PAPER

Bromodecarboxylation of (*E*)-3-Aryl-2-(diethoxyphosphoryl)acrylic Acids: A Facile Route to Diethyl Arylethynylphosphonates

Henryk Krawczyk,* Łukasz Albrecht

Institute of Organic Chemistry, Technical University (Politechnika), Żeromskiego 116, 90-924 Łódź, Poland Fax +48(42)6365530; E-mail: henkrawc@p.lodz.pl *Received 26 March 2007; revised 17 April 2007*

Abstract: Bromodecarboxylation of (E)-3-aryl-2-(diethoxyphosphoryl)acrylic acids leading to diethyl (Z)-2-aryl-1-bromovinyl-phosphonates has been conducted for the first time. The products have been shown to be useful for the synthesis of diethyl arylethy-nylphosphonates.

Key words: Hunsdiecker reaction, bromodecarboxylation, alk-1ynylphosphonates, Oxone, acrylic acids

Decarboxylation of carboxylic acids accompanied by simultaneous replacement by a halogen, known in the literature as the Hunsdiecker reaction, constitutes an important and useful method for the synthesis of halogenated organic compounds containing one fewer carbon atom than the original acid.¹ It is well established that simple alkanoic acids can be converted into the corresponding alkyl bromides by reaction of their silver salts with elemental bromine. Unfortunately, the salts of α , β -unsaturated acids were found not to be useful in this reaction.¹ Recently, the Hunsdiecker reaction of cinnamic acids has been shown to proceed efficiently in the presence of various reagents (NBS/iodosylbenzene,^{2a} NBS/LiOAc,^{2b} NBS/LiOAc with irradiation,^{2c} tetrabutylammonium trifluoroacetate/N-halosuccinimides,2d NaX/Oxone,2e KBr/ Selectfluor,^{2f} KBr/Na₂MoO₄·2H₂O/H₂O₂,^{2g} Dess–Martin periodinane/TEAB,^{2h} LiBr/CAN²ⁱ) giving access to a range of vinyl halides.

Halogen-substituted vinylphosphonates are masked acetylenic compounds as they can be easily transformed into the corresponding alk-1-ynylphosphonates.³ Moreover, 1bromoalk-1-enylphosphonates have been successfully utilized for the preparation of the corresponding 1-arylalk-1-enylphosphonates and phosphorylated dienes by means of transition-metal-catalyzed arylation and alkenylation.⁴ 1-Bromoalk-1-enylphosphonates are commonly prepared through a sequence of reactions involving addition of elemental bromine to alk-1-enylphosphonates and base-catalyzed β -elimination of the resulting 1,2-dibromoalkylphosphonates.^{4,5} These reactions lead to the formation of particular products as mixtures of *E*- and *Z*isomers. For this reason, methods to obtain such compounds in a stereoselective manner are desirable. Alk-1-ynylphosphonates have found widespread application in organic synthesis.⁶ Stereoselective partial reduction of the triple bond of dibutyl prop-1-ynylphosphonate to give dibutyl (Z)-prop-1-enylphosphonate constitutes a key step in the first racemic synthesis of the antibiotic fosfomycin.⁷ Hydration of alk-1-ynylphosphonates provides an effective and general approach for the preparation of 2oxoalkylphosphonates, versatile synthetic intermediates.⁸ Additionally, alk-1-ynylphosphonates have been utilized in [2+2]-, [3+2]-, and [4+2]-cycloaddition reactions for the synthesis of complex organophosphorus compounds.⁶ Alk-1-ynylphosphonates are also useful precursors for the preparation of arylidenebisphosphonates providing a new access to the P-C-P backbone.9 Recently, the reagent system Cp₂ZrCl₂/2 EtMgBr/2 AlCl₃ was shown to convert alk-1-ynylphosphonates into cyclopropylmethylphosphonates in good isolated yields.¹⁰ As a consequence considerable effort has been directed towards the development of methods for their simple and effective preparation.⁶

Recently, we have demonstrated that Knoevenagel condensation of (diethoxyphosphoryl)acetic acid with various aromatic aldehydes gives access to a range of (*E*)-3aryl-2-(diethoxyphosphoryl)acrylic acids 1.¹¹ Moreover, we have shown that subsequent decarboxylation of the acids 1 constitutes an efficient and general route to diethyl (*E*)-2-arylvinylphosphonates. We envisioned that Hunsdiecker reaction of the acids 1 would provide a new approach to 1-bromoalk-1-enylphosphonates.

In this paper, we report our results on the bromodecarboxylation of acids **1** using sodium bromide in the presence of Oxone at room temperature. Moreover, we demonstrate that the resulting diethyl 2-aryl-1-bromovinylphosphonates can be easily converted into diethyl arylethynylphosphonates, thus providing a novel approach to this class of compounds.

In our initial studies, we focused on finding a suitable method for the effective bromodecarboxylation of (E)-3-aryl-2-(diethoxyphosphoryl)acrylic acids **1** (Scheme 1). (E)-2-(Diethoxyphosphoryl)-3-(4-methoxyphenyl)acrylic acid (**1a**) was chosen as a model substrate and various methods for its conversion into alkenyl bromide **2a** were evaluated. The use of lithium bromide in the presence of ammonium cerium(IV) nitrate at room temperature resulted in the formation of a complex reaction mixture. The reaction of the acid **1a** with potassium bromide and hydrogen peroxide in the presence of molybdic acid proceeded rapidly, giving the desired bromide **2a** in moderate

SYNTHESIS 2007, No. 12, pp 1877–1881 Advanced online publication: 11.05.2007 DOI: 10.1055/s-2007-966057; Art ID: Z07307SS © Georg Thieme Verlag Stuttgart · New York

yield and purity. The best results in terms of yield and purity were obtained using sodium bromide in the presence of sodium carbonate and Oxone at room temperature; under these conditions the corresponding alkenyl bromide 2a was formed in 93% yield. Our investigation on the generality of this methodology showed that electronic effects of the aryl substituent had a profound impact on the reactivity of the substrate. Reactions of 3-aryl-2-(diethoxyphosphoryl)acrylic acids bearing electron-withdrawing group on the aromatic ring proceeded very slowly and were not chemoselective. In practice, this methodology could be efficiently applied to acrylic acids **1a–d** bearing electron-donating groups on the aromatic ring. With the same reagent system, heteroaromatic-substituted acrylic acids **1e**,**f** also provided the respective bromodecarboxylation products **2e**,**f**, but in moderate yield (Table 1).

Scheme 1 Reagents and conditions: KBr (3 equiv), Na₂CO₃ (1 equiv), Oxone (2 equiv), MeCN, H₂O, r.t.

Bromodecarboxylation of the acids **1a–f** proceeded with retention of configuration of the double bond and provided the products as the *Z*-isomer accompanied by a small amount of the *E*-isomer (ratios *Z/E* are given in Table 1). Similar results with regard to diastereoselectivity were observed for the bromodecarboxylation of cinnamic acid derivatives.^{2c,f,12} The configuration of the alkene bond in bromides **2a–f** was unambiguously assigned on the basis of ¹H NMR data; the value of the coupling constant (³*J*_{HP} = 15.5–16.3 Hz) indicate a *cis* relationship between vicinal P and H atoms.

With suitable substrates in hand, we turned our attention to their effective conversion into diethyl arylethynylphosphonates **3a–f** (Scheme 2). After much experimentation it was found that 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) promoted β -elimination of corresponding alkenyl

Scheme 2 Reagents and conditions: DBU (1.5 equiv) or TBD (1.2 equiv), CH₂Cl₂, r.t.

bromides **2a**–**d** proceeded efficiently at room temperature.

Reactions were complete within 6-10 days giving the target phosphonates **3a-d** in high yields. In contrast, the reactions of the heteroaromatic-substituted bromides 2e,f were not chemoselective and led to a mixture of organophosphorus compounds. Much better results in terms of reaction time were obtained using 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) as a base. Under these conditions reactions of bromides 2a-e were complete within 1-2 days giving the target phosphonates **3a–e** in comparable yields. Unfortunately, 1,5,7-triazabicyclo[4.4.0]dec-5ene-promoted elimination of diethyl 2-(1-acetyl-1H-indol-3-yl)-1-bromovinylphosphonate (2f) resulted in a complex reaction mixture. In all reactions performed, only the Z-isomer underwent β -elimination while the Eisomer remained unreacted. The pure diethyl arylethynylphosphonates 3a-e were isolated by column chromatography.

In summary, we have developed a novel and efficient method for the preparation of diethyl 2-aryl-1-bromovinylphosphonates in a highly stereoselective manner. Moreover, we have shown that this type of compound can be successfully used for the synthesis of diethyl arylethynylphosphonates.

NMR spectra were recorded on a Bruker DPX 250 instrument at 250.13 MHz for ¹H, 62.9 MHz for ¹³C, and 101.3 MHz for ³¹P NMR, using TMS as internal and 85% H₃PO₄ as external standard. The multiplicity of carbons were determined by DEPT experiments. IR spectra were measured on a Specord M80 (Zeiss) instrument. Elemental analyses were performed on a Perkin-Elmer PE 2400 analyzer. Melting points were determined in open capillaries and are uncorrected.

 Table 1
 2-Aryl-1-bromovinylphosphonates
 2a-f and Arylethynylphosphonates
 3a-e Prepared

Entry	Ar	Vinylpl	Vinylphosphonate 2				Ethynylphosphonate 3			
			Time (min) Yield (%)		Ratio Z/E		DBU-promoted reaction		TBD-promoted reaction	
							Time (d)	Yield (%)	Time (d)	Yield (%)
1	4-MeOC ₆ H ₄	2a	90	93	94:6	3a	7	72	1	75
2	$4-MeC_6H_4$	2b	90	84	95:5	3b	8	81	1	80
3	3,4-(MeO) ₂ C ₆ H ₃	2c	90	91	96:4	3c	10	77	1	81
4	3,4-(OCH ₂ O)C ₆ H ₃	2d	90	67	95:5	3d	6	73	1	72
5	5-methylfuran-2-yl	2e	60	48	98:2	3e	-	-	2	60
6	1-acetyl-1H-indol-3-yl	2f	60	43	99:1	3f	_	_	_	_

Synthesis 2007, No. 12, 1877-1881 © Thieme Stuttgart · New York

Acrylic acids **1a–f** were prepared according to the literature procedure.¹¹ The synthesis and spectral data of **1f** have not been previously reported.

(*E*)-3-(1-Acetyl-1*H*-indol-3-yl)-2-(diethoxyphosphoryl)acrylic Acid (1f)

Pale-yellow crystals; yield: 51%; mp 136-137 °C.

IR (film): 1716, 1448, 1372, 1330, 1252, 1056, 772 cm⁻¹.

¹H NMR (acetone- d_6): $\delta = 1.35$ (t, ${}^{3}J_{HH} = 7.0$ Hz, 6 H, 2 CH_3CH_2OP), 2.71 (s, 3 H, CH_3CO), 4.14–4.25 (m, 4 H, 2 CH_3CH_2OP), 7.33–7.45 (m, 2 H, 2 CH_{Ar}), 7.75–7.79 (m, 1 H, CH_{Ar}), 7.90 (d, ${}^{3}J_{HP} = 23.9$ Hz, 1 H, CHAr), 8.38–8.42 (m, 1 H, CH_{Ar}), 8.51 (s, 1 H, CH_{Ar}).

¹³C NMR (MeOD): δ = 15.82 (d, ${}^{3}J_{CP}$ = 6.1 Hz, 2 *C*H₃CH₂OP), 22.99 (*C*H₃CO), 63.52 (d, ${}^{2}J_{CP}$ = 5.2 Hz, 2 CH₃CH₂OP), 115.34 (d, ${}^{3}J_{CP}$ = 22.2 Hz, *C*_{Ar}), 116.60 (*C*H_{Ar}), 118.28 (*C*H_{Ar}), 121.81 (d, ${}^{1}J_{CP}$ = 178.9 Hz, PC), 124.48 (*C*H_{Ar}), 125.88 (*C*H_{Ar}), 129.84 (*C*_{Ar}), 129.96 (*C*H_{Ar}), 135.49 (*C*_{Ar}), 140.19 (d, ${}^{2}J_{CP}$ = 7.8 Hz, *C*HAr), 167.73 (d, ${}^{2}J_{CP}$ = 11.9 Hz, COOH), 169.91 (CO).

³¹P NMR (acetone- d_6): $\delta = 15.11$.

Anal. Calcd for $C_{17}H_{20}NO_6P$: C, 55.89; H, 5.52; N, 3.83. Found: C, 55.77; H, 5.43; N, 3.71.

Diethyl 2-Aryl-1-bromovinylphosphonates 2a–f; General Procedure

The soln of Oxone (613 mg, 1 mmol) in H₂O (6 mL) was added dropwise to a mixture of acrylic acid **1** (1 mmol), NaBr (309 mg, 3 mmol), and Na₂CO₃ (106 mg, 1 mmol) in MeCN (9 mL) and H₂O (6 mL). The resulting mixture was stirred at r.t. for the indicated period of time (Table 1). The mixture was then quenched with aq Na₂S₂O₃ (15 mL) and extracted with CH₂Cl₂ (2 × 10 mL). The combined organic layers were dried (MgSO₄), filtered, and concentrated under reduced pressure. The crude product was purified by a column chromatography (EtOAc–hexane 2:1) affording pure **2**.

Diethyl (Z)-1-Bromo-2-(4-methoxyphenyl)vinylphosphonate (2a)

Pale-yellow oil; yield: 93%.

IR (film): 1600, 1512, 1256, 1020, 968 cm⁻¹.

¹H NMR (CDCl₃): $\delta = 1.39$ (t, ³ $J_{\text{HH}} = 6.9$ Hz, 6 H, 2 CH₃CH₂OP), 3.85 (s, 3 H, CH₃OPh), 4.09–4.26 (m, 4 H, 2 CH₃CH₂OP), 6.95 (d, ³ $J_{\text{HH}} = 8.9$ Hz, 2 H, 2 CH_{Ar}), 7.89 (d, ³ $J_{\text{HH}} = 8.9$ Hz, 2 H, 2 CH_{Ar}), 8.00 (d, ³ $J_{\text{HP}} = 16.3$ Hz, 1 H, CHAr).

¹³C NMR (CDCl₃): δ = 15.92 (d, ³*J*_{CP} = 6.5 Hz, 2 *C*H₃CH₂OP), 54.99 (*C*H₃OPh), 62.70 (d, ²*J*_{CP} = 5.3 Hz, 2 CH₃CH₂OP), 106.15 (d, ¹*J*_{CP} = 208.1 Hz, PCBr), 113.51 (2 *C*H_{Ar}), 126.04 (d, ³*J*_{CP} = 18.2 Hz, *C*_{Ar}), 131.68 (2 *C*H_{Ar}), 143.84 (d, ²*J*_{CP} = 17.1 Hz, CHAr), 160.83 (*C*_{Ar}).

³¹P NMR (CDCl₃): δ = 11.74.

Anal. Calcd for $C_{13}H_{18}BrO_4P$: C, 44.72; H, 5.20. Found: C, 44.63; H, 5.30.

Diethyl (Z)-1-Bromo-2-(4-methylphenyl)vinylphosphonate (2b) Pale-yellow oil; yield: 84%.

IR (film): 1604, 1440, 1252, 1020, 968 cm⁻¹.

¹H NMR (CDCl₃): $\delta = 1.39$ (dt, ³ $J_{\rm HH} = 7.0$ Hz, ⁴ $J_{\rm HP} = 0.8$ Hz, 6 H, 2 CH₃CH₂OP), 2.38 (s, 3 H, CH₃Ph), 4.11–4.26 (m, 4 H, 2 CH₃CH₂OP), 7.23 (d, ³ $J_{\rm HH} = 8.0$ Hz, 2 H, 2 CH_{Ar}), 7.76 (d, ³ $J_{\rm HH} = 8.0$ Hz, 2 H, 2 CH_{Ar}), 8.02 (d, ³ $J_{\rm HP} = 16.3$ Hz, 1 H, CHAr).

¹³C NMR (CDCl₃): δ = 16.25 (d, ${}^{3}J_{CP}$ = 6.4 Hz, 2 CH₃CH₂OP), 21.51 (CH₃Ph), 63.11 (d, ${}^{2}J_{CP}$ = 5.2 Hz, 2 CH₃CH₂OP), 108.48 (d,

 ${}^{1}J_{CP}$ = 206.9 Hz, PCBr), 129.15 (2 CH_{Ar}), 130.02 (2 CH_{Ar}), 131.02 (d, ${}^{3}J_{CP}$ = 17.8 Hz, C_{Ar}), 140.66 (C_{Ar}), 144.69 (d, ${}^{2}J_{CP}$ = 16.7 Hz, CHAr).

³¹P NMR (CDCl₃): $\delta = 11.65$.

Anal. Calcd for $C_{13}H_{18}BrO_3P$: C, 46.87; H, 5.45. Found: C, 46.63; H, 5.30.

Diethyl (Z)-1-Bromo-2-(3,4-dimethoxyphenyl)vinylphosphonate (2c)

Yellow oil; yield: 91%.

IR (film): 1596, 1512, 1264, 1144, 1020, 968 cm⁻¹.

¹H NMR (CDCl₃): δ = 1.40 (dt, ³*J*_{HH} = 7.0 Hz, ⁴*J*_{HP} = 0.8 Hz, 6 H, 2 C*H*₃CH₂OP), 3.92 (s, 3 H, C*H*₃OAr), 3.93 (s, 3 H, C*H*₃OAr), 4.11–4.29 (m, 4 H, 2 CH₃CH₂OP), 6.91 (d, ³*J*_{HH} = 8.3 Hz, 1 H, C*H*_{Ar}), 7.46 (dd, ³*J*_{HH} = 8.3 Hz, ⁴*J*_{HH} = 2.0 Hz, 1 H, C*H*_{Ar}), 7.60 (d, ⁴*J*_{HH} = 2.0 Hz, 1 H, C*H*_{Ar}), 7.99 (d, ³*J*_{HP} = 16.3 Hz, 1 H, C*H*Ar).

¹³C NMR (CDCl₃): δ = 15.95 (d, ${}^{3}J_{CP}$ = 6.9 Hz, 2 *C*H₃CH₂OP), 55.61 (2 *C*H₃OAr), 62.75 (d, ${}^{2}J_{CP}$ = 5.2 Hz, 2 CH₃CH₂OP), 106.24 (d, ${}^{1}J_{CP}$ = 207.9 Hz, PCBr), 110.40 (*C*H_{Ar}), 112.19 (*C*H_{Ar}), 124.36 (*C*H_{Ar}), 126.24 (d, ${}^{3}J_{CP}$ = 18.2 Hz, *C*_{Ar}), 144.00 (d, ${}^{2}J_{CP}$ = 17.3 Hz, *C*HAr), 148.20 (*C*_{Ar}), 150.54 (*C*_{Ar}).

³¹P NMR (CDCl₃): $\delta = 12.04$.

Anal. Calcd for $C_{14}H_{20}BrO_5P$: C, 44.35; H, 5.32. Found: C, 44.53; H, 5.21.

Diethyl (Z)-1-Bromo-2-[3,4-(methylenedioxy)phenyl]vinyl-phosphonate (2d)

Pale-yellow oil; yield: 67%.

IR (film): 1592, 1504, 1488, 1448, 1248, 1020, 972 cm⁻¹.

