

watthe blo unications

Synthetic Communications An International Journal for Rapid Communication of Synthetic Organic Chemistry

ISSN: 0039-7911 (Print) 1532-2432 (Online) Journal homepage: http://www.tandfonline.com/loi/lsyc20

New method for the preparation of Nchloroamines by oxidative N-halogenation of amines using oxone-KCl

Vinodkumar Sriramoju, Srinivas Kurva & Sridhar Madabhushi

To cite this article: Vinodkumar Sriramoju, Srinivas Kurva & Sridhar Madabhushi (2018): New method for the preparation of N-chloroamines by oxidative N-halogenation of amines using oxone-KCI, Synthetic Communications, DOI: 10.1080/00397911.2017.1418890

To link to this article: https://doi.org/10.1080/00397911.2017.1418890

View supplementary material

Published online: 09 Feb 2018.

\sim

Submit your article to this journal 🗹

View related articles 🗹

View Crossmark data 🗹

(R, R' = akyl or benzyl)

Check for updates

New method for the preparation of *N*-chloroamines by oxidative *N*-halogenation of amines using oxone-KCl

Vinodkumar Sriramoju 💿, Srinivas Kurva 💿, and Sridhar Madabhushi 💿

Fluoroorganics Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India

ABSTRACT
A mild and efficient method for preparation of *N*-chloroamines by
oxidative *N*-halogenation of primary/secondary amines using oxone-
KCl is described.**ARTICLE HISTORY**
Received 23 October 2017
KEYWORDS
Amines; *N*-chloroamines;
oxidative *N*-halogenation;
oxone-KCl**GRAPHICAL ABSTRACT**R - N
H/R'CI
 CH_3CN+H_2O (2:1)R - N
CI/R'RTICLE HISTORY
Received 23 October 2017
KEYWORDS
Amines; *N*-chloroamines;
oxidative *N*-halogenation;
oxone-KCl

Introduction

N-chloroamines are important intermediates in organic synthesis for preparation of nitriles,^[1] chloroimines,^[1a] diazirines,^[2] diazene *N*-oxides,^[3] aroyliminoselenyl-chlorides,^[4] nitramides^[5] and aminoketones.^[6] *N*-chloroamines are also studied as cross-coupling partners for Buchwald-Hartwig type electrophilic amination reactions.^[7,8] In literature, several methods were known for preparation of *N*-chloroamines by oxidative *N*-halogenation using reagents such as *m*-chloroperbenzoic acid-FeCl₃,^[1a] isocyanuric chloride,^[1b] *N*,*N*,*N'*,*N'*-tetrachlorobenzene-1,3-disulfonamide,^[1c] Ca(OCl)₂,^[1d] Cl₂-H₂O,^[6] *N*-chlorosuccinimide (NCS)^[9] and *t*-BuOCl.^[10]

61-95%

Oxone is a mild, inexpensive solid oxidant and widely used in organic synthesis. Oxone efficiently promotes oxidative halogenation reactions in the presence of a halide source in aqueous organic medium such as acetonitrile–water, acetone–water, methanol–water, etc. Some of the important oxidative halogenation reactions reported in literature using oxone-MX system are (i) nuclear chlorination of aromatic compounds,^[11] (ii) transformation of alkynes into α, α -dihaloketones,^[12] (iii) alkynyl silanes into α, α, α -trihaloketones,^[13] (iv) thiols into sulfonyl halides^[14] (iv) alkenes into halohydrins,^[15] (v) oximes into hydroximoyl chlorides^[16] etc.

In literature, studies on transformation of amines into N-chloroamines by reaction with oxone and a halide are so far not known. Here, we report for the first time, a mild and efficient method for preparation of N-chloroamines in high yields (61–95%) from a variety

Supplemental data for this article can be accessed on the publisher's website.

CONTACT Sridhar Madabhushi S smiict@gmail.com r Fluoroorganics Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/lsyc.

$$\begin{array}{c} \begin{array}{c} H \\ R-N \\ H/R' \end{array} \xrightarrow[]{} Oxone-KCl \\ H/R' \end{array} \xrightarrow[]{} Oxone-KCl \\ R-N \\ r.t. \\ (R, R' = alkyl \text{ or benzyl}) \end{array} \xrightarrow[]{} Cl/R' \\ Cl/R' \\ 61-95\% \end{array}$$

Scheme 1. Synthesis of N-chloroamines using oxone-KCl.

of primary and secondary amines by oxidative *N*-halogenation using oxone-KCl at ambient temperature in acetonitrile-water (2:1) as shown in Scheme 1.

In this study, initially we found that benzylamine 1a reacts efficiently with oxone-KCl in aqueous acetonitrile at ambient temperature producing *N*,*N*-dichlorobenzylamine 2a, which was obtained 2a in maximum yield (95%) when 1a was reacted with two equivalents of oxone-KCl in acetonitrile–water (2:1) medium as shown in Table 1.

Next, we found that the present reaction proceeds well also with a variety of primary aralkyl amines 1a-1k, alkyl amines 1l-1o and secondary alkyl amines 1p-1r, which were reacted with oxone-KCl in acetonitrile-water (2:1) medium at ambient temperature to obtain the corresponding *N*,*N*-dichloroamines 2a-2o in 61-95% yields and *N*-chloroamines 2p-2r in 84-88% yields.

In literature, it is reported that activated arenes such as anisoles and phenols undergo regioselective ring chlorination with oxone-KCl in acetonitrile.^[11a] In the present study, when aralkyl amines **1a–1k**, which have electron releasing and electron withdrawing groups on the aromatic ring, were reacted with oxone-KCl in aqueous acetonitrile, aralkyl amines **1a–1i** were found to produce exclusively *N*-chlorinated products **2a–2i** in 85–95% yields. However, under similar reaction conditions, 3-methoxybenzylamine **1j** and 4-methoxybenzylamine **1k** behaved differently as they underwent simultaneously ring chlorination as well as *N*-chlorination producing *N*,*N*-dichloro-1-(2-chloro-5-methoxyphenyl)methanamine **2j** and *N*,*N*-dichloro-1-(3-chloro-4-methoxyphenyl)methanamine **2k** in 63 and 61% yields respectively (Table 2). Here, it appears that oxidative *N*-chlorination proceeds possibly through radical reaction pathway involving chlorine radicals (Cl·), which are generated by the homolytic fission of the *in situ* generated hypochlorous acid (HOCl) and ring chlorination proceeds through electrophilic chlorination pathway by reaction of

$N_{H}^{H} \xrightarrow{N_{V}} Oxone-KCl (1:1)$							
		1a	2a				
Entry	Oxone (equi)	KCI (equi)	Solvent	Reaction time (min)	%Yield ^a		
1	1	1	$CH_3CN + H_2O$ (2:1)	25	48		
2	1.5	1.5	$CH_{3}CN + H_{2}O$ (2:1)	25	60		
3	2	2	$CH_{3}CN + H_{2}O$ (2:1)	25	95		
4	2	2	$CH_3CN + H_2O$ (2:1)	60	40		
5	2	2	$CH_3CN + H_2O$ (2:1)	60	30		
6	2	2	CH₃CN	60	15		
7	2	2	CHCl ₃	60	10		
8	2	2	THF	60	10		

 Table 1.
 Screening of solvents for N-chlorination of benzylamine 1a using oxone-KCl.

^alsolated yields.

	H_{R-N} + Oxone + KCl $\frac{CH_3CN+H_2O(2:1)}{R-N}$ R-N				
	`H/R' 1	r.t.	2 CI/R'		
Entry	Amine 1	N-chloroamine 2	Time (min)	%Yield ^a	
а	NH ₂	NCl ₂	25	95	
b	NH ₂	F NCl2	40	85	
c	F ₃ C NH ₂	F ₃ C NCl ₂	40	85	
d	CI NH2	Cl NCl ₂	25	86	
e	CI NH ₂	CI NCl ₂	35	89	
f	H ₃ C NH ₂	H ₃ C NCl ₂	30	90	
g	NH ₂	NCl ₂	40	88	
h	NH ₂	NCl ₂	20	87	
i	NH ₂	NCl ₂	30	91	
j	OMe NH ₂	Cl NCl ₂	30	63	
k	MeO NH ₂	MeO NCl ₂	30	61	
I	$\mathcal{M}_4^{\mathrm{NH}_2}$	\mathcal{M}_4 NCl ₂	25	90	
m	▷-NH ₂	▷-NCl ₂	30	85	
n	NH ₂	NCl ₂	30	87	
0	NH ₂	NCl ₂	45	84	
р	Л-Н	N-Cl	35	88	
q			45	84	

 Table 2.
 N-chlorination of various primary and secondary amines.

(Continued)

Table 2.Continued.

Entry	Amine 1	N-chloroamine 2	Time (min)	%Yield ^a
r	Ph N Ph H	Ph N Ph Cl	20	85
S	NH_2	-	60	NR
t	O ₂ N NH ₂	-	60	NR
u	NH ₂	-	60	NR
v			30	65
w	$\bigcup_{NO_2}^{H} \bigcup_{O}^{H}$	$\bigcup_{NO_2}^{Cl} \bigcup_{O}^{H}$	35	45
x			25	51

^alsolated yields.

All products gave satisfactory ¹H & ¹³C NMR, IR and mass spectral data. NR, no reaction.

in situ generated chlorine with an activated arene such as methoxylated benzene as shown in Scheme 2. Though chlorine is not a good electrophile, substrates **1j** and **1k** showed remarkable reactivity and underwent electrophilic ring chlorination with chlorine. It could

Scheme 2. Plausible mechanism for N-chlorination and ring chlorination reactions.

be due to the presence of high activating methoxy functionality on the aromatic rings of these substrates.^[17]

In our study, aryl amines such as aniline 1s, 3-nitroaniline 1t and 4-methoxyaniline 1u were found to be unreactive with oxone-KCl under the reaction conditions. However, their acetanilide derivatives, i.e., 1v-1x were found to be reactive under similar conditions and formed exclusively ring chlorination products,^[11a] i.e., N-(2,4-dichlorophenyl)acetamide 2v, N-(2-chloro-5-nitrophenyl)acetamide 2w and N-(2,5-dichloro-4-methoxyphenyl)-acetamide 2x in 65, 45, and 51% yields respectively.

Conclusion

In conclusion, this work describes an efficient method for preparation of *N*-chloroamines from a variety of primary and secondary amines by oxidative *N*-chlorination under mild conditions using oxone-KCl.

Experimental section

Typical procedure for the synthesis of N,N-*dichlorobenzylamine (2a)*: In a 50 mL round bottom flask, benzylamine **1a** (0.5 g, 4.67 mmol), oxone (2.9 g, 9.35 mmol), NaCl (0.55 g, 9.35 mmol) and acetonitrile-water (2:1, 10 mL) were taken and stirred at room temperature for 25 min. After completion of the reaction (TLC), the reaction mixture was extracted with ethyl acetate (3 × 10 mL) and the combined organic layer was washed with brine (1 × 10 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. Purification of the crude product by normal column chromatography (silica gel 60–120 mesh, *n*-hexane) furnished *N*,*N*-dichlorobenzylamine **2a** as yellow liquid (0.78 g, 95%). The characterization data obtained for **2a** is as follows: ¹H NMR (300 MHz, CDCl₃): $\delta = 7.39-7.36$ (m, 5H), 4.67 (s, 2H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 134.84$, 130.02, 129.18, 128.51, 78.83; IR (neat): v 3035, 2923, 2853, 1496, 1455, 1218, 771, 700, 591 cm⁻¹; GC-MS: C₇H₇Cl₂N: *m/z* 175[M]⁺; HRMS: 174.99546 (calcd. 174.9955).

Acknowledgment

Authors Vinodkumar Sriramoju, Srinivas Kurva are thankful to UGC, New Delhi for the award of Senior Research Fellowship.

ORCID

Vinodkumar Sriramoju D http://orcid.org/0000-0002-2303-6693 Srinivas Kurva D http://orcid.org/0000-0001-9665-9093 Sridhar Madabhushi D http://orcid.org/0000-0001-7279-7846

References

- (a) Liu, J.; Xu, J.; Ren, J.; Zeng, B. Chem. Lett. 2014, 43, 190–192; (b) De Luca, L.; Giacomelli, G. Synlett 2004, 12, 2180–2184; (c) Ghorbani-Vaghei, R.; Veisi, H. Synthesis 2009, 2009, 945–950; (d) Roberts, J. T.; Rittberg, B. R.; Kovacic, P. J. Org. Chem. 1981, 46, 4111–4115.
- [2] Martinu, T.; