Organocatalytic Syntheses of Benzoxazoles and Benzothiazoles using Aryl lodide and Oxone via C–H Functionalization and C–O/S Bond Formation

Santhosh Kumar Alla, Pradeep Sadhu, and Tharmalingam Punniyamurthy*

Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India

Supporting Information

ABSTRACT: An organocatalytic protocol for the syntheses of 2-substituted benzoxazoles and benzothiazoles is described from alkyl-/arylanilides and alkyl-/arylthioanilides using 1-iodo-4-nitrobenzene as catalyst and oxone as an inexpensive and environmentally safe terminal oxidant at room temperature in air via oxidative C–H functionalization and C–O/S

bond formation. The procedure is simple and general and provides an effective route for the construction of functionalized 2alkyl-/arylbenzoxazoles and 2-alkyl-/arylbenzothiazoles with moderate to high yields. The synthetic and mechanistic aspects have been described.

INTRODUCTION

The construction of benzoxazole and benzothiazole structural motifs has been a topic of immense interest in recent years due to their presence in a number of natural products and biologically active compounds. For examples, the benzoxazole scaffold is found in naturally occurring cytotoxic compounds, such as UK-1,¹ salvianen,² AJI9561,³ and antimycrobacterial pseudopteroxazole.⁴ Some of the recent medicinal chemistry applications of benzoxazoles and benzothiazoles include the HIV-1 reverse transcriptase inhibitors,^{5a} melatonin receptor agonists,^{5b} antitumor agents,^{5c} 5HT₃ receptor agonists,^{5d} selective peroxisome proliferator-activated receptor γ antagonist JTP-426467,^{5e} estrogen receptor- β agonist ERB-041,^{5f} and orexin receptor antagonist^{5g} (Figure 1). Furthermore, benzoxazoles are used as herbicides, such as Fenoxaprop, and as fluorescent probes such as bis-benzoxazolyl ethylenes and arenes.⁶ The development of general and effective methods for the synthesis of functionalized benzoxazoles and benzothiazoles is thus important in organic synthesis.

Figure 1. Examples of some biologically active substituted benzoxazoles and benzothiazoles.

The classical methods utilized for the synthesis of benzoxazoles and benzothiazoles involve the condensation of 2-aminophenol and 2-aminothiophenol with either aldehyde or carboxylic acid followed by oxidative cyclization.7,8 However, these approaches often suffer due to limited substrate scope and sometimes with the harsh reaction conditions such as requirement of elevated temperature (~210 °C).⁹ To overcome these drawbacks, considerable effort has been recently devoted to develop new approaches for the construction of C-O/S bonds via cross-coupling and C–H functionalization processes. For examples, copper-,¹⁰ cobalt-,¹¹ and iron-catalyzed¹² C–O/S cross-coupling of 2-haloanilides/2-halothioanilides and coppercatalyzed¹³ inter-/intramolecular domino C-N/O crosscoupling of 1,2-dihalobenzene with benzamides has been successfully utilized for the construction of benzoxazoles and benzothiazoles, while C-H functionalization followed by C-O/S bond formation has been explored for the synthesis of benzoxazoles and benzothiazoles using palladium-,¹⁴ ruthenium-,¹⁵ iron-,¹⁶ and copper-based¹⁷ catalytic systems as well as a stoichiometric amount of phenyliodinebis(trifluoroacetate) (PIFA).¹⁸

In recent years, hypervalent iodine catalyzed oxidative transformations have emerged as powerful strategies for carbon–carbon and carbon–heteroatom bond formation due to their unique features as mild, safe, and environmentally benign characterstics.^{19–23} These processes are generally found to be effective in fluoro alcohols, as they have a high ionizing ability and low nucleophilicity and stabilize the cationic intermediates generated during the reactions.^{20c–k} Herein, we wish to report an efficient organocatalytic protocol for the synthesis of substituted benzoxazoles and benzothiazoles from aryl-/alkylanilides and aryl-/alkylthioanilides using 1-iodo-4-

```
Received: May 30, 2014
```

Table 1. Optimization of the Reaction Conditions^a

entry	ArI (20 mol %)	oxidant (1.5 equiv)	additive (3.0 equiv)	solvent	conversion $(\%)^b$	yield (%)
1	PhI	oxone		HFIP	5	3
2	PhI	oxone	TfOH	HFIP	37	31
3	PhI	oxone	$BF_3 \cdot Et_2O$	HFIP	24	19
4	PhI	oxone	TMSOTf	HFIP	25	16
5	PhI	oxone	PTSA·H ₂ O	HFIP	n.d.	n.d.
6	PhI	NaBO ₃ ·4H ₂ O	TfOH	HFIP	4	2
7	PhI	30% H ₂ O ₂	TfOH	HFIP	2	2
8	PhI	$Na_2S_2O_8$	TfOH	HFIP	10	7
9	PhI	mCPBA	TfOH	HFIP	23	21
10	4-NO ₂ C ₆ H ₄ I	oxone	TfOH	HFIP	93	88
11	4-MeC ₆ H ₄ I	oxone	TfOH	HFIP	17	10
12	4-OMeC ₆ H ₄ I	oxone	TfOH	HFIP	5	3
13	2-IC ₆ H ₄ COOH	oxone	TfOH	HFIP	31	24
14	$4-NO_2C_6H_4I$	oxone	TfOH	CH_2Cl_2	5	3
15	$4-NO_2C_6H_4I$	oxone	TfOH	THF	n.d.	n.d.
16	$4-NO_2C_6H_4I$	oxone	TfOH	toluene	n.d.	n.d.
17	$4-NO_2C_6H_4I$	oxone	TfOH	HFIP	63	56 ^c
18	$4-NO_2C_6H_4I$	oxone	TfOH	HFIP	35	28^d
19	$4-NO_2C_6H_4I$	oxone	TfOH	HFIP	70	61 ^e
20	$4-NO_2C_6H_4I$	oxone	TfOH	HFIP	72	64^{f}
21	$4-NO_2C_6H_4I$	NaBO ₃ ·4H ₂ O	TfOH	HFIP	12	7
22	$4-NO_2C_6H_4I$	30% H ₂ O ₂	TfOH	HFIP	7	4
23	$4-NO_2C_6H_4I$	$Na_2S_2O_8$	TfOH	HFIP	12	9
24	$4-NO_2C_6H_4I$	mCPBA	TfOH	HFIP	43	38
25		oxone	TfOH	HFIP	n.d.	n.d.
26	$4-NO_2C_6H_4I$	oxone		HFIP	9	5

^{*a*}Reaction conditions: **1a** (0.25 mmol), ArI (20 mol %), oxidant (0.37 mmol), additive (0.75 mmol), solvent (1.5 mL), room temperature, 12 h. n.d. = not detected. ^{*b*}Determined by 400 MHz ¹H NMR spectroscopy. ^{*c*}Oxone (0.25 mmol) was used. ^{*d*}TfOH (0.25 mmol) was used. ^{*c*}TfOH (0.5 mmol) was used. ^{*f*}4-NO₂C₆H₄I (10 mol %) was used.

nitrobenzene as catalyst and oxone $(2KHSO_5 \cdot KHSO_4 \cdot K_2SO_4)$ as the terminal oxidant in hexafluoro-2-propanol (HFIP) at room temperature. The protocol affords a potential route for the access of the target products with wide substrate scope.

RESULTS AND DISCUSSION

First, the optimization of the reaction conditions was studied using N-p-tolylbenzamide (1a) as a model substrate in the presence of different aryl iodides, terminal oxidants, additives, and solvents at room temperature (Table 1). To our delight, the reaction occurred to give the target benzoxazole 2a in 12 h with 5% conversion when the substrate 1a, iodobenzene (0.2 equiv), and oxone (1.5 equiv) were stirred in HFIP (hexafluoro-2-propanol) at room temperature (entry 1). The use of TfOH (3.0 equiv, trifluoromethanesulfonic acid) as an additive led to increase the product 2a formation to 37%, whereas BF₃·OEt₂ and TMSOTf gave the target molecule with 24 and 25% conversions, respectively (entries 2-4). In contrast, PTSA·H₂O (*p*-toluenesulfonic acid) showed no effect and the starting material was recovered intact (entry 5). In a set of oxidants screened, oxone afforded superior results in comparison to those of NaBO3·4H2O, mCPBA, Na2S2O8, and 30% H₂O₂ (entries 6–9). Subsequent catalyst screening revealed that iodobenzene with a 4-nitro substituent exhibited greater reactivity, leading to 2a in 93% conversion (entry 10).

In contrast, iodobenzene with electron donating substituents (4-methyl and 4-methoxy) gave inferior results, whereas 2iodobenzoic acid yielded 2a in 31% conversion (entries 11-13). Solvent screening experiments showed that the choice of solvent was crucial and the best results were obtained using HFIP, while CH₂Cl₂, toluene, and THF were not effective, affording 2a in <5% conversion (entries 14–16). Lowering the amount of either aryl iodide (10 mol %) or oxidant (1 equiv) or additive (2 equiv) led to the product formation in <72% conversion (entries 17-20). Furthermore, the screening of the oxidants NaBO₃·4H₂O, mCPBA, Na₂S₂O₈, and 30% H₂O₂ with 1-iodo-4-nitrobenzene led to inferior results (entries 21-24). Control experiments confirmed that, in the absence of aryl iodide, no reaction was observed and the starting material was recovered intact (entry 25). In addition, the reaction using 1iodo-4-nitrobenzene without TfOH as an additive yielded 2a in 9% conversion (entry 26).

To explore the scope and functional group compatibility of this protocol, a series of alkyl-/arylanilides were subjected to the optimized reaction conditions (Table 2). First, the reactivity of unsubstituted arylanilide and the substrates equipped with electron-withdrawing and -donating groups in the anilide aryl ring was tested. The reaction of *N*-phenylbenzamide **1b** afforded benzoxazole **2b** in 12% yield. A similar result was observed with the substrate **1c**, having a 2-methoxy substituent.

Table 2. 1-Iodo-4-nitrobenzene-Catalyzed Synthesis of Benzoxazoles with Oxone a

Ar		20 mo 1.5 eq 3.0 eq	l % 4-N Juiv oxo uiv TfO	IO ₂ C ₆ H₄I ne H, HFIP	Ar N Or ob	R = alkyl, aryl
1a-ab					za-ab	
entry	Ar			R	time (h)	product (yield (%))
1	C ₆ H ₅		1b	Ph	48	2b (12)
2	2-OMeC ₆ H	4	1c	Ph	48	2c (15)
3	3-OMeC ₆ H	4	1d	Ph	48	2d (n.d.)
4	3-NO ₂ C ₆ H	4	1e	Ph	48	2e (n.d.)
5	4-OAcC ₆ H	Ļ	1f	Ph	1	2f (n.d.)
6	4-BrC ₆ H ₄		1g	Ph	12	2g (88)
7	$4-ClC_6H_4$		1h	Ph	3	2h (91)
8	$4\text{-}CNC_6H_4$		1i	Ph	48	2i (19)
9	4-CO ₂ EtC ₆	H_4	1j	Ph	48	2j (14)
10	$4-FC_6H_4$		1k	Ph	5	2k (77)
11	4-COMeC ₆	H_4	11	Ph	48	2l (n.d.)
12	4-MeOC ₆ H	4	1m	Ph	12	2m (82)
13	4-NO ₂ C ₆ H	4	ln	Ph	12	2n (n.d.)
14	$4-CF_3C_6H_4$		10	Ph	48	2o (25)
15	2,4-Me ₂ C ₆ H	ł3	1p	Ph	12	2p (70)
16	3,4-Me ₂ C ₆ H	ł3	1q	Ph	12	2qa,qb (75) ^b
17	4-ClC ₆ H ₄		lr	$2 - MeC_6H_4$	12	2r (91)
18	4-ClC ₆ H ₄		1s	$3-MeC_6H_4$	12	2s (84)
19	4-ClC ₆ H ₄		lt	$4-ClC_6H_4$	12	2t (89)
20	4-ClC ₆ H ₄		1u	4-OMeC ₆ H	4 12	2u (81)
21	4-ClC ₆ H ₄		1v	$4-MeC_6H_4$	12	2v (82)
22	4-ClC ₆ H ₄		1w	$4-NO_2C_6H_4$	24	2w (81)
23	$4-ClC_6H_4$		1x	1-naphthyl	12	2x (70)
24	$4-ClC_6H_4$		1y	2-furyl	8	2y (90)
25	$4-ClC_6H_4$		1z	Et	12	2z (63)
26	$4-ClC_6H_4$		1aa	ⁱ Pr	20	2aa (80)
27	4-ClC ₆ H ₄		1ab	^t Bu	24	2ab (45)

^aReaction conditions: 1a-ab (0.36 mmol), 1-iodo-4-nitrobenzene (20 mol %), oxone (0.54 mmol), TfOH (1.08 mmol), HFIP (2.5 mL), room temperature. ^bContained 6,7-dimethyl- (2qa) and 5,6-dimethyl-2-phenylbenzoxazoles (2qb) (1:2.2).

The substrate 1d with a 3-methoxy group underwent decomposition, while 1e substituted with a 3-nitro group failed to react and the starting material was recovered intact. However, the reactions of the substrates 1g,h,k,m with 4bromo, 4-chloro, 4-fluoro and 4-methoxy substituents readily occurred to furnish the corresponding substituted benzoxazoles 2g,h,k,m in 77-91% yields, whereas 1i,j,o having electronwithdrawing 4-cyano, 4-ester, and 4-trifluoromethyl groups were less reactive, giving the benzoxazoles 2i,j,o in 14-25% yields. Furthermore, the substrate 1f with a 4-acetoxy group underwent hydrolysis, while 11,n having 4-keto and 4-ntiro substituents showed no reaction and the starting materials were recovered. These results indicate the involvement of an electrophilic aromatic substitution process in the cyclization reaction. Furthermore, the reaction of the substrate 1p with 2,4dimethyl substituents provided the benzoxazole 2p in 70% yield, whereas 1q having 3,4-dimethyl substituents afforded a 1:2.2 mixture of 6,7-dimethyl-2-phenylbenzoxazole 2qa and 5,6-dimethyl-2-phenylbenzoxazole 2qb in 75% yield. These results suggest that the regioselectivity of the cyclization depends on the arene substituents. Next, the reactions of the substrates having electron-donating and -withdrawing groups in

the amide aryl ring were studied. In general, these substrates smoothly underwent reaction with good yields. For examples, the reactions of the substrates 1r-w with 2-methyl, 3-methyl, 4-chloro, 4-methoxy, 4-methyl, and 4-nitro substituents gave the corresponding 2-arylbenzoxazoles 2r-w in 81-91% yields. Similarly, the substrates 1x, y bearing R = 1-naphthyl and 2-furyl substituents underwent reaction to give the benzoxazoles 2x,y in 70 and 90% yields, respectively. Then, the utility of the procedure for the synthesis of 2-alkylbenzoxazoles was explored. Interestingly, the reactions took place to furnish the desired 2-alkylbenzoxazoles with moderate to good yields. For examples, the substrates $1_{z,aa}$ with R = ethyl and isopropyl substituents underwent cyclization to give the benzoxazoles 2z,aa in 63 and 80% yields, respectively, whereas the reaction of the substrate 1ab with R = tert-butyl afforded 2-tertbutylbenzoxazole 2ab in 45% yield.

The scope and utility of the protocol was further explored for the reaction of variously substituted analogous alkyl-/ arylthioanilides (Table 3). The reactions readily occurred to give the desired 2-alkyl-/2-arylbenzothiazoles with enhanced yields. For examples, N-phenylthiobenzamide 3a underwent reaction to afford 2-phenylbenzothiazole 4a in 84% yield, while the substrate 3b having a 2-methyl substituent afforded 4b in 41% yield. The reaction of the substrate 3c having a 3-methoxy group afforded a 1:32 mixture of 7-methoxy-2-phenylbenzothiazole 4ca and 5-methoxy-2-phenylbenzothiazole 4cb in 89% yield. A similar result was obtained with the substrate 3d having a 3-methyl substituent, providing a 1:3.3 mixture of 7-methyl-2phenylbenzothiazole (4da) and 5-methyl-2-phenylbenzothiazole (4db) in 79% vield. In contrast, the substrates 3e.m with 3nitro and 4-nitro substituents showed no reaction and the starting materials were recovered intact. However, the reaction of the substrates 3f,i-l,o,q having 4-bromo, 4-chloro, 4-fluoro, 4-methoxy, 4-methyl, 2,4-dimethyl, and 3,5-dichloro substituents readily occurred to give the corresponding benzothiazoles 4f,i-l,o,q in 61-89% yields, whereas the substrates 3g,h,n having 4-cyano, 4-ester, and 4-trifluoromethyl substituents exhibited moderate reactivity, giving the target products in 38-44% yields. In addition, the substrate 3p bearing 3,4-dimethyl substituents underwent reaction to give a 1:2.4 mixture of 6,7dimethyl-2-phenylbenzothiazole 4pa and 5,6-dimethyl-2-phenylbenzothiazole 4pb in 75% yield. On the other hand, the substrates 3r-w containing 2-methyl, 3-methyl, 4-fluoro, 4methoxy, 4-methyl, and 4-nitro substituents on the thioamide aryl ring smoothly underwent reaction to give the corresponding 2-arylbenzothiazoles 4r-w in 86-95% yields. Likewise, the cyclization of the substrates 3x-z having 1-naphthyl and 2-furyl substituents could be carried out to afford the corresponding benzothiazoles 4x-z in 75-88% yields. Furthermore, this protocol was compatible for the synthesis of 2-alkylbenzothiazoles. For examples, the substrates 3aa,ab, with R = ethyl and isopropyl substituents, readily cyclized to provide the desired 2alkylbenzothiazoles 4aa,ab in 63 and 88% yields, respectively, whereas 3ac having R = tert-butyl underwent reaction to give the target benzothiazole 4ac in 81% yield.

Finally, the scaleup of the protocol was studied with **1a** as a representative example (Scheme 1). As expected, the reaction readily occurred to furnish the desired 2-arylbenzoxazole **2a** in 82% yield.

To investigate the reaction kinetics, an intermolecular competitive reaction between equimolar amounts of $1a-d_2$ and 1a was conducted under the typical reaction conditions. At 23% conversion, the reaction revealed the intermolecular

Table 3. 1-Iodo-4-nitrobenzene-Catalyzed Synthesis of Benzothiazoles with Oxone a

Ar 3a-ac	H N S S	20 mo 1.5 eq 3.0 eq	l % 4-N uiv oxo uiv TfO	O ₂ C ₆ H₄I ne H, HFIP		Ar S 4a-ac	R R = alkyl, aryl
						time	product (yield
entry	Ar			R		(h)	(%))
1	C_6H_5		3a	Ph		12	4a (84)
2	$2-MeC_6H_4$		3b	Ph		12	4b (41)
3	3-MeOC ₆ H	I_4	3c	Ph		6	4ca,cb (89) ^b
4	$3-MeC_6H_4$		3d	Ph		12	4da,db (79) ^c
5	3-NO ₂ C ₆ H	4	3e	Ph		48	4e (n.d.)
6	$4\text{-BrC}_6\text{H}_4$		3f	Ph		12	4f (89)
7	4-CNC ₆ H ₄		3g	Ph		48	4g (41)
8	4-CO ₂ EtCo	5H4	3h	Ph		48	4h (38)
9	$4\text{-}ClC_6H_4$		3i	Ph		5	4i (88)
10	$4-FC_6H_4$		3j	Ph		12	4j (83)
11	4-MeOC ₆ F	I_4	3k	Ph		12	4k (87)
12	$4-MeC_6H_4$		31	Ph		12	4l (89)
13	$4-NO_2C_6H$	4	3m	Ph		12	4m (n.d.)
14	4-CF ₃ C ₆ H ₄		3n	Ph		48	4n (44)
15	2,4-Me ₂ C ₆ I	H ₃	30	Ph		12	4o (61)
16	3,4-Me ₂ C ₆ I	H ₃	3p	Ph		12	4pa,pb (75) ^d
17	3,5-Cl ₂ C ₆ H	[3	3q	Ph		12	4q (72)
18	$4-ClC_6H_4$		3r	2-MeC ₆ H	4	12	4r (95)
19	$4-ClC_6H_4$		3s	3-MeC ₆ H	4	12	4s (93)
20	$4-ClC_6H_4$		3t	$4-FC_6H_4$		8	4t (90)
21	$4-ClC_6H_4$		3u	4-OMeC ₆	H_4	12	4u (93)
22	$4-ClC_6H_4$		3v	4-MeC ₆ H	4	12	4v (89)
23	$4-ClC_6H_4$		3w	$4-NO_2C_6H$	H_4	24	4w (86)
24	1-naphthyl		3x	Ph		10	4x (88)
25	$4-ClC_6H_4$		3y	2-furyl		8	4y (81)
26	4-ClC ₆ H ₄		3z	1-naphthy	rl	15	4z (75)
27	4-ClC ₆ H ₄		3aa	Et		12	4aa (63)
28	$4-ClC_6H_4$		3ab	ⁱ Pr		12	4ab (88)
29	4-ClC ₆ H ₄		3ac	^t Bu		12	4ac (81)

^{*a*}Reaction conditions: **3a**-**ab** (0.36 mmol), 1-iodo-4-nitrobenzene (20 mol %), oxone (0.54 mmol), TfOH (1.08 mmol), HFIP (2.5 mL), room temperature. ^{*b*}Contained 7-methoxy- (**4ca**) and 5-methoxy-2-phenylbenzothiazoles (**4cb**) (1:32). ^{*c*}Contained 7-methyl- (**4da**) and 5-methyl-2-phenylbenzothiazoles (**4db**) (1:3.3). ^{*d*}Contained 6,7-dimethyl- (**4pa**) and 5,6-dimethyl-2-phenylbenzothiazoles (**4pb**) (1:2.4).

Scheme 1. Gram-Scale Synthesis

kinetic isotopic effect $P_{\rm H}/P_{\rm D} = 1.0$, which suggests that the C– H bond breaking step was not involved in the rate-determining step (Scheme 2).²² Then, the application of a radical scavenger for I^{III} species, *N-tert*-butyl- α -phenylnitrone,^{20c} was studied. However, the radical scavenger did not affect the reaction, and the target 2-arylbenzoxazole **2a** was obtained in 88% yield (Scheme 3). This result reveals that the radical was not involved in the cyclization process. Thus, the reaction of aryl iodide **A** with TfOH and oxone can generate an active hypervalent iodine(III) species, PhI(OTf)₂ (**B**),²³ that can Scheme 2. Intermolecular Kinetic Isotope Experiment

Scheme 3. Radical Scavenger Experiment with *N*-tert-Butyl- α -phenylnitrone

catalyze the oxidative cyclization of the substrates C to give the intermediate D, which could be stabilized by HFIP.^{20h,j} Intramolecular cyclization of D can give the cationic intermediate E, accompanied by the liberation of iodobenzene A, which could be reoxidized to B. The intermediate E can furnish the target products 2 and 4 by aromatization (Scheme 4).

CONCLUSIONS

In summary, we have developed a simple and general organocatalytic protocol for the synthesis of 2-arylbenzoxazoles and 2-arylbenzothiazoles using 1-iodo-4-nitrobenzene as catalyst in the presence of oxone as terminal oxidant at room temperature. This protocol can readily be extended to the construction of 2-alkylbenzoxazoles and 2-alkylbenzothiazoles.

EXPERIMENTAL SECTION

General Information. All chemicals and solvents were purchased from commercial suppliers and were used as received. Substituted anilides were prepared from anilines and acid chlorides.²⁴ Thiobenzanilides were prepared by thionation of the corresponding anilides with Lawesson's reagent.¹⁴ Purification of the reaction products was carried out by column chromatography using silica gel (230–400 mesh). analytical TLC was performed on silica gel G/GF 254 plates. NMR spectra were recorded on 400 and 600 MHz NMR spectrometers using CDCl₃ as solvent and Me₄Si as internal standard, and the broad-band decoupling of carbon data was proton-decoupled ¹³C{¹H}. Chemical shifts (δ) are reported in ppm, and spin–spin coupling constants (*J*) are given in Hz. Melting points were determined using a melting point apparatus and are uncorrected. FT-IR spectra were recorded using an IR spectrometer. Elemental analyses were recorded using a CHNS analyzer. High-resolution mass spectra (HRMS) were recorded on a ESI-MS TOF instrument.

General Procedure for 1-lodo-4-nitrobenzene-Catalyzed Synthesis of Substituted Benzoxazoles/Benzothiazoles 2a– ab and 4a–ac. Oxone (1.5 equiv) was added to a stirred solution of anilide/thioanilide (0.36 mmol, 1.0 equiv), 4-nitroiodobenzene (20 mol %), and triflic acid (3.0 equiv) in HFIP (2.5 mL) at room temperature in air. The mixture was stirred, and the progress of the reaction was monitored by TLC using ethyl acetate and hexane as eluent. The reaction mixture was then treated with saturated Na₂S₂O₃ (1 mL) and NaHCO₃ (1 mL) solutions. The resultant mixture was extracted using ethyl acetate (3 × 10 mL) and washed with brine (2 × 5 mL) and water (1 × 5 mL). Drying (Na₂SO₄) and evaporation of the

Scheme 4. Proposed Catalytic Cycle

solvent gave a residue that was purified by silica gel column chromatography using hexane and ethyl acetate as eluent to afford analytically pure substituted benzoxazoles and benzothiazoles.

6-Methyl-2-phenylbenzo[d]oxazole (2a): analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_{\rm f}$ = 0.54; white solid; 66 mg, 88% yield; mp 91–92 °C (lit.^{10a} mp 93 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.23–8.21 (m, 2H), 7.63 (d, *J* = 8.4 Hz, 1H), 7.51–7.50 (m, 3H), 7.37 (s, 1H), 7.16 (d, *J* = 8.4 Hz, 1H), 2.49 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.3, 150.8, 139.8, 135.2, 131.0, 128.6, 127.25, 127.2, 125.6, 119.1, 110.5, 21.5; FT-IR (KBr) 3054, 2919, 1647, 1615, 1554, 1482, 1448, 1337, 1247, 1173, 1126, 1052, 1021 cm⁻¹. Anal. Calcd for C₁₄H₁₁NO: C, 80.36; H, 5.30; N, 6.69. Found: C, 80.29; H, 5.32; N, 6.73. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₄H₁₁NOH 210.0913, found 210.0922.

2-Phenylbenzo[d]oxazole (2b): analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_{\rm f}$ = 0.62; white solid; 8.0 mg, 12% yield; mp 102–103 °C (lit.¹⁷ mp 102 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.26–8.24 (m, 2H), 7.78–7.75 (m, 1H), 7.59–7.56 (m, 1H), 7.53– 7.51 (m, 3H), 7.35–7.33 (m, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.1, 150.9, 142.2, 131.6, 129.0, 127.7, 127.3, 125.2, 124.7, 120.1, 110.7; FT-IR (KBr) 3063, 2920, 1722, 1615, 1550, 1448, 1345, 1284, 1239, 1194, 1145, 1104, 1055, 1022, 1002 cm⁻¹. Anal. Calcd for C₁₃H₉NO: C, 79.98; H, 4.65; N, 7.17. Found: C, 79.92; H, 4.66; N, 7.21. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₃H₉NOH 196.0757, found 196.0759.

4-Methoxy-2-phenylbenzo[d]oxazole (2c): analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_{\rm f}$ = 0.46; white solid; 12 mg, 15% yield; mp 65–66 °C (lit.¹⁷ mp 67 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.31–8.29 (m, 2H), 7.52–7.50 (m, 3H), 7.31–7.26 (m, 1H), 7.22 (d, J = 8.0 Hz, 1H), 6.83 (d, J = 8.0 Hz, 1H), 4.07 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.1, 152.4, 151.8, 132.0, 131.5, 129.0, 127.8, 127.4, 125.9, 106.2, 103.6, 56.4; FT-IR (KBr) 3066, 2960, 1625, 1510, 1486, 1445, 1428, 1355, 1322, 1269, 1240, 1097, 1056, 1019 cm⁻¹. Anal. Calcd for C₁₄H₁₁NO₂: C, 74.65; H, 4.92; N, 6.22. Found: C, 74.71; H, 4.90; N, 6.17. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₄H₁₁NO₂H 226.0863, found 226.0859.

6-Bromo-2-phenylbenzo[d]oxazole (**2g**): analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_{\rm f}$ = 0.60; white solid; 87 mg, 88% yield; mp 96–97 °C (lit.¹⁷ mp 95 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.23–8.20 (m, 2H), 7.74 (d, *J* = 1.6 Hz, 1H), 7.63 (d, *J* = 8.8 Hz, 1H), 7.55–7.50 (m, 3H), 7.48 (dd, *J* = 8.4 Hz, 2.0 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.8, 151.5, 141.6, 132.1, 129.2, 128.3, 127.9, 126.9, 121.2, 118.2, 114.4; FT-IR (KBr) 2960, 1638, 1557, 1506, 1449, 1422, 1328, 1257, 1041 cm⁻¹. Anal. Calcd for C₁₃H₈BrNO: C, 56.96; H, 2.94; N, 5.11. Found: C, 57.04; H, 2.92; N, 5.07. HRMS (ESI) *m*/*z*: [M + H]⁺ calcd for C₁₃H₈BrNOH 273.9862, found 273.9860.

6-Chloro-2-phenylbenzo[d]oxazole (2h): analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_{\rm f}$ = 0.63; white solid; 75 mg, 91% yield; mp 104–105 °C (lit.^{10a} mp 107 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.22–8.20 (m, 2H), 7.67 (d, *J* = 8.4 Hz, 1H), 7.58 (d, *J* = 1.6 Hz, 1H), 7.54–7.51 (m, 3H), 7.33 (dd, *J* = 8.8 Hz, 2.0 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.9, 151.1, 141.1, 132.0, 130.9, 129.2, 127.9, 126.9, 125.5, 120.7, 111.4; FT-IR (KBr) 3059, 2926, 1618, 1552, 1488, 1450, 1331, 1263, 1051, 1022 cm⁻¹. Anal. Calcd for C₁₃H₈ClNO: C, 67.99; H, 3.51; N, 6.10. Found: C, 68.09; H, 3.49; N, 6.04. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₃H₈ClNOH 230.0367, found 230.0367.

2-Phenylbenzo[d]oxazole-6-carbonitrile (2i): analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_{\rm f}$ = 0.58; white solid; 15.0 mg, 19% yield; mp 198–199 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.27–8.24 (m, 2H), 7.90 (d, *J* = 0.8 Hz, 1H), 7.84 (d, *J* = 8.8 Hz, 1H), 7.65 (dd, *J* = 8.0 Hz, 1.2 Hz, 1H), 7.61–7.52 (m, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 166.3, 150.3, 146.2, 132.9, 129.4, 129.1, 128.4, 126.3, 121.2, 119.0, 115.1, 108.4; FT-IR (KBr) 2924, 1700, 1630, 1601, 1552, 1517, 1482, 1456, 1409, 1351, 1327, 1292, 1225, 1111, 1047 cm⁻¹. Anal. Calcd for C₁₄H₈N₂O: C, 76.35; H, 3.66; N, 12.72. Found: C, 76.30; H, 3.65; N, 12.76. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₄H₈N₂OH 221.0709, found 221.0711.

Ethyl 2-phenylbenzo[d]oxazole-6-carboxylate (2j): analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_f = 0.46$; white solid; 13 mg, 14% yield; mp 76–77 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.29–8.28 (m, 3H), 8.11 (dd, J = 7.8 Hz, 1.2 Hz, 1H), 7.80 (d, J = 8.4 Hz, 1H), 7.60–7.54 (m, 3H), 4.45 (q, J = 7.2 Hz, 2H), 1.45 (t, J = 7.2 Hz, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 166.4, 165.8, 150.7, 146.2, 132.4, 129.3, 128.2, 127.8, 126.9, 126.6, 119.7, 112.5, 61.5, 14.6; FT-IR (KBr) 2980, 1713, 1614, 1582, 1476, 1447, 1431, 1365, 1346, 1318, 1292, 1262, 1226, 1187, 1051, 1020 cm⁻¹. Anal. Calcd for C₁₆H₁₃NO₃: C, 71.90; H, 4.90; N, 5.24. Found: C, 71.85; H, 4.91; N, 5.30. HRMS (ESI) m/z: $[M + H]^+$ calcd for C₁₆H₁₃NO₃H 268.0968, found 268.0961.

6-Fluoro-2-phenylbenzo[d]oxazole (2k): analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_{\rm f}$ = 0.62; white solid; 59 mg, 77% yield; mp 106–107 °C (lit.^{10a} mp 109 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.21–8.18 (m, 2H), 7.69 (dd, *J* = 8.4 Hz, 4.8 Hz, 1H), 7.52–7.50 (m, 3H), 7.30 (dd, *J* = 7.6 Hz, 2.0 Hz, 1H), 7.11–7.06 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.9, 162.1 (d, *J* = 242.5 Hz), 151.0 (d, *J* = 15.3 Hz), 138.6 (d, *J* = 1.6 Hz), 131.8, 129.1, 127.7, 127.1, 120.5 (d, *J* = 10.7 Hz), 112.8 (d, *J* = 24.4 Hz), 99.0 (d, *J* = 28.2 Hz); FT-IR (KBr) 3055, 2920, 1624, 1556, 1490, 1451, 1345, 1289, 1256, 1210, 1129, 1103, 1049, 1021 cm⁻¹. Anal. Calcd for C₁₃H₈FNO: C, 73.23; H, 3.78; N, 6.57. Found: C, 73.18; H, 3.77; N, 6.61. HRMS (ESI) *m*/*z*: [M + H]⁺ calcd for C₁₃H₈FNOH 214.0663, found 214.0661.

6-Methoxy-2-phenylbenzo[d]oxazole (2m): analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_{\rm f}$ = 0.54; white solid; 66 mg, 82% yield; mp 78–79 °C (lit.^{25e} mp 75 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.19–8.17 (m, 2H), 7.63 (d, *J* = 9.2 Hz, 1H), 7.50–7.48 (m, 3H), 7.10 (d, *J* = 2.0 Hz, 1H), 6.95 (dd, *J* = 9.2 Hz, 2.4 Hz, 1H), 3.86 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.4, 158.5, 151.9, 136.1, 131.3, 129.1, 127.6, 127.4, 120.2, 113.0, 95.7, 56.2; FT-IR (KBr) 3064, 2930, 1619, 1555, 1487, 1449, 1346, 1321, 1290, 1219, 1144, 1110, 1052, 1023 cm⁻¹. Anal. Calcd for C₁₄H₁₁NO₂: C, 74.65; H, 4.92; N, 6.22. Found: C, 74.60; H, 4.93; N, 6.28. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₄H₁₁NO₂H 226.0863, found 226.0862.

2-Phenyl-6-(trifluoromethyl)benzo[d]oxazole (**20**): analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_f = 0.52$; white solid; 24 mg, 25% yield; mp 100–101 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.27–8.25 (m, 2H), 7.86 (d, J = 9.2 Hz, 2H), 7.63 (d, J = 8.0 Hz, 1H), 7.58–7.52 (m, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 165.6, 150.4, 145.1, 132.5, 129.3, 128.2, 127.5, 126.7, 123.5, 122.1, 120.6, 108.7 (q, J = 4.5 Hz); FT-IR (KBr) 2962, 1615, 1555, 1491, 1454, 1338, 1290, 1166, 1154, 1126, 1110, 1048 cm⁻¹. Anal. Calcd for C₁₄H₈F₃NO: C, 63.88; H, 3.06; N, 5.32. Found: C, 63.94; H, 3.04; N, 5.27. HRMS (ESI) m/z: $[M + H]^+$ calcd for C₁₄H₈F₃NOH 264.0631, found 264.0625.

4,6-Dimethyl-2-phenylbenzo[d]oxazole (**2p**): analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_{\rm f} = 0.75$; white solid; 56 mg, 70% yield; mp 128–129 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.24–8.21 (m, 2H), 7.50–7.48 (m, 3H), 7.19 (s, 1H), 6.96 (s, 1H), 2.61 (s, 3H), 2.44 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.0, 151.1, 139.5, 135.3, 131.2, 130.0, 129.0, 127.8, 127.6, 126.6, 108.2, 22.0, 16.7; FT-IR (KBr) 3059, 2922, 1614, 1554, 1489, 1447, 1337, 1291, 1264, 1224, 1069, 1049, 1019 cm⁻¹. Anal. Calcd for C₁₅H₁₃NO: C, 80.69; H, 5.87; N, 6.27. Found: C, 80.61; H, 5.89; N, 6.31. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₅H₁₃NOH 224.1070, found 224.1071.

6,7-Dimethyl-2-phenylbenzo[d]oxazole (**2qa**) and 5,6-Dimethyl-2-phenylbenzo[d]oxazole (**2qb**): analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_f = 0.63$; white solid; 60 mg, 75% yield; mp 141–142 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.25–8.20 (m, 4H), 7.51–7.46 (m, 8H), 7.34 (s, 1H), 7.14 (d, J = 7.6 Hz, 1H), 2.48 (s, 3H), 2.39 (s, 3H), 2.37 (s, 3H), 2.35 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.6, 162.5, 149.6, 140.5, 139.8, 134.6, 134.0, 133.5, 131.4, 131.3, 129.1, 128.4, 128.0, 127.73, 127.7, 127.62, 127.6, 126.5, 120.2, 119.6, 116.6, 111.1, 20.8, 20.5, 19.5, 12.5; FT-IR (KBr) 3057, 2922, 1613, 1552, 1488, 1464, 1446, 1334, 1262, 1152, 1049, 1020, 999 cm⁻¹. Anal. Calcd for C₁₅H₁₃NO: C, 80.69; H, 5.87; N, 6.27. Found: C, 80.64; H, 5.86; N, 6.30. HRMS (ESI) *m*/*z*: [M + H]⁺ calcd for C₁₅H₁₃NOH 224.1070, found 224.1072.

6-*Chloro-2-(o-tolyl)benzo[d]oxazole* (**2***r*): analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_{\rm f}$ = 0.70; white solid; 80 mg, 91% yield; mp 89–90 °C (lit.^{25g} mp 85 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, *J* = 7.2 Hz, 1H), 7.69 (d, *J* = 8.4 Hz, 1H), 7.59 (d, *J* = 1.6 Hz, 1H), 7.41–7.39 (m, 1H), 7.35–7.31 (m, 3H), 2.78 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 164.2, 150.7, 141.2, 139.2, 132.1, 131.4, 130.8, 130.1, 126.3, 126.0, 125.3, 120.8, 111.3, 22.4; FT-IR (KBr) 2957, 2923, 1614, 1547, 1461, 1325, 1255, 1235, 1165, 1059, 1023 cm⁻¹. Anal. Calcd for C₁₄H₁₀ClNO: *C*, 69.00; H, 4.14; N, 5.75. Found: *C*, 69.06; H, 4.12; N, 5.68. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₄H₁₀ClNOH 244.0524, found 244.0524.

6-Chloro-2-(*m*-tolyl)benzo[*d*]oxazole (**2s**): analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_{\rm f}$ = 0.68; white solid; 74 mg, 84% yield; mp 98−99 °C (lit.^{25g} mp 99 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.04 (s, 1H), 8.01 (d, *J* = 7.2 Hz, 1H), 7.65 (d, *J* = 8.4 Hz, 1H), 7.56 (d, *J* = 1.6 Hz, 1H), 7.41−7.35 (m, 2H), 7.32 (dd, *J* = 8.4 Hz, 1.6 Hz, 1H), 2.44 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 164.1, 151.0, 141.1, 139.0, 132.8, 130.7, 129.0, 128.4, 126.7, 125.4, 125.0, 120.5, 111.4, 21.5; FT-IR (KBr) 3059, 2922, 1618, 1553, 1485, 1428, 1327, 1264, 1242, 1072 cm⁻¹. Anal. Calcd for C₁₄H₁₀ClNO: C, 69.00; H, 4.14; N, 5.75. Found: C, 68.95; H, 4.13; N, 5.79. HRMS (ESI) *m*/*z*: [M + H]⁺ calcd for C₁₄H₁₀ClNOH 244.0524, found 244.0526.

6-Chloro-2-(4-chlorophenyl)benzo[d]oxazole (2t): analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_{\rm f}$ = 0.70; white solid; 84 mg, 89% yield; mp 148–149 °C (lit.^{25g} mp 148 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.15–8.12 (m, 2H), 7.66 (d, *J* = 8.8 Hz, 1H), 7.57 (d, *J* = 2.0 Hz, 1H), 7.50–7.47 (m, 2H), 7.34 (dd, *J* = 8.4 Hz, 1.6 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.9, 151.1, 141.0, 138.3, 131.1, 129.5, 129.1, 125.7, 125.4, 120.7, 111.5; FT-IR (KBr) 3064, 2923, 1616, 1594, 1551, 1482, 1460, 1403, 1328, 1282, 1260, 1230, 1109, 1090, 1047, 1010 cm⁻¹. Anal. Calcd for C₁₃H₇Cl₂NO: C, 59.12; H, 2.67; N, 5.30. Found: C, 59.03; H, 2.70; N, 5.33. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₃H₇Cl₂NOH 263.9977, found 263.9977.

6-Chloro-2-(4-methoxyphenyl)benzo[d]oxazole (2u): analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_f = 0.52$; white solid; 76 mg, 81% yield; mp 147–148 °C (lit.²⁵ⁱ mp 140 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, J = 7.6 Hz, 2H), 7.62 (d, J = 8.0 Hz, 1H), 7.54 (s, 1H), 7.30 (d, J = 8.8 Hz, 1H), 7.02 (d, J = 8.0 Hz, 2H), 3.88 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 164.1, 162.8, 151.1, 141.3, 130.3, 129.7, 125.3, 120.3, 119.4, 114.7, 111.3, 55.7; FT-IR (KBr) 3073, 2924, 1621, 1602, 1505, 1454, 1440, 1333, 1263, 1257, 1177, 1055, 1024 cm⁻¹. Anal. Calcd for C₁₄H₁₀ClNO₂: C, 64.75; H, 3.88; N, 5.39. Found: C, 64.82; H, 3.87; N, 5.32. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₄H₁₀ClNO₂H 260.0473, found 260.0473.

6-Chloro-2-p-tolylbenzo[d]oxazole (2v): analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_{\rm f}$ = 0.70; white solid; 72 mg, 82% yield; mp 129–130 °C (lit.^{25g} mp 126 °C); ¹H NMR (400 MHz, CDCl₃) δ

8.10 (d, *J* = 8.0 Hz, 2H), 7.64 (d, *J* = 8.4 Hz, 1H), 7.56 (d, *J* = 2.0 Hz, 1H), 7.32–7.29 (m, 3H), 2.42 (s, 3H); $^{13}C{}^{1}H$ NMR (75 MHz, CDCl₃) δ 163.9, 150.8, 142.4, 140.9, 130.3, 129.7, 127.6, 125.1, 123.8, 120.2, 111.1, 21.6; FT-IR (KBr) 2920, 2853, 1616, 1554, 1500, 1440, 1426, 1408, 1329, 1257, 1234, 1170, 1119, 1050, 1013 cm⁻¹. Anal. Calcd for C₁₄H₁₀ClNO: C, 69.00; H, 4.14; N, 5.75. Found: C, 68.95; H, 4.13; N, 5.80. HRMS (ESI) *m*/*z*: [M + H]⁺ calcd for C₁₄H₁₀ClNOH 244.0524, found 244.0524.

6-Chloro-2-(4-nitrophenyl)benzo[d]oxazole (**2w**): analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_f = 0.72$; white solid; 80 mg, 81% yield; mp 182–183 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.41–8.36 (m, 4H), 7.73 (d, J = 8.4 Hz, 1H), 7.64 (d, J = 2.0 Hz, 1H), 7.40 (dd, J = 8.0 Hz, 2.0 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 161.5, 151.4, 150.0, 140.9, 132.5, 132.3, 128.7, 126.2, 124.4, 121.4, 111.8; FT-IR (KBr) 3087, 1947, 1603, 1595, 1554, 1518, 1460, 1409, 1349, 1327, 1312, 1263, 1109, 1048, 1011 cm⁻¹. Anal. Calcd for C₁₃H₇ClN₂O₃: C, 56.85; H, 2.57; N, 10.20. Found: C, 56.81; H, 2.56; N, 10.24. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₃H₇ClN₂O₃H 275.0218, found 275.0216.

6-Chloro-2-(naphthalen-1-yl)benzo[d]oxazole (2x): analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_{\rm f}$ = 0.72; yellow solid; 70 mg, 70% yield; mp 101–102 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.44 (d, *J* = 8.8 Hz, 1H), 8.41 (dd, *J* = 7.6 Hz, 0.8 Hz, 1H), 8.04 (d, *J* = 8.4 Hz, 1H), 7.94 (d, *J* = 8.0 Hz, 1H), 7.77 (d, *J* = 8.0 Hz, 1H), 7.72–7.68 (m, 1H), 7.64 (d, *J* = 1.6 Hz, 1H), 7.61–7.56 (m, 2H), 7.37 (dd, *J* = 8.4 Hz, 2.0 Hz, 1H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 163.6, 150.5, 141.3, 134.2, 132.9, 131.1, 130.8, 129.6, 128.9, 128.3, 126.8, 126.4, 125.4, 125.1, 123.3, 120.9, 111.4; FT-IR (KBr) 3045, 2926, 1895, 1609, 1589, 1541, 1508, 1459, 1427, 1395, 1323, 1263, 1250, 1131, 1108, 1073, 1054, 966 cm⁻¹. Anal. Calcd for C₁₇H₁₀ClNO: C, 72.99; H, 3.60; N, 5.01. Found: C, 72.93; H, 3.62; N, 5.06. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₇H₁₀ClNOH 280.0524, found 280.0523.

6-Chloro-2-(furan-2-yl)benzo[d]oxazole (2y): analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_{\rm f}$ = 0.40; pale yellow solid; 71 mg, 90% yield; mp 78–79 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.66–7.62 (m, 2H), 7.55 (d, *J* = 2.0 Hz, 1H), 7.33 (dd, *J* = 8.4 Hz, 2.0 Hz, 1H), 7.27 (d, *J* = 3.2 Hz, 1H), 6.62–6.60 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 155.9, 150.4, 146.2, 142.2, 140.6, 131.0, 125.7. 120.7, 114.9, 112.5, 111.3; FT-IR (KBr) 3062, 3039, 1635, 1606, 1538, 1455, 1427, 1326, 1290, 1264, 1232, 1160, 1089, 1057, 1011 cm⁻¹. Anal. Calcd for C₁₁H₆ClNO₂: C, 60.16; H, 2.75; N, 6.38. Found: C, 60.24; H, 2.73; N, 6.33. HRMS (ESI) *m*/*z*: [M + H]⁺ calcd for C₁₁H₆ClNO₂H 220.0160, found 220.0163.