¹H NMR (CDCl₃): $\delta = 1.39$ (dt, ³ $J_{\rm HH} = 7.3$ Hz, ⁴ $J_{\rm HP} = 0.3$ Hz, 6 H, 2 CH₃CH₂OP), 4.09–4.28 (m, 4 H, 2 CH₃CH₂OP), 6.03 (s, 2 H, CH₂O₂Ar), 6.85 (d, ³ $J_{\rm HH} = 8.2$ Hz, 1 H, CH_{Ar}), 7.28 (dd, ³ $J_{\rm HH} = 8.2$ Hz, ⁴ $J_{\rm HH} = 1.8$ Hz, 1 H, CH_{Ar}), 7.61 (d, ⁴ $J_{\rm HH} = 1.8$ Hz, 1 H, CH_{Ar}), 7.95 (d, ³ $J_{\rm HP} = 16.3$ Hz, 1 H, CHAr).

¹³C NMR (CDCl₃): δ = 16.00 (d, ${}^{3}J_{CP}$ = 6.5 Hz, 2 CH₃CH₂OP), 62.84 (d, ${}^{2}J_{CP}$ = 5.1 Hz, 2 CH₃CH₂OP), 101.40 (CH₂O₂Ar), 106.88 (d, ${}^{1}J_{CP}$ = 207.6 Hz, PCBr), 108.08 (CH_{Ar}), 108.89 (CH_{Ar}), 126.15 (CH_{Ar}), 127.58 (d, ${}^{3}J_{CP}$ = 18.3 Hz, C_{Ar}), 143.87 (d, ${}^{2}J_{CP}$ = 17.2 Hz, CHAr), 147.40 (C_{Ar}), 149.08 (C_{Ar}).

³¹P NMR (CDCl₃): δ = 11.48.

Anal. Calcd for $C_{13}H_{16}BrO_5P$: C, 43.00; H, 4.44. Found: C, 43.13; H, 4.31.

Diethyl (Z)-1-Bromo-2-(5-methylfuran-2-yl)vinylphosphonate (2e)

Yellow oil; yield: 48%.

IR (film): 1616, 1584, 1516, 1252, 1024, 972 cm⁻¹.

¹H NMR (CDCl₃): δ = 1.37 (dt, ³J_{HH} = 7.0 Hz, ⁴J_{HP} = 0.5 Hz, 6 H, 2 CH₃CH₂OP), 2.35 (s, 3 H, CH₃Ar), 4.06–4.23 (m, 4 H, 2 CH₃CH₂OP), 6.17 (d, ³J_{HH} = 3.3 Hz, 1 H, CH_{Ar}), 7.24 (d, ³J_{HH} = 3.3 Hz, 1 H, CH_{Ar}), 7.90 (d, ³J_{HP} = 15.8 Hz, 1 H, CHAr).

¹³C NMR (CDCl₃): δ = 13.70 (*C*H₃Ar), 16.08 (d, ³*J*_{CP} = 6.6 Hz, 2 *C*H₃CH₂OP), 62.86 (d, ²*J*_{CP} = 5.2 Hz, 2 CH₃CH₂OP), 103.54 (d, ¹*J*_{CP} = 211.2 Hz, PCBr), 108.72 (*C*H_{Ar}), 117.56 (*C*H_{Ar}), 132.87 (d, ²*J*_{CP} = 18.9 Hz, *C*HAr), 148.28 (d, ³*J*_{CP} = 22.5 Hz, *C*_{Ar}), 155.10 (*C*_{Ar}).

³¹P NMR (CDCl₃): δ = 12.06.

Anal. Calcd for $C_{11}H_{16}BrO_4P$: C, 40.89; H, 4.99. Found: C, 40.73; H, 4.81.

Diethyl (Z)-2-(1-Acetyl-1*H*-indol-3-yl)-1-bromovinyl-phosphonate (2f)

Yellow oil; yield: 43%.

IR (film): 1716, 1448, 1376, 1332, 1252, 1212, 1056, 972 cm⁻¹.

¹H NMR (CDCl₃): δ = 1.41 (dt, ³*J*_{HH} = 7.0 Hz, ⁴*J*_{HP} = 0.5 Hz, 6 H, 2 C*H*₃CH₂OP), 2.73 (s, 3 H, C*H*₃C(O)N), 4.11–4.29 (m, 4 H, 2 CH₃C*H*₂OP), 7.34–7.47 (m, 2 H, 2 C*H*_{Ar}), 7.75 (dd, ³*J*_{HH} = 6.5 Hz, ⁴*J*_{HH} = 1.2 Hz, 1 H, C*H*_{Ar}), 8.30 (d, ³*J*_{HP} = 15.5 Hz, 1 H, C*H*Ar), 8.46 (dd, ³*J*_{HH} = 7.2 Hz, ⁴*J*_{HH} = 1.2 Hz, 1 H, C*H*_{Ar}), 8.65 (s, 1 H, C*H*_{Ar}).

¹³C NMR (CDCl₃): δ = 16.13 (d, ${}^{3}J_{CP}$ = 6.5 Hz, 2 *C*H₃CH₂OP), 23.80 [*C*H₃C(O)N], 63.05 (d, ${}^{2}J_{CP}$ = 5.2 Hz, 2 CH₃CH₂OP), 110.02 (d, ${}^{1}J_{CP}$ = 208.8 Hz, PCBr), 116.00 (d, ${}^{3}J_{CP}$ = 18.9 Hz, *C*_{Ar}), 116.42 (CH_Ar), 118.24 (CH_Ar), 124.14 (CH_Ar), 126.02 (CH_Ar), 126.29 (CH_Ar), 129.31 (*C*_Ar), 134.53 (d, ${}^{3}J_{CP}$ = 18.6 Hz, CHAr), 134.68 (*C*_{Ar}), 168.51 [*C*(O)N].

³¹P NMR (CDCl₃): δ = 10.76.

Anal. Calcd for C₁₆H₁₉BrNO₄P: C, 48.02; H, 4.79; N, 3.50. Found: C, 48.13; H, 4.88; N, 3.59.

Diethyl Arylethynylphosphonates 3a-e; General Procedure

A soln of a corresponding 1-bromovinylphosphonate **2** (1 mmol) and 1,5,7-triazabicyclo[4.4.0]dec-5-ene (167 mg, 1.2 mmol) in CH₂Cl₂ (10 mL) was stirred at r.t. for the appropriate period of time (Table 1). The reaction progress was occasionally monitored with ³¹P NMR. After the bromide **2** was completely reacted the mixture was successively washed with 1 M HCl (10 mL) and H₂O (10 mL) and dried (MgSO₄). Evaporation of the solvent under reduced pressure afforded the crude product, which was purified by column chromatography (EtOAc–hexane 2:1) to give pure **3**.

Diethyl 4-Methoxyphenylethynylphosphonate (3a)^{3d}

Pale-yellow oil; yield: 75%.

IR (film): 2184, 1604, 1512, 1256, 1028 cm⁻¹.

¹H NMR (CDCl₃): δ = 1.40 (t, ³*J*_{HH} = 7.0 Hz, 6 H, 2 C*H*₃CH₂OP), 3.84 (s, 3 H, C*H*₃OPh), 4.17–4.30 (m, 4 H, 2 CH₃C*H*₂OP), 6.88 (d, 2 H, ³*J*_{HH} = 8.8 Hz, 2 H, 2 C*H*_{Ar}), 7.51 (d, 2 H, ³*J*_{HH} = 8.8 Hz, 2 H, 2 C*H*_{Ar}).

¹³C NMR (CDCl₃): δ = 15.86 (d, ${}^{3}J_{CP}$ = 6.9 Hz, 2 CH₃CH₂OP), 55.14 (CH₃OPh), 62.85 (d, ${}^{2}J_{CP}$ = 5.5 Hz, 2 CH₃CH₂OP), 76.86 (d, ${}^{1}J_{CP}$ = 302.0 Hz, PC), 99.60 (d, ${}^{2}J_{CP}$ = 53.8 Hz, CAr), 110.95 (d, ${}^{3}J_{CP}$ = 5.7 Hz, C_{Ar}), 114.02 (2 CH_{Ar}), 134.12 (2 CH_{Ar}), 161.23 (C_{Ar}). ³¹P NMR (CDCl₃): δ = -4.74.

Anal. Calcd for $C_{13}H_{17}O_4P$: C, 58.21; H, 6.39. Found: C, 58.09; H, 6.30.

Diethyl 4-Methylphenylethynylphosphonate (3b)^{3d}

Pale-yellow oil; yield: 80%.

IR (film): 2184, 1608, 1512, 1264, 1024, 976 cm⁻¹.

¹H NMR (CDCl₃): δ = 1.40 (t, ³*J*_{HH} = 8.0 Hz, 6 H, 2 C*H*₃CH₂OP), 2.38 (s, 3 H, C*H*₃Ph), 4.17–4.29 (m, 4 H, 2 CH₃C*H*₂OP), 7.18 (d, ³*J*_{HH} = 8.0 Hz, 2 H, 2 C*H*_{Ar}), 7.46 (d, ³*J*_{HH} = 8.0 Hz, 2 H, 2 C*H*_{Ar}).

¹³C NMR (CDCl₃): δ = 15.85 (d, ${}^{3}J_{CP}$ = 7.0 Hz, 2 CH₃CH₂OP), 21.40 (CH₃Ph), 62.91 (d, ${}^{2}J_{CP}$ = 5.6 Hz, 2 CH₃CH₂OP), 77.46 (d, ${}^{1}J_{CP}$ = 300.8 Hz, PC), 99.38 (d, ${}^{2}J_{CP}$ = 53.5 Hz, CAr), 116.10 (d, ${}^{3}J_{CP}$ = 5.7 Hz, C_{Ar}), 129.09 (2 CH_{Ar}), 132.27 (2 CH_{Ar}), 141.10 (C_{Ar}). ³¹P NMR (CDCl₃): δ = -5.02.

Anal. Calcd for $C_{13}H_{17}O_3P$: C, 61.90; H, 6.79. Found: C, 61.77; H, 6.65.

Diethyl 3,4-Dimethoxyphenylethynylphosphonate (3c) White crystals; yield: 81%; mp 68–70 °C.

IR (film): 2176, 1600, 1512, 1444, 1252, 1024, 960 cm⁻¹.

¹H NMR (CDCl₃): δ = 1.41 (t, ³*J*_{HH} = 7.0 Hz, 6 H, 2 C*H*₃CH₂OP), 3.89 (s, 3 H, C*H*₃OAr), 3.92 (s, 3 H, C*H*₃OAr), 4.17–4.29 (m, 4 H, 2 CH₃C*H*₂OP), 6.84 (d, ³*J*_{HH} = 8.2 Hz, 1 H, C*H*_{Ar}), 7.04 (d, ⁴*J*_{HH} = 2.0 Hz, 1 H, C*H*_{Ar}), 7.20 (dd, ³*J*_{HH} = 8.2 Hz, ⁴*J*_{HH} = 2.0 Hz, 1 H, C*H*_{Ar}).

¹³C NMR (CDCl₃): δ = 15.83 (d, ${}^{3}J_{CP}$ = 7.0 Hz, 2 CH₃CH₂OP), 55.67 (2 CH₃OAr), 62.85 (d, ${}^{2}J_{CP}$ = 5.5 Hz, 2 CH₃CH₂OP), 76.66 (d, ${}^{1}J_{CP}$ = 301.7 Hz, PC), 99.57 (d, ${}^{2}J_{CP}$ = 53.7 Hz, CAr), 110.82 (CH_{Ar}), 110.92 (d, ${}^{3}J_{CP}$ = 6.0 Hz, C_{Ar}), 114.49 (CH_{Ar}), 126.43 (CH_{Ar}), 148.46 (C_{Ar}), 151.22 (C_{Ar}).

³¹P NMR (CDCl₃): $\delta = -4.77$.

Anal. Calcd for $C_{14}H_{19}O_5P$: C, 56.37; H, 6.42. Found: C, 56.49; H, 6.55.

Diethyl 3,4-(Methylenedioxy)phenylethynylphosphonate (3d)^{3d} Pale-yellow oil; yield: 72%.

IR (film): 2176, 1440, 1252, 1168, 1032, 968 cm⁻¹.

¹H NMR (CDCl₃): δ = 1.40 (t, ³*J*_{HH} = 7.0 Hz, 6 H, 2 CH₃CH₂OP), 4.16–4.28 (m, 4 H, 2 CH₃CH₂OP), 6.02 (s, 2 H, CH₂O₂Ar), 6.79 (d, ³*J*_{HH} = 8.2 Hz, 1 H, CH_{Ar}), 6.97 (d, ⁴*J*_{HH} = 1.5 Hz, 1 H, CH_{Ar}), 7.12 (dd, ³*J*_{HH} = 8.2 Hz, ⁴*J*_{HH} = 1.5 Hz, 1 H, CH_{Ar}).

¹³C NMR (CDCl₃): δ = 15.72 (d, ${}^{3}J_{CP}$ = 7.0 Hz, 2 CH₃CH₂OP), 62.77 (d, ${}^{2}J_{CP}$ = 5.5 Hz, 2 CH₃CH₂OP), 76.44 (d, ${}^{1}J_{CP}$ = 301.0 Hz, PC), 99.02 (d, ${}^{2}J_{CP}$ = 53.2 Hz, CAr), 101.48 (CH₂O₂Ar), 108.32 (CH_Ar), 111.56 (CH_Ar), 111.95 (d, ${}^{3}J_{CP}$ = 5.8 Hz, C_Ar), 127.80 (CH_Ar), 147.24 (C_Ar), 149.64 (C_Ar).

³¹P NMR (CDCl₃): δ = -5.04.

Anal. Calcd for $C_{13}H_{15}O_5P$: C, 55.32; H, 5.36. Found: C, 55.23; H, 5.46.

Diethyl 5-Methylfuran-2-ylethynylphosphonate (3e) Pale-yellow oil; yield: 60%.

IR (film): 2176, 1592, 1528, 1268, 1024 cm⁻¹.

¹H NMR (CDCl₃): δ = 1.40 (dt, ³*J*_{HH} = 7.1 Hz, ⁴*J*_{HP} = 0.7 Hz, 6 H, 2 CH₃CH₂OP), 2.33 (s, 3 H, CH₃Ar), 4.15–4.28 (m, 4 H, 2 CH₃CH₂OP), 6.05 (d, ³*J*_{HH} = 3.4 Hz, 1 H, CH_{Ar}), 6.80 (d, ³*J*_{HH} = 3.4 Hz, 1 H, CH_{Ar}).

¹³C NMR (CDCl₃): δ = 13.66 (*C*H₃Ar), 15.83 (d, ³*J*_{CP} = 7.1 Hz, 2 CH₃CH₂OP), 63.11 (d, ²*J*_{CP} = 5.5 Hz, 2 CH₃CH₂OP), 83.07 (d, ¹*J*_{CP} = 297.0 Hz, PC), 89.16 (d, ²*J*_{CP} = 53.9 Hz, CAr), 107.47 (CH_{Ar}), 121.45 (CH_{Ar}), 132.46 (d, ³*J*_{CP} = 6.6 Hz, *C*_{Ar}), 156.21 (*C*_{Ar}). ³¹P NMR (CDCl₃): δ = -5.90.

Anal. Calcd for C₁₁H₁₅O₄P: C, 54.55; H, 6.24. Found: C, 54.40; H, 6.33.

References

 (1) (a) Hunsdiecker, H.; Hunsdiecker, C. Ber. Dtsch. Chem. Ges. B. 1942, 75, 291. (b) Wilson, C. V. Org. React. 1957, 9, 332. (c) Johnson, R. G.; Ingham, R. K. Chem. Rev. 1956, 56, 219.

- (2) (a) Graven, A.; Jørgensen, K. A.; Dahl, S.; Stanczak, A. J. Org. Chem. 1994, 59, 3543. (b) Chowdhury, S.; Roy, S. J. Org. Chem. 1997, 62, 199. (c) Kuang, C.; Yang, Q.; Senboku, H.; Tokuda, M. Synthesis 2005, 1319. (d) Naskar, D.; Roy, S. Tetrahedron 2000, 56, 1369. (e) You, H.-W.; Lee, K.-J. Synlett 2001, 105. (f) Ye, C.; Shreeve, J. M. J. Org. Chem. 2004, 69, 8561. (g) Sinha, J.; Layek, S.; Mandal, G. C.; Bhattacharjee, M. Chem. Commun. 2001, 1916. (h) Telvekar, V. N.; Arote, N. D.; Herlekar, O. P. Synlett 2005, 2495. (i) Roy, S. C.; Guin, C.; Maiti, G. Tetrahedron Lett. 2001, 42, 9253.
- (3) (a) Murayama, M.; Matsumura, S.; Etsure, Y.; Ozaki, M. JP 7,510,571, 1975; *Chem. Abstr.* 1975, *83*, 164368. (b) Hall, R. G.; Trippett, S. *Tetrahedron Lett.* 1982, *23*, 2603.
 (c) Jungheim, L. N.; Sigmund, S. K. J. Org. Chem. 1987, *52*, 4007. (d) Dizière, R.; Savignac, P. *Tetrahedron Lett.* 1996, *37*, 1783.
- (4) (a) Kobayashi, Y.; William, A. D. Org. Lett. 2002, 4, 4241.
 (b) Kobayashi, Y.; William, A. D. Adv. Synth. Catal. 2004, 346, 1749.
- (5) (a) Stevens, C. V.; Vanderhoydonck, B. In *Comprehensive* Organic Functional Group Transformations II, Vol. 4; Katritzky, A. R.; Taylor, R. J. K., Eds.; Elsevier: Oxford, **2005**, Chap. 18. (b) Laureyn, I.; Stevens, C. V.; Kowalczyk, R. Synlett **2004**, 1823. (c) Sainz-Diaz, C. I.; Gálvez-Ruano, E.; Hernández-Laguna, A.; Bellanato, J. J. Org. Chem. **1996**, 60, 74. (d) Rengaraju, S.; Berlin, K. D. J. Org. Chem. **1972**, 37, 3304.

- (6) (a) Savignac, P.; Iorga, B. In *Modern Phosphonate Chemistry*; CRC Press: Boca Raton, **2003**, Chap. 1.
 (b) Iorga, B.; Eymery, F.; Carmichael, D.; Savignac, P. *Eur. J. Org. Chem.* **2000**, 3103.
- (7) Christensen, B. G.; Leanza, W. J.; Beattie, T. R.; Patchett, A. A.; Arison, B. H.; Ormond, R. E.; Kuehl, F. A. Jr.; Albers-Schonberg, G.; Jardetzky, O. *Science* **1969**, *166*, 123.
- (8) (a) Sturtz, G.; Charrier, C.; Normant, H. Bull. Soc. Chim. Fr. 1966, 1707. (b) Corey, E. J.; Virgil, S. C. J. Am. Chem. Soc. 1990, 112, 6429. (c) Guile, S. D.; Saxton, J. E.; Thornton-Pett, M. J. Chem. Soc., Perkin Trans. 1 1992, 1763. (d) Peiffer, G.; Courbis, P. Can. J. Chem. 1974, 52, 2894.
- (9) Lecerclé, D.; Sawicki, M.; Taran, F. Org. Lett. 2006, 8, 4283.
- (10) Al Aziz Quntar, A.; Srebnik, M. J. Org. Chem. 2006, 71, 730.
- (11) Krawczyk, H.; Albrecht, Ł. Synthesis 2005, 2887.
- (12) Kuang, C.; Zang, Q.; Senboku, H.; Tokuda, M. *Tetrahedron* **2005**, *61*, 637.