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Selective Alkylation of Ketones with a Bulky Aluminum Reagent-the THF-TBSOTT System
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Abstract: Various ketones can be alkylated with tetrahydrofuran (THF)
to provide o-siloxybutylated ketones in the presence of a bulky
aluminum reagent, lithium diisopropylamide (LDA), and t-
butyldimethylsily! triflate (TBSOTY).

We report here an unprecedented one-pot alkylation of carbonyl
compounds complexed with the bulky aluminum reagents aluminum
tris(2,6-diphenylphenoxide) (ATPH)1 or methylaluminum bis(2,6-di-#-
butyl-4-methylphenoxide) (MAD),2 by sequential treatment with LDA
and #-butyldimethylsilyl triflate (TBSOTf) in THF to yield mono- or

dialkylated ketones.?
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Treatment of the lithium enolate of 3-methylcyclohexanone, generated
from the corresponding trimethylsilyl enol ether (MeLi, THF, 0 °0)4
with ATPH, followed by addition of TBSOTHT, resulted in no silylation or
siloxybutylation of the enolate intermediate to give 3-methyl-
cyclohexanone (>95%). Precomplexation of 2-cyclohexenone w1th
ATPH, followed by Michael addition of MeLi (ether solution), Sa
sequential treatment with THF and TBSOTT gave, after chromatography
on silica gel, a 81 % yield of 1 as a mixture of cis and trans isomers in a
ratio of 3 : 97 (Equation 1).5 Reductive alkylation of 3-methyl-2-
cyclohexenone with THF and TBSOTf was also achieved using
diisobutylaluminum hydride-butyllithium complex (DIBAL-BuLi) as a
reducing agent in the presence of ATPH (80 % yield, cis : trans =2 : 98)
(Equation 2).7 An even more generally useful and interesting result was
obtained by the regioselective alkylation of the 3-methylcyclohexanone/
ATPH complex with LDA, THF, and TBSOT, which provided 2 as a
major product in a cis/trans ratio of 1.3 : 1 (Equation 3). 8 Apparently,
these reactions, depicted in Equations 1 ~ 3, should proceed via the same
enolate intermediate.
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We next investigated the reaction shown in Equation 3 with other
cyclohexanone derivatives, and the results are summarized in Table 1.
Several characteristic features of this reaction were noted. (1) Selective
monosiloxybutylation was achieved by the combined use of 1.1 equiv of
ATPH and 1.1 equiv of LDA%O without the formation of
bissiloxybutylated products (Entries 1 ~ 4). The more-substituted site of
the starting ketones was alkylated regioselectively when unsymmetrical
ketones were used (Entries 2 and 3).11 12 (2) A combination of 1.1 equiv
of ATPH and 2.2 equiv of LDA for 3 led to the selective second
alkylation at the more-hindered o-carbon of intermediate S to give o0~
dialkylated ketone 9 preferentially. Thus, formation of the ATPH-3
complex in toluene at -78 °C, followed by successive addition of 2.2
equiv of LDA, THF, and TBSOT{ gave, after 88 h, a mixture of §, 9, and
10 in a ratio of 39 : 41 : 20 (Entry 5). It is interesting to note that o0~
dialkylated ketone'? 10 was predominant with the combined use of 1.1
equiv of MAD and 2.2 equiv of LDA (Entry 6). (3) Unsymmetrical THF
2-methyltetrahydrofuran underwent selective ring-opening at the less-
substituted carbon to furnish the monoalkylated ketone in high yield
(Entry 7). This result suggests that the present reaction is unlikely to
proceed by an Sy1 mechanism. (4) Overall, the second alkylation was
much slower than the first alkylation in our system, so that the
monoalkylation was predominant with 1.1 equiv of LDA.

Table 1. Alkylation of ketones by an aluminum reagent,
LDA, THF and TBSOT{ ¢

conditions  major yield (%)?

entry  ketone °C,h)  product
0
R
1 3:R=H -7815 5 gi
2 4: =Me -40,05 6
o}
3 )Lﬂ/ 78,4 7 4
4
4 5 -78, 60 9 218
5¢ 3 -78, 88 9 37k
6cd 3 78,23 10 94
7° 3 -40, 9 11 77

¢ Unless otherwise specified, the reaction was carried out
using ATPH (1.5 equiv), LDA (1.1 equiv), THF (excess),
and TBSOTf (4.0 equiv). b Isolated yield of the major
product. € 2.2 equiv of LDA was used. 4 MAD (1.1 equiv)
was used in place of ATPH. ¢ 2-methyitetrahydrofuran was
used in place of THF. /8 was obtained in 3% yield. & 10
was obtained in 8% yield. % 5 and 10 were obtained in 35%
and 18% yield, respectively. 712 was obtained in 5% yield.

The mechanistic aspects of the present reaction remain unclear.
However, Enders et. al. reported that the ring-opening process of THF
with lithiated hydrazones and TBSOTf could be explained by the
intervention of O-silyltetrahydrofuranium trifluoromethanesulfonate
(Scheme 1).1* Our system seems to proceed via the same intermediate.
Further investigation and extension of the present study to other cyclic
ethers!3 are currently underway in our laboratory.
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