)	Et (4b)	51	>99	97
12^e	i -PrCH ₂ (3 \mathbf{j})	Me(4a)	5m	59	81
13^e	c-hexylCH ₂ (3k)	Me (4a)	5n	71	85
14^e	n-butyl (3 L)	Me(4a)	50	42	90
15^e	<i>n</i> -pentyl (3m)	Me (4a)	5p	46	92
16^e	$Ph(CH_2)_2$ (3n)	Me(4a)	5q	36	93
17^e	<i>n</i> -pentyl (30)	Et (4b)	5r	37	93

^{*a*} Reaction conditions: imine (**3**) (0.1 mmol), **4** (0.2 mmol), β -naphthol (**2a**) (0.01 mmol), **1e** (0.01 mmol) in CH₂Cl₂ (0.35 mL) at -50 °C for 48 h. ^{*b*} Isolated yield after column chromatography. ^{*c*} Determined by chiral HPLC analysis. ^{*d*} In the absence of β -naphthol (**2a**) with **1d** as catalyst in CH₂Cl₂ (*c* = 0.35) at -30 °C. ^{*e*} Reaction conditions: aliphatic imine (**3a**) (0.1 mmol), **4** (0.2 mmol), β -naphthol (**2a**) (0.01 mmol), **1e** (0.01 mmol) in CH₂Cl₂ (0.35 mL) at 0 °C for 12 h.

catalysis showed substantial generality resulting in broad substrate scope. Imines derived from aromatic aldehydes bearing electron-donating and electron-withdrawing substituents at the *para*, *meta*, and *ortho* positions were all tolerated to afford cleanly the corresponding (*S*)-adducts in excellent yields and enantioselectivities (entries 1–11). The α , β unsaturated imine **3i** was also a suitable substrate providing (*S*)-**5i** in 85% yield and 96% ee. Under the identical reaction conditions (0.1 equiv of **1e**, 0.1 equiv of **2a**, CH₂Cl₂, –50 °C), the reaction of ethyl vinyl ketone (EVK, **4b**) with sulfonylimines proceeded smoothly to afford the (*S*)-aza-MBH adducts in excellent yields and enantioselectivities (ee > 97%). As expected, the (*R*)-enriched adduct was again obtained in the absence of 2a (entry 9).

The use of aliphatic imines in an enantioselective aza-MBH reaction is a long-standing problem due to their rapid degradation under experimental conditions.^{5,9,13} Delightfully, reaction of aliphatic imines with MVK or EVK under our optimized conditions furnished, in the presence of 4 Å molecular sieves, the corresponding aza-MBH adducts 5m-r in good to excellent enantioselectivities, albeit with moderate yields.

The invertible enantioselectivity in 1e-catalyzed aza-MBH reaction between *N*-sulfonylimine 3 and MVK (4) is demonstrated in Scheme 1. Thus, reaction of sulfonylimine

3b with MVK (**4a**) in DMF/CH₃CN⁵ in the presence of catalyst **1e** afforded the (*R*)-**5b** in 58% yield with 89% ee. The same reaction performed in CH₂Cl₂ in the presence of **1e** and cocatalyst **2a** provided (*S*)-**5b** in 99% yield with 96% ee (Scheme 1).

The ability of β -naphthol **2a** to inverse the enantioselectivity of β -ICD-amide-catalyzed reaction between sulfonylimines and MVK/EVK is intriguing.¹⁴ The *R*-selectivity

⁽¹³⁾ For elegant alternatives, see: (a) Zhang, Y.; Liu, Y.-K.; Kang, T.-R.; Hu, Z.-K.; Chen, Y. C. J. Am. Chem. Soc. 2008, 130, 2456. (b) Kamimura, A.; Okawa, H.; Morisaki, Y.; Ishikawa, S.; Uno, H. J. Org. Chem. 2007, 72, 3569. (c) Utsumi, N.; Zhang, H.; Tanaka, F.; Barbas, C. F., III. Angew. Chem., Int. Ed. 2007, 46, 1878. (d) Cassani, C.; Bernardi, L.; Fini, F.; Ricci, A. Angew. Chem., Int. Ed. 2009, 48, 5694. For ethylgly-oxylate-derived imine, see: (e) Shi, M.; Ma, G.-N.; Gao, J. J. Org. Chem. 2007, 72, 9779.

⁽¹⁴⁾ Achiral additives reverse the enantioselectivity. For reviews, see: (a) Sibi, M. P.; Liu, M. Curr. Org. Chem. 2001, 5, 719. (b) Zanoni, G.; Castronovo, F.; Franzini, M.; Vidari, G.; Giannini, E. Chem. Soc. Rev. 2003, 32, 115. (c) Tanaka, T.; Hayashi, M. Synthesis 2008, 3361. For selected examples, see: (d) Kobayashi, S.; Ishitani, H. J. Am. Chem. Soc. 1994, 116, 4083. (e) Gothelf, K. V.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem. 1998, 63, 5483. (f) Kawamura, M. Tetrahedron Lett. 1999, 40, 3213. (g) Evans, D. A.; Kozlowski, M. C.; Murray, J. A.; Burgey, C. S.; Campos, K. R.; Connell, B. T.; Staples, R. J. J. Am. Chem. Soc. 1999, 121, 669. (h) Yabu, K.; Masumoto, S.; Yamasaki, S.; Hamashima, V.; Kanai, M.; Du, W.; Curran, D. P.; Shibasaki, M. J. Am. Chem. Soc. 2001, 123, 9908. (i) Sibi, M. P.; Gorikunti, U.; Liu, M. Tetrahedron 2002, 58, 8357. (j) Bertozzi, F.; Pineschi, M.; Macchia, F.; Arnold, L. A.; Minnaard, A. J.; Feringa, B. L. Org. Lett. **2002**, *4*, 2703. (k) Zhou, J.; Ye, M. C.; Huang, Z. Z.; Tang, Y. J. Org. Chem. **2004**, *69*, 1309. (l) Trost, B. M.; Fettes, A.; Shireman, B. T. J. Am. Chem. Soc. **2004**, *126*, 2660. (m) Arseniyadis, S.; Valleix, A.; Wagner, A.; Mioskowski, C. Angew. Chem., Int. Ed. 2004, 43, 3314. (n) Du, M.; Lu, S. F.; Fang, T.; Xu, J. J. Org. Chem. 2005, 70, 3712. (o) Lutz, F.; Igarashi, T.; Kawasaki, T.; Soai, K. J. Am. Chem. Soc. 2005, 127, 12206. (p) Berkessel, A.; Mukherjee, S.; Lex, J. Synlett 2006, 41. (q) Kitagawa, O.; Matsuo, S.; Yotsumoto, K.; Taguchi, T. J. Org. Chem. 2006, 71, 2524. (r) Zeng, W.; Chen, G.-Y.; Zhou, Y.-G.; Li, Y.-X. J. Am. Chem. Soc. 2007, 129, 750.

in the β -ICD-catalyzed reaction between *N*-sulfonylimines and MVK was explained by evoking a nonselective Mannich reaction and a faster β -elimination of the (2*S*,3*R*)- vs (2*S*,3*S*)-Mannich adduct (Scheme 2).^{5–7,9k,15} This implied that the