6-Chloro-2-ethylbenzo[d]oxazole (2z): analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_f = 0.50$; colorless liquid; 41 mg, 63% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 8.4 Hz, 1H), 7.47 (d, J = 2.0 Hz, 1H), 7.27 (dd, J = 8.4 Hz, 2.0 Hz, 1H), 2.96 (q, J = 8.0 Hz, 2H), 1.44 (t, J = 8.0 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 169.1, 151.2, 140.4, 130.3, 124.9, 120.2, 111.2, 22.3, 11.0; FT-IR (KBr) 3104, 2920, 1618, 1576, 1466, 1451, 1358, 1267, 1225, 1152, 1075, 1055 cm⁻¹. Anal. Calcd for C₉H₈CINO: C, 59.52; H, 4.44; N, 7.71. Found: C, 59.45; H, 4.46; N, 7.74. HRMS (ESI) m/z: [M + H]⁺ calcd for C₉H₈CINOH 182.0367, found 182.0365.

6-*Chloro-2-isopropylbenzo[d]oxazole* (**2aa**): analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_f = 0.52$; colorless liquid; 56 mg, 80% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 8.8 Hz, 1H), 7.47 (d, J = 2.0 Hz, 1H), 7.26–7.24 (m, 1H), 3.24–3.17 (m, 1H), 1.44 (d, J = 7.2 Hz, 6H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 172.2, 151.2, 140.3, 130.3, 124.9, 120.3, 111.2, 29.1, 20.4; FT-IR (KBr) 3098, 2988, 1614, 1570, 1465, 1446, 1367, 1266, 1232, 1138, 1083, 1054 cm⁻¹. Anal. Calcd for C₁₀H₁₀ClNO: C, 61.39; H, 5.15; N, 7.16. Found: C, 61.46; H, 5.14; N, 7.12. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₀H₁₀ClNOH 196.0524, found 196.0525.

2-(tert-Butyl)-6-chlorobenzo[d]oxazole (**2ab**):^{25j} analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_{\rm f}$ = 0.68; colorless liquid; 34 mg, 45% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 8.4 Hz, 1H), 7.50 (d, J = 2.0 Hz, 1H), 7.29 (dd, J = 8.4 Hz, 2.0 Hz, 1H), 1.49 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 174.4, 151.2, 140.2, 130.2, 124.8, 120.4, 111.2, 34.4, 28.6; FT-IR (KBr) 2977, 2870, 1614,

1569, 1458, 1428, 1364, 1326, 1259, 1232, 1129, 1109, 1053 cm⁻¹. Anal. Calcd for $C_{11}H_{12}$ ClNO: C, 63.01; H, 5.77; N, 6.68. Found: C, 63.07; H, 5.78; N, 6.63. HRMS (ESI) m/z: $[M + H]^+$ calcd for $C_{11}H_{12}$ ClNOH 210.0680, found 210.0686.

2-Phenylbenzo[d]thiazole (4a): analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_{\rm f}$ = 0.62; white solid; 64 mg, 84% yield; mp 101–102 °C (lit.^{10e} mp 99 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.09– 8.05 (m, 3H), 7.90 (d, J = 7.6 Hz, 1H), 7.50–7.46 (m, 4H), 7.39–7.35 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 168.2, 154.3, 135.2, 133.8, 131.1, 129.2, 127.7, 126.5, 125.3, 123.4, 121.8; FT-IR (KBr) 3034, 1634, 1510, 1479, 1454, 1445, 1434, 1314, 1225, 1159, 1071, 1028 cm⁻¹. Anal. Calcd for C₁₃H₉NS: C, 73.90; H, 4.29; N, 6.63; S, 15.18. Found: C, 73.99; H, 4.27; N, 6.59; S, 15.15. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₃H₉NSH 212.0528, found 212.0528.

4-Methyl-2-phenylbenzo[d]thiazole (4b):¹⁶ analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_{\rm f} = 0.80$; white solid; 33 mg, 41% yield; mp 41–42 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.11–8.09 (m, 2H), 7.73–7.71 (m, 1H), 7.49–7.47 (m, 3H), 7.27–7.26 (m, 2H), 2.80 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.8, 153.7, 135.2, 134.2, 133.6, 130.9, 129.2, 127.7, 127.0, 125.3, 119.2, 18.6; FT-IR (KBr) 3061, 2920, 1577, 1478, 1445, 1314, 1223, 1179, 1072, 970 cm⁻¹. Anal. Calcd for C₁₄H₁₁NS: C, 74.63; H, 4.92; N, 6.22; S, 14.23. Found: C, 74.70; H, 4.90; N, 6.20; S, 14.20. HRMS (ESI) *m*/*z*: [M + H]⁺ calcd for C₁₄H₁₁NSH 226.0685, found 226.0682.

7-Methoxy-2-phenylbenzo[d]thiazole (4ca) and 5-Methoxy-2-phenylbenzo[d]thiazole (4cb). Characterization Data for 4cb: analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_f = 0.54$; white solid; 77 mg, 89% yield; mp 71–72 °C (lit.^{14a} mp 75 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.05–8.04 (m, 2H), 7.73 (d, J = 8.8 Hz, 1H), 7.55 (s, 1H), 7.46 (s, 3H), 7.03 (d, J = 8.4 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 169.5, 159.3, 155.6, 133.9, 131.0, 129.2, 127.6, 127.1, 122.0, 115.7, 105.7, 55.8; FT-IR (KBr) 2936, 1601, 1558, 1465, 1430, 1329, 1279, 1248, 1160, 1139, 1076, 1025, 969 cm⁻¹. Anal. Calcd for C₁₄H₁₁NOS: C, 69.68; H, 4.59; N, 5.80; S, 13.29. Found: C, 69.75; H, 4.60; N, 5.78; S, 13.25. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₄H₁₁NOSH 242.0634, found 242.0634.

11] catch for $C_{14} r_{11} r_{10} r_{00} r_{12} r_{12} r_{00} r_{14} r_{11} r_{10} r_{01} r_{14} r_{11} r_{10} r_{01} r_{14} r_{11} r_{10} r_{01} r_{14} r_{11} r_{10} r_{14} r_{11} r_{14} r_{11} r_{14} r_{11} r_{14} r_{11} r_{14} r_{11} r_{14} r_{16} r_{14} r_{16} r_{14} r_{16} r_{14}$

6-Bromo-2-phenylbenzo[d]thiazole (4f): analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_{\rm f}$ = 0.66; white solid; 93 mg, 89% yield; mp 146–147 °C (lit.^{14b} mp 150 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.06–8.04 (m, 2H), 8.02 (d, *J* = 2.0 Hz, 1H), 7.91 (d, *J* = 8.4 Hz, 1H), 7.58 (dd, *J* = 8.8 Hz, 2.0 Hz, 1H), 7.49–7.47 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 168.7, 153.2, 136.8, 133.3, 131.4, 130.0, 129.3, 127.7, 124.5, 124.3, 118.9; FT-IR (KBr) 3074, 1637, 1509, 1478, 1445, 1395, 1304, 1276, 1248, 1225, 1091, 1072 cm⁻¹. Anal. Calcd for C₁₃H₈BrNS: C, 53.81; H, 2.78; N, 4.83; S, 11.05. Found: C, 53.72; H, 2.80; N, 4.85; S, 11.11. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₃H₈BrNSH 289.9634, found 289.9634.

2-Phenylbenzo[d]thiazole-6-carbonitrile (**4g**): analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_{\rm f}$ = 0.64; white solid; 35 mg, 41% yield; mp 193–194 °C (lit.^{14a,b} mp 195 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.22 (s, 1H), 8.11–8.08 (m, 3H), 7.73 (d, *J* = 8.0 Hz, 1H), 7.53–7.51 (m, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 172.5, 156.7, 135.7, 133.0, 132.3, 130.0, 129.5, 128.1, 126.6, 124.1, 118.9, 108.8; FT-IR (KBr) 2954, 2229, 1632, 1506, 1475, 1441, 1405, 1311, 1260, 1061, 970 cm⁻¹. Anal. Calcd for C₁₄H₈N₂S: C, 71.16; H, 3.41; N, 11.86; S, 13.57. Found: C, 71.24; H, 3.39; N, 11.87; S, 13.50.

HRMS (ESI) m/z: $[M + H]^+$ calcd for $C_{14}H_8N_2SH$ 237.0481, found 237.0482.

Ethyl 2-phenylbenzo[d]thiazole-6-carboxylate (4h): analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_f = 0.56$; white solid; 39 mg, 38% yield; mp 192–193 °C (lit.^{14a} mp 196 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.61 (d, J = 0.8 Hz, 1H), 8.17 (dd, J = 8.8 Hz, 1.6 Hz, 1H), 8.10–8.06 (m, 3H), 7.51–7.48 (m, 3H), 4.44 (q, J = 7.2 Hz, 2H), 1.44 (t, J = 7.2 Hz, 3H);; ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 171.5, 166.3, 157.1, 135.1, 133.4, 131.7, 129.3, 127.9, 127.7, 127.4, 123.9, 123.0, 61.4, 14.5; FT-IR (KBr) 2975, 1708, 1684, 1628, 1506, 1477, 1441, 1408, 1390, 1325, 1273, 1226, 1133, 1056, 1030 cm⁻¹. Anal. Calcd for C₁₆H₁₃NO₂S: C, 67.82; H, 4.62; N, 4.94; S, 11.32. Found: C, 67.72; H, 4.64; N, 4.98; S, 11.38. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₆H₁₃NO₂SH 284.0740, found 284.0749.

6-Chloro-2-phenylbenzo[d]thiazole (4i): analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_{\rm f}$ = 0.64; white solid; 78 mg, 88% yield; mp 156–157 °C (lit.¹⁵ mp 160 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.06–8.04 (m, 2H), 7.97 (d, *J* = 8.4 Hz, 1H), 7.87 (d, *J* = 2.0 Hz, 1H), 7.50–7.48 (m, 3H), 7.45 (dd, *J* = 8.4 Hz, 1.6 Hz, 1H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 168.7, 152.9, 136.4, 133.4, 131.4, 131.3, 129.3, 127.7, 127.3, 124.1, 121.4; FT-IR (KBr) 3076, 2923, 1587, 1545, 1479, 1438, 1306, 1246, 1224, 1104, 1072, 1053 cm⁻¹. Anal. Calcd for C₁₃H₈ClNS: C, 63.54; H, 3.28; N, 5.70; S, 13.05. Found: C, 63.48; H, 3.26; N, 5.73; S, 13.09. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₃H₈ClNSH 246.0139, found 246.0142.

6-Fluoro-2-phenylbenzo[d]thiazole (4j): analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_{\rm f}$ = 0.62; white solid; 68 mg, 83% yield; mp 133–134 °C (lit.¹⁵ mp 137 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.05–8.02 (m, 2H), 8.01 (dd, *J* = 9.2 Hz, 4,8 Hz, 1H), 7.57 (dd, *J* = 7.6 Hz, 2.4 Hz, 1H), 7.49–7.47 (m, 3H), 7.23 (td, *J* = 8.8 Hz, 2.8 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 167.9 (d, *J* = 3.0 Hz), 161.8 (d, *J* = 244.8 Hz), 150.9 (d, *J* = 1.5 Hz), 136.2 (d, *J* = 11.4 Hz), 133.4, 131.2, 129.2, 127.6 (d, *J* = 4.6 Hz); FT-IR (KBr) 3078, 2921, 1896, 1608, 1562, 1513, 1482, 1454, 1443, 1316, 1307, 1276, 1260, 1249, 1118, 1072, 1050, 1029 cm⁻¹. Anal. Calcd for C₁₃H₈FNS: C, 68.10; H, 3.52; N, 6.11; S, 13.99. Found: C, 68.15; H, 3.51; N, 6.14; S, 13.94. HRMS (ESI) *m*/*z*: [M + H]⁺ calcd for C₁₃H₈FNSH 230.0434, found 230.0438.

6-Methoxy-2-phenylbenzo[d]thiazole (4k): analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_{\rm f}$ = 0.50; white solid; 76 mg, 87% yield; mp 114–115 °C (lit.¹⁵ mp 116 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.04–8.01 (m, 2H), 7.95 (d, *J* = 8.8 Hz, 1H), 7.47–7.44 (m, 3H), 7.34 (d, *J* = 2.8 Hz, 1H), 7.09 (dd, *J* = 9.2 Hz, 2.8 Hz, 1H), 3.88 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.7, 157.9, 148.9, 136.6, 133.9, 130.7, 129.1, 127.4, 123.9, 115.8, 104.3, 55.9; FT-IR (KBr) 3072, 2970, 1602, 1558, 1511, 1483, 1464, 1280, 1266, 1225, 1118, 1097, 1059, 999 cm⁻¹. Anal. Calcd for C₁₄H₁₁NOS: *C*, 69.68; H, 4.59; N, 5.80; S, 13.29. Found: *C*, 69.61; H, 4.60; N, 5.84; S, 13.33. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₄H₁₁NOSH 242.0634, found 242.0632.

6-Methyl-2-phenylbenzo[d]thiazole (4l): analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_{\rm f}$ = 0.62; white solid; 72 mg, 89% yield; mp 124–125 °C (lit.¹⁵ mp 126 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.07–8.05 (m, 2H), 7.95 (d, J = 8.8 Hz, 1H), 7.68 (s, 1H), 7.49–7.46 (m, 3H), 7.30–7.28 (m, 1H), 2.48 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 167.2, 152.5, 135.5, 135.4, 133.9, 130.9, 129.2, 128.1, 127.6, 122.9, 121.5, 21.7; FT-IR (KBr) 3053, 2914, 1603, 1552, 1480, 1309, 1256, 1227, 1125, 1075, 1062, 971 cm⁻¹. Anal. Calcd for C₁₄H₁₁NS: C, 74.63; H, 4.92; N, 6.22; S, 14.23. Found: C, 74.73; H, 4.90; N, 6.17; S, 14.20. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₄H₁₁NSH 226.0685, found 226.0683.

2-Phenyl-6-(trifluoromethyl)benzo[d]thiazole (4n): analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_f = 0.52$; white solid; 44 mg, 44% yield; mp 157–158 °C (lit.^{10e} mp 152 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.18 (s, 1H), 8.14–8.08 (m, 3H), 7.72 (d, J = 8.4 Hz, 1H), 7.52–7.50 (m, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 171.4, 156.3, 135.3, 133.3, 131.9, 129.4 (2C), 128.0, 123.7, 123.6, 123.5, 119.6 (q, J = 4.5 Hz); FT-IR (KBr) 3036, 1512, 1482, 1461, 1415, 1320, 1252, 1225, 1167, 1109, 1086, 970 cm⁻¹. Anal. Calcd for

 $C_{14}H_8F_3NS: C, 60.21; H, 2.89; N, 5.02; S, 11.48.$ Found: C, 60.27; H, 2.90; N, 5.00; S, 11.44. HRMS (ESI) $m/z: [M + H]^+$ calcd for $C_{14}H_8F_3NSH$ 280.0402, found 280.0406.

4,6-Dimethyl-2-phenylbenzo[d]thiazole (40):^{25h} analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_{\rm f} = 0.68$; white solid; 53 mg, 61% yield; mp 89–90 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.09–8.07 (m, 2H), 7.50 (s, 1H), 7.47–7.44 (m, 3H), 7.09 (s, 1H), 2.75 (s, 3H), 2.44 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.7, 151.9, 135.4, 135.3, 134.3, 132.9, 130.7, 129.1, 128.7, 127.6, 118.9, 21.7, 18.5; FT-IR (KBr) 3051, 2914, 1595, 1510, 1480, 1439, 1310, 1281, 1222, 1177, 1094, 1069, 1031, 973 cm⁻¹. Anal. Calcd for C₁₅H₁₃NS: C, 75.28; H, 5.47; N, 5.85; S, 13.40. Found: C, 75.36; H, 5.48; N, 5.81; S, 13.35. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₅H₁₃NSH 240.0841, found 240.0840.

6,7-Dimethyl-2-phenylbenzo[d]thiazole (**4pa**) and 5,6-dimethyl-2-phenylbenzo[d]thiazole (**4pb**): analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_f = 0.60$; white solid; 65 mg, 75% yield; mp 113–114 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.09–8.04 (m, 4H), 7.83 (s, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.63 (s, 1H), 7.49–7.45 (m, 6H), 7.29 (d, J = 8.4 Hz, 1H), 2.50 (s, 3H), 2.41 (s, 3H), 2.39 (s, 3H), 2.38 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 167.1, 166.8, 153.1, 152.5, 136.7, 135.7, 134.9, 134.03, 134.0, 133.1, 132.6, 131.1, 130.8, 130.76, 129.5, 129.1, 129.0, 127.5, 127.2, 123.5, 121.7, 120.4, 20.4, 20.3, 19.7, 19.4; FT-IR (KBr) 3056, 2974, 1507, 1476, 1448, 1309, 1275, 1228, 1023, 947 cm⁻¹. Anal. Calcd for C₁₅H₁₃NS: C, 75.28; H, 5.47; N, 5.85; S, 13.40. Found: C, 75.21; H, 5.49; N, 5.88; S, 13.42. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₅H₁₃NSH 240.0841, found 240.0841.

5,7-Dichloro-2-phenylbenzo[d]thiazole (4q): analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_f = 0.72$; white solid; 73 mg, 72% yield; mp 115–116 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.07–8.05 (m, 2H), 7.93 (d, J = 1.6 Hz, 1H), 7.51–7.50 (m, 3H), 7.38 (d, J = 1.6 Hz, 1H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 170.6, 155.1, 134.0, 133.0, 132.8, 131.9, 129.4, 127.9, 127.4, 125.3, 121.8; FT-IR (KBr) 3060, 2921, 1570, 1537, 1507, 1441, 1424, 1379, 1262, 1098, 1067, 984 cm⁻¹. Anal. Calcd for C₁₃H₇Cl₂NS: C, 55.73; H, 2.52; N, 5.00; S, 11.44. Found: C, 55.82; H, 2.51; N, 4.95; S, 11.39. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₃H₇Cl₂NSH 279.9749, found 279.9749.

6-Chloro-2-(o-tolyl)benzo[d]thiazole (4r): analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_{\rm f}$ = 0.68; white solid; 89 mg, 95% yield; mp 95–96 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 8.8 Hz, 1H), 7.89 (d, *J* = 2.0 Hz, 1H), 7.74 (d, *J* = 8.0 Hz, 1H), 7.46 (dd, *J* = 8.8 Hz, 2.0 Hz, 1H), 7.37–7.30 (m, 3H), 2.64 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 168.7, 152.6, 137.6, 136.9, 132.8, 131.9, 131.3, 130.7, 130.5, 127.2, 126.4, 124.3, 121.2, 21.6 ; FT-IR (KBr) 2924, 2853, 1604, 1591, 1480, 1441, 1382, 1305, 1220, 1100, 1050 cm⁻¹. Anal. Calcd for C₁₄H₁₀CINS: C, 64.73; H, 3.88; N, 5.39; S, 12.34. Found: C, 64.69; H, 3.90; N, 5.36; S, 12.37. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₄H₁₀CINSH 260.0295, found 260.0295.

6-*Chloro-2-(m-tolyl)benzo[d]thiazole* (**4***s*): analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_{\rm f}$ = 0.68; white solid; 87 mg, 93% yield; mp 121–122 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 9.2 Hz, 1H), 7.88 (s, 1H), 7.85 (d, *J* = 2.0 Hz, 1H), 7.82 (d, *J* = 7.6 Hz, 1H), 7.44 (dd, *J* = 8.8 Hz, 2.4 Hz, 1H), 7.38 (t, *J* = 7.6 Hz, 1H), 7.30 (d, *J* = 7.2 Hz, 1H), 2.43 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 169.0, 152.9, 139.1, 136.4, 133.3, 132.2, 131.2, 129.2, 128.1, 127.2, 125.0, 124.0, 121.4, 21.5; FT-IR (KBr) 3056, 2924, 1593, 1512, 1441, 1400, 1306, 1249, 1170, 1104, 1024 cm⁻¹. Anal. Calcd for C₁₄H₁₀ClNS: C, 64.73; H, 3.88; N, 5.39; S, 12.34. Found: C, 64.67; H, 3.87; N, 5.43; S, 12.38. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₄H₁₀ClNSH 260.0295, found 260.0298.

6-Chloro-2-(4-fluorophenyl)benzo[d]thiazole (4t): analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_f = 0.68$; white solid; 85 mg, 90% yield; mp 151–152 °C (lit.^{25c} mp 151 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.05–8.02 (m, 2H), 7.94 (d, J = 9.2 Hz, 1H), 7.85 (d, J = 2.0 Hz, 1H), 7.44 (dd, J = 8.4 Hz, 1.6 Hz, 1H), 7.19–7.15 (m, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 167.3, 166.0, 163.5, 152.8, 136.4, 131.3, 129.8 (d, J = 9.2 Hz), 127.4, 124.1, 121.4, 116.5 (d, J = 22.1 Hz); FT-IR (KBr) 3034, 2914, 1598, 1548, 1521, 1484, 1441, 1408, 1305, 1231, 1155, 1096, 1052, 965 cm⁻¹. Anal. Calcd for C₁₃H₇ClFNS:

C, 59.21; H, 2.68; N, 5.31; S, 12.16. Found: C, 59.12; H, 2.67; N, 5.35; S, 12.19. HRMS (ESI) m/z: $[M + H]^+$ calcd for $C_{13}H_7$ ClFNSH 264.0045, found 264.0041.

6-*Chloro-2-(4-methoxyphenyl)benzo[d]thiazole* (**4***u*): analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_f = 0.54$; white solid; 92 mg, 93% yield; mp 137–138 °C (lit.^{25c} mp 135 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 9.2 Hz, 2H), 7.91 (d, J = 8.8 Hz, 1H), 7.83 (d, J = 2.0 Hz, 1H), 7.42 (dd, J = 9.2 Hz, 2.4 Hz, 1H), 6.99 (d, J = 8.8 Hz, 2H), 3.87 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 168.5, 162.3, 153.0, 136.2, 130.7, 129.3, 127.1, 126.2, 123.6, 121.3, 114.6, 55.7; FT-IR (KBr) 3024, 2923, 1602, 1522, 1483, 1458, 1440, 1429, 1309, 1260, 1225, 1171, 1101, 1051, 1027, 966 cm⁻¹. Anal. Calcd for C₁₄H₁₀ClNOS: C, 60.98; H, 3.66; N, 5.08; S, 11.63; Found: C, 61.07; H, 3.65; N, 5.05; S, 11.59. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₄H₁₀ClNOSH 276.0244, found 276.0244.

6-*Chloro-2-p-tolylbenzo*[*d*]*thiazole* (*4v*):^{25k} analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_f = 0.64$; white solid; 83 mg, 89% yield; mp 158–159 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 8.0 Hz, 3H), 7.84 (d, *J* = 2.0 Hz, 1H), 7.43 (dd, *J* = 8.4 Hz, 1.6 Hz, 1H), 7.29 (d, *J* = 8.4 Hz, 2H), 2.41 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 168.9, 152.9, 142.0, 136.3, 131.0, 130.7, 130.0, 127.6, 127.2, 123.9, 121.3, 21.7; FT-IR (KBr) 2918, 1610, 1542, 1481, 1426, 1308, 1232, 1210, 1098, 1048, 962 cm⁻¹. Anal. Calcd for C₁₄H₁₀ClNS: C, 64.73; H, 3.88; N, 5.39; S, 12.34; Found: C, 64.79; H, 3.86; N, 5.42; S, 12.29. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₄H₁₀ClNSH 260.0295, found 260.0295.

6-Chloro-2-(4-nitrophenyl)benzo[d]thiazole (4w): analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_{\rm f}$ = 0.76; white solid; 90 mg, 86% yield; mp 208–209 °C (lit.^{10d} mp 216 °C); ¹H NMR (600 MHz, DMSO- d_6) δ 8.40–8.36 (m, SH), 8.15 (d, *J* = 8.4 Hz, 1H), 7.65 (d, *J* = 7.2 Hz, 1H); ¹³C{¹H} NMR (150 MHz, DMSO- d_6) δ 166.1, 152.2, 148.9, 137.9, 136.6, 130.9, 128.5, 127.7, 124.64, 124.6, 122.4; FT-IR (KBr) 2920, 1684, 1653, 1597, 1518, 1403, 1346,1322, 1302, 1237, 1017, 969 cm⁻¹. Anal. Calcd for C₁₃H₇ClN₂O₂S: *C*, 53.71; H, 2.43; N, 9.64; S, 11.03. Found: C, 53.79; H, 2.42; N, 9.61; S, 10.98. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₃H₇ClN₂O₂SH 290.999, found 290.995.

2-Phenylnaphtho[1,2-d]thiazole (4x):¹⁶ analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_{\rm f}$ = 0.70; white solid; 83 mg, 88% yield; mp 97–98 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.92 (d, J = 8.4 Hz, 1H), 8.20–8.17 (m, 2H), 7.95–7.90 (m, 2H), 7.81 (d, J = 8.8 Hz, 1H),7.70–7.66 (m, 1H), 7.60–7.56 (m, 1H), 7.53–7.48 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 167.2, 150.6, 134.2, 132.2, 131.9, 130.8, 129.2, 129.0, 128.3, 127.5, 127.1, 126.3, 126.1, 124.2, 119.2; FT-IR (KBr) 3047, 2922, 1509, 1472, 1442, 1394, 1361, 1251, 1069, 1025, 972 cm⁻¹. Anal. Calcd for C₁₇H₁₁NS: C, 78.13; H, 4.24; N, 5.36; S, 12.27. Found: C, 78.23; H, 4.23; N, 5.30; S, 12.24. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₁₁NSH 262.0685, found 262.0685.

6-*Chloro-2-(furan-2-yl)benzo[d]thiazole* (4y): analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_{\rm f}$ = 0.48; white solid; 69 mg, 81% yield; mp 115–116 °C (lit.^{25c} mp 119 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 8.8 Hz, 1H), 7.84 (d, *J* = 2.0 Hz, 1H), 7.60 (d, *J* = 1.2 Hz, 1H), 7.44 (dd, *J* = 8.4 Hz, 1.6 Hz, 1H), 7.18 (d, *J* = 3.6 Hz, 1H), 6.59–6.58 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 158.1, 152.5, 148.5, 145.2, 135.7, 131.2, 127.5, 123.9, 121.4, 112.8, 112.0; FT-IR (KBr) 3131, 1600, 1578, 1548, 1502, 1470, 1435, 1304, 1281, 1250, 1222, 1132, 1099, 1077, 1019 cm⁻¹. Anal. Calcd for C₁₁H₆ClNOS: C, 56.06; H, 2.57; N, 5.94; S, 13.60; Found: C, 56.00; H, 2.56; N, 5.99; S, 13.58. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₁H₆ClNOSH 235.9931, found 235.9931.

6-Chloro-2-(naphthalen-1-yl)benzo[d]thiazole (4z): analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_f = 0.60$; yellow solid; 80 mg, 75% yield; mp 123–124 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.93 (d, J = 8.8 Hz, 1H), 8.09 (d, J = 8.4 Hz, 1H), 8.00 (d, J = 8.0 Hz, 1H), 7.93–7.90 (m, 3H), 7.62–7.48 (m, 4H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 168.4, 153.0, 136.8, 134.3, 131.62, 131.6, 130.8, 130.6, 129.7, 128.7, 128.0, 127.3, 126.8, 126.0, 125.2, 124.5, 121.2; FT-IR (KBr) 3059, 2924, 1618, 1552, 1488, 1450, 1426, 1331, 1263, 1051, 1022 cm⁻¹. Anal. Calcd for C₁₇H₁₀ClNS: C, 69.03; H, 3.41; N, 4.74; S,

10.84; Found: C, 69.11; H, 3.40; N, 4.70; S, 10.79. HRMS (ESI) m/z: $[M + H]^+$ calcd for C₁₇H₁₀ClNSH 296.0295, found 296.0297.

6-Chloro-2-ethylbenzo[d]thiazole (4aa):^{25b} analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_{\rm f} = 0.58$; colorless liquid; 45 mg, 63% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 8.8 Hz, 1H), 7.79 (d, J = 1.6 Hz, 1H), 7.39 (dd, J = 8.8 Hz, 2.0 Hz, 1H), 3.14 (q, J = 7.6 Hz, 2H), 1.46 (t, J = 7.6 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 174.2, 152.0, 136.5, 130.7, 126.8, 123.4, 121.3, 27.9, 13.8; FT-IR (KBr) 2968, 1592, 1519, 1441, 1400, 1301, 1270, 1169, 1096, 1049 cm⁻¹. Anal. Calcd for C₉H₈ClNS: C, 54.68; H, 4.08; N, 7.09; S, 16.22; Found: C, 54.61; H, 4.10; N, 7.14; S, 16.20. HRMS (ESI) m/z: [M + H]⁺ calcd for C₉H₈ClNSH 198.0139, found 198.0139.

6-Chloro-2-isopropylbenzo[d]thiazole (4ab): analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_{\rm f}$ = 0.60; yellow liquid; 67 mg, 88% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, J = 8.8 Hz, 1H), 7.80 (d, J = 2.0 Hz, 1H), 7.39 (dd, J = 9.2 Hz, 2.4 Hz, 1H), 3.40–3.36 (m, 1H), 1.46 (d, J = 7.2 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 179.2, 151.9, 136.1, 130.6, 126.7, 123.5, 121.3, 34.2, 22.9; FT-IR (KBr) 2968, 1592, 1517, 1463, 1443, 1310, 1298, 1265, 1100, 1037, 1001 cm⁻¹. Anal. Calcd for C₁₀H₁₀ClNS: C, 56.73; H, 4.76; N, 6.62; S, 15.15. Found: C, 56.81; H, 4.74; N, 6.58; S, 15.11. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₀H₁₀ClNSH 212.0295, found 212.0296.

2-(tert-Butyl)-6-chlorobenzo[d]thiazole (4ac):^{25c} analytical TLC on silica gel, 1/9 ethyl acetate/hexane $R_{\rm f} = 0.72$; colorless liquid; 66 mg, 81% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 8.8 Hz, 1H), 7.80 (d, J = 2.0 Hz, 1H), 7.39 (dd, J = 8.4 Hz, 1.6 Hz, 1H), 1.49 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 182.6, 152.0, 136.4, 130.6, 126.7, 123.6, 121.2, 38.6, 30.9; FT-IR (KBr) 2966, 1592, 1505, 1473, 1438, 1399, 1365, 1299, 1272, 1127, 1043, 1013 cm⁻¹. Anal. Calcd for C₁₁H₁₂ClNS: C, 58.53; H, 5.36; N, 6.20; S, 14.20. Found: C, 58.60; H, 5.34; N, 6.17; S, 14.15. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₁H₁₂ClNSH 226.0452, found 226.0447.

Scheme 5

Preparation of *p*-Toluidine-*d*₂ (Scheme 5).^{22a} In a microwave reaction vial equipped with a magnetic stir bar, p-toluidine (2 mmol, 214 mg), D₂O (2.5 mL) and 0.2 M HCl (1 equiv) were added. The vial was then capped, sealed, and heated in the microwave synthesis apparatus for 0.5 h at 180 °C. The reaction mixture was transferred to a round-bottom flask, and the solvent was removed on a rotary evaporator to afford the DCl salt of the p-toludine. The residue was treated with 3 M NaOH (3 mL), and the solution was extracted using diethyl ether (10 mL), and washed with brine (3 mL). Drying (Na₂SO₄) and evaporation of the solvent under reduced pressure afforded the deuterated p-toluidine, and the deuterium incorporation (82.5%) was determined by ¹H NMR analysis of the mixture.^{22e} Characterization data for the deuterated product: analytical TLC on silica gel, 1/4 ethyl acetate/hexane $R_f = 0.32$; pale brown solid; 185 mg, 85% yield; ¹H NMR (400 MHz, CDCl₃) δ 6.96 (s, 2H), 3.47 (bs, 2H), 2.23 (s, 3H).

Preparation of *N***·**(*p***·Tolyl)benzamide-***d***₂ (1***a***-***d***₂).** To a stirred solution of *p*-toluidine-*d*₂ (1.5 mmol, 163 mg) in THF (3 mL) at 0 °C was added dropwise benzoyl chloride (1.65 mmol, 192 μL). The resulting solution was warmed to room temperature, and stirring was continued for an additional 24 h. The solvent was evaporated on a rotary evaporator, and the residue was treated with ethyl acetate (5 mL). The solution was successively washed with aqueous NaHCO₃ (2 mL) and brine (2 mL). Drying (Na₂SO₄) and evaporation of the solvent gave a residue that was recrystallized using ethanol: analytical TLC on silica gel, 3/7 ethyl acetate/hexane, $R_f = 0.25$; white solid; 236 mg, 74% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (bs, 1H), 7.85–7.82 (m, 2H), 7.53–7.42 (m, 3H), 7.14 (s, 2H), 2.32 (s, 3H); HRMS

(ESI) m/z: $[M + H]^+$ calcd for $C_{14}H_{12}D_2NO$ 214.1201, found 214.1207.

Intermolecular Competition Reaction. Oxone (0.75 mmol) was added to a stirred solution of *N*-(*p*-tolyl)benzamide (1a; 0.2 mmol, 42.2 mg) and *N*-(*p*-tolyl)benzamide- d_2 (1a- d_2 ; 0.3 mmol, 63.9 mg, 82.5% deuterated), 1-iodo-4-nitrobenzene (0.1 mmol, 12.45 mg), and triflic acid (1.5 mmol, 132 µL) in HFIP (3.5 mL) at room temperature in air. The reaction was stopped at 23% conversion (3.5 h) and the mixture then treated with saturated Na₂S₂O₃ (1 mL) and NaHCO₃ (1 mL) solutions. The mixture was extracted with ethyl acetate (3 × 10 mL) and washed with brine (2 × 5 mL) and water (1 × 5 mL). Drying (Na₂SO₄) and evaporation of the solvent gave a residue that was purified by silica gel column chromatography using hexane and ethyl acetate as eluent (19% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.23–8.21 (m, 1.88H), 7.63 (d, *J* = 8.0 Hz, 0.46H), 7.52–7.49 (m, 2.93H), 7.37 (s, 0.90H), 7.16–7.14 (m, 0.91H), 2.49 (s, 3H). The ¹H NMR analysis showed the kinetic isotopic effect (KIE) value P_H/P_D = 1.0.

