

A Journal of the Gesellschaft Deutscher Chemiker A Deutscher Chemiker GDCh International Edition www.angewandte.org

Accepted Article

- **Title:** Spirofused and annulated 1,2,4-trioxepane-, 1,2,4-trioxocane-, and trioxonane-cyclohexadienones: Cyclic peroxides with unusual ring conformation dynamics
- Authors: Axel G. Griesbeck, Angelika Eske, Sabrina Ecker, Carolina Fendinger, Bernd Goldfuss, Matthis Jonen, Jens Lefarth, Jörg M Neudörfl, and Matthias Spilles

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Angew. Chem. Int. Ed. 10.1002/anie.201807485 Angew. Chem. 10.1002/ange.201807485

Link to VoR: http://dx.doi.org/10.1002/anie.201807485 http://dx.doi.org/10.1002/ange.201807485

WILEY-VCH

COMMUNICATION

Spirofused and annulated 1,2,4-trioxepane-, 1,2,4-trioxocane-, and 1,2,4-trioxonane-cyclohexadienones:

Cyclic peroxides with unusual ring conformation dynamics

Angelika Eske, Sabrina Ecker, Carolina Fendinger, Bernd Goldfuss, Matthis Jonen, Jens Lefarth, Jörg.-M. Neudörfl, Matthias Spilles, and Axel G. Griesbeck*

Abstract: C-3 or C-4-hydroxyalkyated phenols are highly reactive towards peroxidation by Oxone and result in the formation of tertiary C-3 hydroperoxides. This reaction can also be performed with photochemically generated singlet oxygen. Other characteristic singlet oxygen reactions do however not proceed with caroate. The initial formed hydroperoxides are cyclized under Lewis-acid catalysis with boron-, indium- or iron-based catalysts to give spiroannulated peroxides **6**, **9** which exhibit restricted ring inversion processes whereas the larger nine-membered ring peroxides **12** are less stable thermally and show –possibly correlated – also higher ring flexibility (by NMR analysis).

Cyclic organic peroxides are Janus-faced compounds: some of them show uncontrollable and violent behavior, some of them remarkable strong pharmacological effects.^[1] The disreputable triacetone triperoxide (TATP) is a dangerous and uncontrollable explosive and an example for the first properties.^[2] Artemisinin is the most popular example for the beneficial properties of cyclic peroxides.^[3] The 2015 Nobel prize in physiology and medicine for the Chinese scientist Youyou Tu for "discoveries concerning a novel therapy against Malaria" honored her groundbreaking work in structure elucidation and investigations of antimalarial activities of this natural lactone peroxide.^[4] The central compound in this research is the unusual peroxide artemisinin, a structurally complex tetracyclic sesquiterpene lactone with an endoperoxide substructure that can be isolated from the leaves of artemisia annua.^[5] Due to its very high antimalarial activities, artemisinin, its derivatives, and numerous analogs have become important as antimalarial drugs against multidrug-resistant forms of the plasmodium falciparum parasite.^[6] Recently, several reports also report on antitumor^[7] and ß-cell reactivation relevant in diabetes therapy of these compounds.^[8] This high pharmacological potential combined with its synthetically challenging structure have prompted synthetic chemists to design total or partial synthesis routes to this compound and derivatives thereof^[9] as

A. Eske (M. Sc.), S. Ecker (M. Sc.), C. Fendinger (B.Sc.), Prof. Dr. B. Goldfuss, M. Jonen (B. Sc.), J. Lefarth (M. Sc.), Dr. J.-M. Neudörfl, M. Spilles (B.Sc.), Prof. Dr. A. G. Griesbeck Department of Chemistry, University of Cologne Greinstr. 4, 50939 Köln E-mail: griesbeck@uni-koeln.de

Supporting information for this article is given via a link at the end of the document.

well as the design of artemisinin dimers, conjugates and dyads.^[10] Recently, also flow photochemistry has been applied in order to produce larger amounts of artemisinin involving an oxygenation key step.^[11]

Scheme 1. The natural sesquiterpene peroxide artemisinin and three pharmaactive 1,2,4-trioxane (1,2) and 1,2,4-trioxepane (3) derivatives.

In the last decade, we have developed a synthetic protocol to a series of 1,2,4-trioxanes with antimalarial properties similar to the natural products, e.g. the 1,2,4-trioxane 1.^[12] Furthermore, dyads (additional to hybrids or dimeric structures)^[13] composed of natural artemisinine derivatives and synthetic trioxanes were realized.[14] In extension to these compound families, we synthesized a series of ester-substituted 1,2,4-trioxanes (e.g. 2) that showed remarkable strong glutathione-transferase (GST) inhibition.^[15] The (homo)allylic alcohol / singlet oxygen approach to allylic hydroperoxides that was used for these processes limits the reaction to 1,2,4-trioxanes^[12] and seven-membered analogs like compound 3.[16] Another way to allylic hydroperoxides is the caroate oxidation of phenols that are substituted at C4^[17] a method that was also used for the synthesis of new spiroannulated 1,2,4-trioxanes.^[18] The process uses as reagent Oxone[®], a triple salt composed of 2KHSO₅, KHSO₄, and K₂SO₄, a remarkably powerful oxidant with the potassium salt of Caro's acid (caroate) as the reactive component.^[19] The caroate reaction of phenols occurs at moderate basic conditions (pH = 8) in aqueous medium. Singlet oxygen was postulated as the reactive oxygen species in this specific application.[17] This assumption appears plausible because singlet oxygen ¹O₂ was already described as a decomposition product from Caro's acid either uncatalyzed or ketone-catalyzed.^[20] Thus, this non-photochemical approach to singlet oxygen products appears to be of general relevance for the synthesis of 1,n-hydroxy hydroperoxides from 4-hydroxyalkyl phenols. We first investigated if this caroate approach really follows a singlet oxygen path and therefore compared the reactivity of probe molecules from ¹O₂. As model substrate, commercial 4-hydroxyethylphenol 4 was applied.

COMMUNICATION

The caroate decomposition in aqueous media at pH = 10.5 leads to the formation of the hydroperoxide **5** in yields between 56 and 76% (in the presence of the lactol as side-product).^[21] The corresponding reaction with photogenerated ¹O₂ (Sens. = tetraphenylporphyrin) also resulted in **5**. No other typical singlet oxygen substrates (e.g. limonene, 2,3-dimethyl-2-butene) did however resulted in the expected ¹O₂ products under caroate conditions, making the phenolate (at the given pH) reactivity a very special case.

Scheme 2. Caroate-induced hydroperoxidation of 4-hydroxyethylphenol 4 and subsequent peroxyacetalization under Lewis-acid catalysis.

Subsequent peroxyacetalization with BF₃ or In(OTf)₃ as Lewisacid catalysts (Lewis acid optimization see SI) delivered the 1,2,4trioxepanes **6a-6d** in moderate to low yields (Scheme 2). We were initially surprised by the complexity of the NMR spectra of these compounds: in the ¹H NMR all cyclohexadienone H's appeared with different chemical shifts and also the formally enantiotopic methyl groups appear at 1.3 and 1.6 ppm (Figure 1). Analogously, ¹³C NMR signals for all carbon atoms were different (Figure 2). Temperature-dependent NMR measurements were possible only until 50°C because of the instability of the cyclic peroxides and no coalescence effects could be determined. Thus, we speculated that the actual chemical structures of the products deviate from the expected 1,2,4-trioxepane ring. Two products could be crystallized and revealed that also this assumption was incorrect (Figure 3).^[22]

Figure 1. ¹H-NMR spectra of 6a and 6b in CDCI₃.

Figure 2. ¹³C-NMR spectra of 6c and 6d in CDCl₃

Thus, the expected cyclic ring peroxide structures **6** are actually the products of the peroxacetalization. The anisochronicity effects in the NMR spectra are obviously a consequence of slow peroxide ring inversion, an unusual property that we have not yet observed in the six-membered 1,2,4-trioxane series.

Figure 3. Structures of spiro-1,2,4-trioxepanes 6c and 6d in the crystal.

In order to explore if this structural behavior also occurs for larger ring systems, we have applied homologous substrates: the C₃-linked phenol $7^{[23]}$ is converted into the hydroperoxide **8** in 36% yield and peroxyacetalization with acetone delivers the 1,2,4-trioxocane **9a** in low yields (6-21%). Again, the two methyl groups

COMMUNICATION

appear with different chemical shift (Scheme 3) and also other derivatives show the anisochronicity effects analogous to the seven-membered ring peroxides **6a-d**. Using $In(OTf)_3$ as Lewis acid, the corresponding eight-membered peroxides **9b** and **9c** were also available.

Scheme 3. Caroate-induced hydroperoxidation of 4-hydroxypropylphenol **7** and subsequent peroxyacetalization under Lewis-acid catalysis.

Motivated from the ring structure of the highly unstable triacetone triperoxide, we envisaged the synthesis also of nine-membered peroxides, the 1,2,4-trioxononanes: the C₄-linked phenol **10**^[24] is converted with caroate into the hydroperoxide **11** in 79% yield. The ferric chloride catalyzed^[25] peroxyacetalization with three ketones delivered the 1,2,4-trioxocanes **12a-12c** in low yields (Scheme 4). From these products, no anisochronicity NMR effects were detected, e.g. the NMR of the 3,3-dimethyl derivative **12a** showed only one methyl signal in ¹H and ¹³C NMR (Figure 4).

Scheme 4. Caroate-induced hydroperoxidation of 4-hydroxybutylphenol **10** and subsequent peroxyacetalization under Lewis-acid (FeCl₃) catalysis.

Figure 4. ¹H-NMR and ¹³C-NMR spectra of the 1,2,4-trioxononane 12a in CDCI₃ (negative signals CH and CH₃).

This synthetic protocol could not be applied for the generation of spiro-fused 1,2,4-trioxanes, i.e. the hydroperoxide from the oxone conversion of 4-hydroxymethylphenol **13** was not formed and consequently could not be transformed into 1,2,4-trioxanes. An analogous six-membered peroxide **16** was synthesized via the uncatalyzed intramolecular peracetal formation from the aldehyde **14** (Scheme 5).

Scheme 5. Caroate-induced hydroperoxidation of aldehyde 14 and intramolecular 1,2-dioxane (16) formation.

Alternatively to spirofused cyclic peroxides, this approach also allows the synthesis of annulated peroxides, e.g. the 3-hydroxymethylated phenol **17**^[26] was successfully converted into a seven-membered cyclic peroxide **19** via the corresponding hydroperoxide **18** (Scheme 6) in 41% overall yield.

COMMUNICATION

Scheme 6. Caroate-induced hydroperoxidation / acetone peroxyacetalization of 4-methyl-3-hydroxymethylphenol 17.

Figure 5. Structures of the cyclic peroxides 16 and 19 in the crystal.

Comparing the peroxide-containing ring families described in this communication, it became clear that slow ring conformational interconversion exists for seven- and eight-membered rings whereas the nine-membered cyclic peroxides undergo faster ring movements. This effect does qualitatively also match the stability features: whereas compounds 6 and 9 (and 19) were stable in solution (and in solid state for 6c and 6d), the larger ring systems 12 slowly decompose also in solution even when stored at -20°C. Stabilizing stereoelectronic effects were described by Alabugin and colleagues to explain the unusual stability of bis-peroxides (1,2,4,5-tetroxanes).^[27] The key stabilizing feature that was by quantum chemical calculation was a identified hyperconjugative $n_{O(O)} \rightarrow \sigma^*_{CO}$ interaction which is also relevant for the stabilization of 1,2,4-trioxanes. Density functional theory (DFT) calculations of the three model compounds 6a, 9a, and 12a resulted in all cases in a complex pattern of minimum conformations with similar energies. The ring inversion barriers could thus not determined unam-biguously. Concerning the stability of the cyclic peroxides, comparison of the homologous hydroperoxides 5, 8, and 11 with the Gibbs free energies of the lowest energy conformers of the peroxides 6a, 9a, and 12a resulted in reaction energies that serve as measures for the relative stabilization of the different ring sizes (Scheme 7, see also SI). It is safe to assume that the differences in $\Delta\Delta G$ arise predominately from changes in the peracetal structure of the products and thus indicate a 5.7 kcal/mol (in chloroform) stabilization of the seven-membered trioxepane in comparison to the nine-membered ring. The relative stabilization difference between seven- and eight-membered peroxides is only 1.8 kcal/mol (in chloroform). The conformational stabilization for the seven- and eight-membered peroxides originate from a peranomeric effect as described as a central peroxide-stability determining effect also for numerous cyclic peroxides, e.g. artemisinin and ozonides.^[27,28] Even higher stabilization energies for $n_0-\sigma^*_{CO}$ -interaction was determined by natural bond orbital (NBO) methods that seem however to be counterbalanced by increasing ring-strain in the nine-membered peroxides.[29]

In summary, the gain in stabilization, as determined from Gibbs energy difference between starting materials and products decreases with increasing ring size. This overall effect is composed of stabilizing NBO interactions (per-anomeric effect. dominates for 6-8 membered peroxides) and destabilizing ring strain that prevail for the nine-membered peroxides **12**. These opposing effects explain unusual thermal stabilities of mediumsized peroxides (e.g. the artemisinin derivatives) and the instability of the nine-membered 1,2,4-trioxononanes (e.g. TATP).

Scheme 7. M062X/6-311++G**-GD3 (PCM, in CHCl₃) // B3LYP/6-31G*-GD3BJ calculated free reaction energies of hydroperoxides to cyclic peroxides and NBO-calculated (per)anomeric interaction energies..

Keywords: Peroxides • photochemistry • oxygenation • heterocycles • structures

References

- a) A. O. Terent'ev, D. A. Borisov, V. A. Vil, V. M. Dembitsky, *Beilstein J.* Org. Chem. 2014, 10, 34-114; b) I. A. Yaremenko, V. A. Vil, D. V. Demchuk, A. O. Terent'ev, *Beilstein J. Org. Chem.* 2016, 12, 1647-1748.
- a) T. M. Klapötke, Chemistry of High-Energy Materials, de Gruyter, Berlin/Bostn, 3rd edition, 2015; b) N. A. Milas, A. Golubovic, *J. Am. Chem. Soc.* 1959, *81*, 6461-6462; c) R. Criegee, W. Schnorrenberg, J. Becke, *Liebigs Ann.* 1949, *565*, 7-21; d) F. Dubnikova, R. Kosloff, J. Almog, Y. Zeiri, R. Boese, H. Itzhaky, A. Alt, E. Keinan, *J. Am. Chem. Soc.* 2005, *127*, 1146-1159.
- [3] a) Z. Li, Q. Li, J. Wu, M. Y. Wang, J. X. Yu, *Molecules* 2016, *21*, Art.Nr. 1331; b) V. Kumar, A. Mahajan, K. Chibale, *Bioorg. Med. Chem.* 2010, 17, 2236-2275.
- [4] a) Y. Tu, Angew. Chem. Int. Ed. 2016, 55, 10210-10226; b) Y. Tu, Nature Med. 2011, 17, 1217-1220.
- [5] a) Y. Li, Acta Pharm. Sinica 2012, 33, 1141-1146; b)
- a) M. Rudrapal, Z. W. Banu, D. Chetia, *Med. Chem. Res.* 2018, *27*, 653-668; b) E. Fernandez-Alvaro, W. D. Hong, G. L. Nixon, P. M. O'Neill, E. Calderon, *J. Med. Chem.* 2016, *59*, 5587-5603; c) S. B. Tsogoeva, *Mini-Rev. Med. Chem.* 2010, *10*, 773-793; d) S. Turschner, T. Efferth, *Mini-Rev. Med. Chem.* 2009, *9*, 206-214.
- a) T. Efferth, *Biochem. Pharm.* 2017, *139*, 56-70; b) T. Fröhlich, B.
 Ndreshkjana, J. K. Muenzner, C. Reiter, E. Hofmeister, S. Mederer, M.
 Fatfat, C. El-Baba, H. Gali-Muhtasib, R. Schneider-Stock, S. B.
 Tsogoeva, *ChemMedChem* 2017, *12*, 226-234; c) M. P. Crespo-Ortiz, M.

COMMUNICATION

Q. Wei, *J. Biomed. Biotech.* **2012**, 247597; d) T. Efferth, H. Dunstan, A. Sauerbrey, H. Miyachi, C. R. Chitambar, *Int. J. Oncology* **2001**, *18*, 767-773.

- [8] a) J. Lin, T. Casteels, T. Frogne, et al., *Cell* 2017, *168*, 86-100; see however also the correction: b) T. van der Meulen, S. Lee, E. Noordeloos, C. J. Donaldson, M. W. Adams, G. M. Noguchi, A. M. Mawla, M. O. Huising, *Cell Metabolism* 2018, *27*, 218-225.
- [9] X. Liu, H. Chen, Z. Xu, Y. Wu, B. Liu, Chin. J. Chem. 2017, 35, 465-476.
- a) B. Meunier, A. Robert, Acc. Chem. Res. 2010, 43, 1444-1451; b) C.
 W. Jefford, Curr. Med. Chem. 2001, 8, 1803-1826.
- J. M. Tobin, T. J. D. McCabe, A. W. Prentice, S. Holzer, G. O. Lloyd, M. J. Paterson, V. Arrighi, P. A. G. Cormack, F. Vilela, ACS Cat. 2017, 7, 4602-4612; b) D. Kopetzki, F. Levesque, P. H. Seeberger, Chem. Eur. J. 2013, 19, 5450-5456; c) F. Levesque, P. H. Seeberger, Angew. Chem. 2012, 124, 1738-1741; Angew. Chem. Int. Ed. 2012, 51, 1706-1709.
- [12] a) A. G. Griesbeck, T. El-Idreesy, M. Fiege, R. Brun, Org. Lett. 2002, 4, 4193-4195; b) A. G. Griesbeck, T. El-Idreesy, L.-O. Höinck, J. Lex, R. Brun, Bioorg. Med. Chem. Lett. 2005, 15, 595-597; c) A. Bartoschek, T. T. El-Idreesy, A. G. Griesbeck, L.-O. Höinck, J. Lex, C. Miara, J. M. Neudörfl, Synthesis 2005, 2433-2444; d) A. G. Griesbeck, D. Blunk, T. El-Idreesy, A. Raabe, Angew. Chem. 2007, 119, 9040-9043; Angew. Chem. Int. Ed. 2007, 46, 8883-8886; e) A. G. Griesbeck, V. Schlundt, Synlett 2011, 2430-2443; f) A. G. Griesbeck, V. Schlundt, J. M. Neudörfl, RSC Adv. 2013, 3, 7265-7270; g) A. G. Griesbeck, M. Bräutigam, M. Kleczka, A. Raabe, Molecules 2017, 22, 119.
- [13] a) T. Fröhlich, C. Reiter, M. M. Ibrahim, J. Beutel, C. Hutterer, I. Zeittrager, H. Bashi, M. Leidenberger, O. Friedrich, B. Kappes, T. Efferth, M. Marschall, S. B. Tsogoeva, ACS Omega 2017, 2, 2422-2431; b) T. Fröhlich, A. C. Karagoz, C. Reiter, S. B. Tsogoeva, J. Med. Chem. 2016, 59, 7360-7388.
- [14] a) A. G. Griesbeck, J. Neudörfl, A. Hörauf, S. Specht, A. Raabe, J. Med. Chem. 2009, 52, 3420-3423; b) A. G. Griesbeck, A. Raabe, Synlett 2009, 1514-1516.
- [15] a) M. Bräutigam, N. Teusch, T. Schenk, M. Sheikh, R. Z. Aricioglu, S. H. Borowski, J.-M. Neudörfl, U. Baumann, A. G. Griesbeck, M. Pietsch, *ChemMedChem* 2015, *10*, 629-639; b) A. G. Griesbeck, A. Maaßen, M. Bräutigam, M. Pietsch, *Eur. J. Org. Chem.* 2015, 4349-4352.
- [16] C. Singh, S. Pandey, G. Saxena, N. Srivastava, M. Sharma, J. Org. Chem. 2006, 71, 9057-6061.
- [17] a) S. Barradas, M. C. Carreno, M. Gonzalez-Lopez, A. Latorre, A. Urbano, *Org. Lett.* 2007, *9*, 5019-5022; b) S. Vila-Gisbert, A. Urbano, M. C. Carreno, *Chem. Commun.* 2013, *34*, 3561-3563; c) S. Barradas, G. Hernandez-Torres, A. Urbano, M. C. Carreno, *Org. Lett.* 2012, *14*, 5952- 5955; d) M. C. Carreno, M. Gonzalez-Lopez, A. Urbao, *Angew. Chem.* 2006, *118*, 2803-2807; *Angew. Chem. Int. Ed.* 2006, *45*, 2737-2741.
- [18] a) D. A. Rubush, M. A. Morges, B. J. Rose, D. H. Thamm, T. Rovis. J. Am. Chem. Soc. 2012, 134, 13554-13557; b) M. Rudrapal, D. Chetia, V. Singh, J. Enzym. Inhib. Med. Chem. 2017, 32, 1159-1173.
- [19] H. Hussain, J. R. Green, I. Ahmed, Chem. Rev. 2013, 113, 3329-3371.
- [20] a) D. F. Evans and M. W. Upton, *J. Chem. Soc., Dalton Trans.* 1985, 1151; b) A. Lange, H. D. Brauer, *J. Chem. Soc. Perkin Trans.* 2 1996, 805-811; c) A. Lange, M. Hild, H. D. Brauer, *J. Chem. Soc. Perkin Trans.* 2 1999, 1343-1350.
- [21] Q. Gu, Z.-Q. Rong, C. Zheng, S.-L. You, J. Am. Chem. Soc. 2010, 132, 4056-4057.

- [22] Data for the X-ray structures analyses of compounds 6c, 6d, 16, and 18 were deposited with CCDC numbers: CCDC 1843855 (6c), CCDC 1843856 (6d), CCDC 1843853 (16), CCDC 1843854 (19).
- [23] from the corresponding carboxylic acid by reduction with LiAlH₄ following a procedure: J. M. Herbert, A. T. Hewson, J. E. Peace, *Synth. Commun.* 1998, *28*, 823-832.
- [24] M. D. Morin, Y. Wang, B. T. Jones, L. Su, M. M. R. P. Surakattula, M. Berger, H. Huang, E. K. Beutler, H. Zhang, B. Beutler, D. L. Boger, *J. Med. Chem.* **2016**, *59*, 4812–4830.
- [25] FeCl₃-catalysis: a) S. Zaher, L. Christ, M. A. El Rahim, A. Kanj, I. Karame, *Mol. Cat.* **2017**, *438*, 204-213; b) M. Zhang, Y. Han, J. L. Niu, Z. H. Zhang, *Adv. Syn. Cat.* **2017**, 359, 3618-3625.
- [26] D. Hayashi, T. Narisawa, Y. Masui, M. Onaka, Bull. Chem. Soc. Jpn. 2016, 89,460-471.
- [27] G. dos Passos Gomes, V. Vil, A. Terent'ev, I. V. Alabugin, *Chem. Sci.* 2015, 6, 6783-6791.
- [28] a) E. Juaristi, G. dos Passos Gomes, A. O. Terent'ev, R. Notario, I. V. Alabugin, J. Am. Chem. Soc. 2017, 139, 10799-10813; b) G- dos Passos Gomes, I. A. Yaremenko, P. S. Radulov, R. A. Novikov, V. V. Chernyshev, A. A. Korlyukov, G. I. Nikishin, I. V. Alabugin, A. O. Terent'ev, Angew. Chem. Int. Ed. 2017, 56, 4955-4959; c) V. A. Vil',G. dos Passos Gomes, O. V. Bityukov, K. A. Lyssenko, G. I. Nikishin, I. V. Alabugin, A. O. Terent'ev, Angew. Chem. Int. Ed. 2018, 57, 3372-3376; d) I. A. Yaremenko, G. dos Passos Gomes, P. S. Radulov, Y. Y. Belyakova, A. E. Vilikotskiy, V. A. Vil', A. A. Korlyukov, G. I. Nikishin, I. V, Alabugin, A. O. Terent'ev, J. Org, Chem. 2018, 83, 4402-4426.
- [29] The pronounced differences between 7- and 8-membered cyclic peroxides in comparison with the 9-membered cyclic peroxides are also reflected in the structure data resulting from DFT calculations and compared with the crystal structures for 6c and 6d (SI).

This article is protected by copyright. All rights reserved.

COMMUNICATION

Entry for the Table of Contents (Please choose one layout)

New spirofused and ring-annulated peroxides with unusual conformational

of 3- and 4-functionalized phenols. The stability properties enlighten the

dichotomy of cyclic peroxides between medicinal and energetic properties.

behaviour are available from Oxone-induced peroxidation and peracetalization

Layout 2:

COMMUNICATION

A. Eske, S. Ecker, C. Fendinger, B. Goldfuss, M. Jonen, J. Lefarth, J.-M. Neudörfl, M. Spilles, A. G. Griesbeck*

Page No. – Page No.

Spirofused and annulated 1,2,4trioxepane-, trioxocane-, and trioxononane cyclohexadienones: Cyclic peroxides with unusual ring conformation dynamics