proton migration step determined the enantioselectivity of the reaction and that the reaction itself could be regarded as a dynamic kinetic resolution. The ability of β -naphthol to inverse the kinetics of these two competitive β -elimination processes was not obvious. The recent mechanistic investigations carried out by Leitner¹⁶ and Aggarwal^{15b,c} showed that the addition of a Brønsted acid in aza-MBH reaction leads to a shift of the rate-determining step (RDS) from the proton migration to the Mannich-type coupling.¹⁷ We therefore hypothesized that the Mannich reaction may become highly stereoselective in the presence of β -naphthol (**2a**) to afford the (2*S*,3*S*) adduct **9** via a ternary *Z*-enolate complex **8**. Subsequent β -naphthol-assisted β -elimination via a plausible six-membered cyclic transition state **9** would then provide the observed (*S*)-aza-MBH adduct. When the *O*-triflate β -ICD (**1g**) lacking amide NH functionality was used in combination with naphthol (**2**), the reaction between **3a** and **4a** gave the aza-MBH (*S*)-**5a** adduct in 98% yield with much reduced ee (48%). This control experiment indicated that both the amide—NH in **1e** and phenol—OH in **2** were important for the high enantioselectivity observed in the present catalytic system.

In summary, we reported that an achiral protic additive was capable of inversing the β -ICD and β -ICD-amidecatalyzed enantioselective aza-MBH reaction between *N*sulfonylimines and MVK/EVK, therefore providing a solution to the enantio-complementarity associated with this family of catalysts.^{18–20} Further studies to elucidate the role of β -naphthol are under active pursuit in our laboratory.

Acknowledgment. Financial support from CNRS and ICSN is gratefully acknowledged. N.A. thanks ICSN for a doctoral fellowship.

Supporting Information Available: Experimental procedures, product characterization, ee measurement, absolute configuration determination for **5a** and **5o**, and copies of the ¹H and ¹³C NMR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

OL901920S

(18) Matched/mismatched enantioselective MBH and aza-MBH reaction, see: (a) Shi, M.; Jiang, J.-K. *Tetrahedron: Asymmetry* **2002**, *13*, 1941. (b) Imbriglio, J. E.; Vasbinder, M. M.; Miller, S. J. Org. Lett. **2003**, *5*, 3741.

(19) Effect of achiral additive on the yield and ee of aza-MBH reaction has been reported. See for examples: (a) Shi, Y.-L.; Shi, M. *Adv. Synth. Catal.* **2007**, *349*, 2129. See also: (b) Aroyan, C. E.; Vasbinder, M. M.; Miller, S. J. Org. Lett. **2005**, *7*, 3849.

(20) Asymmetric organic catalysis with modified cinchona alkaloids, see: Tian, S. K.; Chen, Y. G.; Hang, J. F.; Tang, L.; McDaid, P.; Deng, L. *Acc. Chem. Res.* **2004**, *37*, 621.

^{(15) (}a) Price, K. E.; Broadwater, S. J.; Jung, H. M.; McQuade, D. T. Org. Lett. **2005**, 7, 147. (b) Robiette, R.; Aggarwal, V. K.; Harvey, J. N. J. Am. Chem. Soc. **2007**, 129, 15513. (c) Aggarwal, V. K.; Fulford, S. Y.; Lloyd-Jones, G. C. Angew. Chem., Int. Ed. **2005**, 44, 1706.

⁽¹⁶⁾ Buskens, P.; Klankermayer, J.; Leitner, W. J. Am. Chem. Soc. 2005, 127, 16762.

⁽¹⁷⁾ MBH and aza-MBH accelerated in the presence of protic solvents.
See: (a) Ameer, F.; Drewes, S. E.; Freese, S.; Kaye, P. T. Synth. Commun. **1988**, 18, 495. (b) Bailey, M.; Markó, I. E.; Ollis, D.; Rasmussen, P. R. Tetrahedron Lett. **1990**, 31, 4509. (c) Augé, J.; Lubin, N.; Lubineau, A. Tetrahedron Lett. **1998**, 39, 5965. (e) Yu, C.; Liu, B.; Hu, L. J. Org. Chem. **2001**, 66, 5413. (f) Cai, J.; Zhou, Z.; Zhao, G.; Tang, C. Org. Lett. **2002**, 4, 4723. (g) Yamada, Y. M. A.; Ikegami, S. Tetrahedron Lett. **2000**, 41, 2165. (h) Aggarwal, V. K.; Emme, I.; Fulford, S. Y. J. Org. Chem. **2003**, 68, 692, and references cited therein.