ASSOCIATED CONTENT

S Supporting Information

Figures giving NMR (¹H and ¹³C) spectra of the products 2a-ab and 4a-ac. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail for T.P.: tpunni@iitg.ernet.in.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We gratefully acknowledge Department of Science and Technology, New Delhi, India, and the Council of Scientific and Industrial Research, New Delhi, India, for financial support. P.S. thanks the UGC for an SRF Fellowship. We also thank Central Instrumental Facility, IIT Guwahati, for NMR facilities.

REFERENCES

(1) Ueki, M.; Ueno, K.; Miyadoh, S.; Abe, K.; Shibata, K.; Taniguchi, M.; Oi, S. J. Antibiot. **1993**, *46*, 1089.

(2) Don, M.-J.; Shen, C.-C.; Lin, Y.-L.; Syu, W., Jr.; Ding, Y.-H.; Sun, C.-M. J. Nat. Prod. 2005, 68, 1066.

(3) Sato, S.; Kajiura, T.; Noguchi, M.; Takehana, K.; Kobayashi, T.; Tsuji, T. J. Antibiot. 2001, 54, 102.

(4) (a) Rodriguez, A. D.; Ramirez, C.; Rodriguez, I. I.; Gonzalez, E. Org. Lett. 1999, 1, 527. (b) Davidson, J. P.; Corey, E. J. J. Am. Chem. Soc. 2003, 125, 13486.

(5) (a) Saari, W. S.; Hoffman, J. M.; Wai, J. S.; Fisher, T. E.; Rooney, C. S.; Smith, A. M.; Thomas, C. M.; Goldman, M. E.; O'Brien, J. A. J. Med. Chem. 1991, 34, 2922. (b) Sun, L.-Q.; Chen, J.; Takaki, K.; Johnson, G.; Iben, L.; Mahle, C. D.; Ryan, E.; Xu, C. Bioorg. Med. Chem. Lett. 2004, 14, 1197. (c) Bradshaw, T. D.; Westwell, A. D. Curr. Med. Chem. 2004, 11, 1241. (d) Yoshida, S.; Shiokawa, S.; Kawano, K.; Ito, T.; Murakami, H.; Suzuki, H.; Sato, Y. J. Med. Chem. 2005, 48, 7075. (e) Nishiu, J.; Ito, M.; Ishida, Y.; Kakutani, M.; Shibata, T.; Matsushita, M.; Shindo, M. Diabetes, Obes. Metab. 2006, 8, 508. (f) Leventhal, L.; Brandt, M. R.; Cummons, T. A.; Piesla, M. J.; Rogers, K. E.; Harris, H. A. Eur. J. Pharmacol. 2006, 553, 146. (g) Bergman, J. M.; Coleman, P. J.; Cox, C.; Hartman, G. D.; Lindsley, C.; Mercer, S. P.; Roecker, A. J.; Whitman, D. B. PCT. Int. Appl. WO2006127550, 2006.

(6) Leaver, I. H.; Milligan, B. Dyes Pigm. 1984, 5, 109.

(7) For a general overview of synthetic methods of benzoxazoles, see: Boyd, G. V. In *Science of Synthesis: Houben-Weyl Methods of Molecular Transformations*; Schaumann, E., Ed.; Thieme: Stuttgart, Germany, 2001; Vol. 11, p 481. (8) For a general overview of synthetic methods of benzothiazoles, see: Metzger, J. In *Comprehensive Heterocyclic Chemistry*; Katritzky, A. R., Rees, C. W., Eds.; Pergamon Press: Oxford, U.K., 1984; Vol. 6, p 322.

(9) Pottorf, R. S.; Chadha, N. K.; Katkevics, M.; Ozola, V.; Suna, E.; Ghane, H.; Regberg, T.; Player, M. R. *Tetrahedron Lett.* **2003**, *44*, 175. (10) For selected examples, see: (a) Evindar, G.; Batey, R. A. J. Org. *Chem.* **2006**, *71*, 1802. (b) Barbero, N.; Carril, M.; SanMartin, R.; Dominguez, E. *Tetrahedron* **2007**, *63*, 10425. (c) Saha, P.; Ali, M. A.; Punniyamurthy, T. Org. Synth. **2011**, *8*, 398. (d) Weeks, A. A.; Bagley, M. C.; Westwell, A. D. *Tetrahedron* **2011**, *67*, 7743. (e) Park, N.; Heo, Y.; Kumar, M. R.; Kim, Y.; Song, K. H.; Lee, S. Eur. J. Org. Chem. **2012**, 1984.

(11) Saha, P.; Ali, M. A.; Ghosh, P.; Punniyamurthy, T. Org. Biomol. Chem. 2010, 8, 5692.

(12) Bonnamour, J.; Bolm, C. Org. Lett. 2008, 10, 2665.

(13) For examples, see: (a) Altenhoff, G.; Glorius, F. Adv. Synth. Catal. 2004, 346, 1661. (b) Viirre, R. D.; Evinder, G.; Batey, R. A. J. Org. Chem. 2008, 73, 3452.

(14) (a) Downer, N. K.; Jackson, Y. A. Org. Biomol. Chem. 2004, 2, 3039. (b) Inamoto, K.; Hasegawa, C.; Hiroya, K.; Doi, T. Org. Lett. 2008, 10, 5147.

(15) Cheng, Y.; Yang, J.; Qu, Y.; Li, P. Org. Lett. 2012, 14, 98.

(16) Wang, H.; Wang, L.; Shang, J.; Li, X.; Wang, H.; Gui, J.; Lei, A. Chem. Commun. 2012, 48, 76.

(17) Ueda, S.; Nagasawa, H. Angew. Chem., Int. Ed. 2008, 47, 6411.
(18) (a) Downer-Riley, N. K.; Jackson, Y. A. Tetrahedron 2008, 64, 7741. (b) Yu, Z.; Ma, L.; Yu, W. Synlett 2012, 23, 1534.

(19) For a book and selected reviews on hypervalent iodine chemistry, see: (a) *Hypervalent Iodine Chemistry*; Wirth, T., Ed.;

Springer-Verlag: Berlin, 2003. (b) Ochiai, M.; Miyamoto, K. *Eur. J. Org. Chem.* **2008**, 4229. (c) Dohi, T.; Kita, Y. *Chem. Commun.* **2009**, 2073. (d) Brown, M.; Farid, U.; Wirth, T. *Synlett* **2013**, 424. (e) Singh, F. V.; Wirth, T. *Chem. Asian J.* **2014**, *9*, 950.

(20) For selected examples of catalytic reactions, see: (a) Dohi, T.; Maruyama, A.; Yoshimura, M.; Morimoto, K.; Tohma, H.; Kita, Y. Angew. Chem., Int. Ed. 2005, 44, 6193. (b) Ochiai, M.; Takeuchi, Y.; Katayama, T.; Sueda, T.; Miyamoto, K. J. Am. Chem. Soc. 2005, 127, 12244. (c) Antonchick, A. P.; Samanta, R.; Kulikov, K.; Lategahn, J. Angew. Chem., Int. Ed. 2011, 50, 8605. (d) He, Y.; Pu, Y.; Shao, B.; Yan, J. J. Heterocycl. Chem. 2011, 48, 695. (e) Ito, M.; Kubo, H.; Itani, I.; Morimoto, K.; Dohi, T.; Kita, Y. J. Am. Chem. Soc. 2013, 135, 14078. (f) Alla, S. K.; Kumar, R. K.; Sadhu, P.; Punniyamurthy, T. Org. Lett. 2013, 15, 1334. (g) Dohi, T.; Yamaoka, N.; Kita, Y. Tetrahedron 2010, 66, 5775. (h) Itoh, N.; Sakamoto, T.; Miyazawa, E.; Kikugawa, Y. J. Org. Chem. 2002, 67, 7424. (i) Zhu, C.; Yoshimura, A.; Wei, Y.; Nemykin, V. N.; Zhdankin, V. V. Tetrahedron Lett. 2012, 53, 1438. (j) Samanta, R.; Lategahn, J.; Antonchick, A. P. Chem. Commun. 2012, 48, 3194. (k) Dohi, T.; Ito, M.; Yamaoka, N.; Morimoto, K.; Fujioka, H.; Kita, Y. Tetrahedron 2009, 65, 10797.

(21) For the application of oxone in hypervalent iodine chemistry, see: (a) Hussain, H.; Green, I. R.; Ahmed, I. Chem. Rev. 2013, 113, 3329. (b) Thottumkara, A. P.; Bowsher, M. S.; Vinod, T. K. Org. Lett. 2005, 7, 2933. (c) Uyanik, M.; Akakura, M.; Ishihara, K. J. Am. Chem. Soc. 2009, 131, 251. (d) Yakura, T.; Tian, Y.; Yamauchi, Y.; Omoto, M.; Konishi, T. Chem. Pharm. Bull. 2009, 57, 252. (e) Fabry, D. C.; Stodulski, M.; Hoerner, S.; Gulder, T. Chem. Eur. J. 2012, 18, 10834. (f) Yoshimura, A.; Middleton, K. R.; Todora, A. D.; Kastern, B. J.; Koski, S. R.; Maskaev, A. V.; Zhdankin, V. V. Org. Lett. 2013, 15, 4010. (22) (a) Martins, A.; Lautens, M. Org. Lett. 2008, 10, 4351. (b) Schröder, N.; Wencel-Delord, J.; Glorius, F. J. Am. Chem. Soc. 2012, 134, 8298. (c) Simmons, E. M.; Hartwig, J. F. Angew. Chem., Int. Ed. 2012, 51, 3066. (d) Asako, S.; Ilies, L.; Nakamura, E. J. Am. Chem. Soc. 2013, 135, 17755. (e) Ma, S.; Villa, G.; Thuy-Boun, P. S.; Homs, A.; Yu, J.-Q. Angew. Chem., Int. Ed. 2014, 53, 734.

(23) (a) Zagulyaeva, A. A.; Yusubov, M. S.; Zhdankin, V. V. J. Org. Chem. 2010, 75, 2119. (b) Ishiwata, Y.; Togo, H. Tetrahedron 2009, 65, 10720.

(24) Ueda, S.; Nagasawa, H. J. Org. Chem. 2009, 74, 4272.

(25) (a) Kawashita, Y.; Nakamichi, N.; Kawabata, H.; Hayashi, M. Org. Lett. 2003, S, 3713. (b) Toshihiko, N.; Katsura, H.; Yumiko, N.; Akihiko, T.; Itaru, T.; Manabu, Y.; Toshio, T.; Kazumasa, N. Eur. Patent EP1394142, 2004. (c) Kamila, S.; Koh, B.; Biehl, E. R. J. Heterocycl. Chem. 2006, 43, 1609. (d) Seijas, J. A.; Vázquez-Tato, M. P.; Carballido-Reboredo, M. R.; Crecente-Campo, J.; Romar-López, L. Synlett 2007, 313. (e) Marsden, S. P.; McGonagle, A. E.; McKeever-Abbas, B. Org. Lett. 2008, 10, 2589. (f) Pal, S.; Patra, G.; Bhunia, S. Synth. Commun. 2009, 39, 1196. (g) Leng, Y.; Yang, F.; Zhu, W.; Wu, Y.; Li, X. Org. Biomol. Chem. 2011, 9, 5288. (h) Deng, H.; Li, Z.; Ke, F.; Zhou, X. Chem. Eur. J. 2012, 18, 4840. (i) Hamdy, A. M.; Eleya, N.; Mohammed, H. H.; Patonay, T.; Spannenberg, A.; Langer, P. Tetrahedron 2013, 69, 2081. (j) Sedelmeier, J.; Lima, F.; Litzler, A.; Martin, B.; Venturoni, F. Org. Lett. 2013, 15, 5546. (k) Zhang, X.; Zeng, W.; Yang, Y.; Huang, H.; Liang, Y. Org. Lett. 2014, 16, 876.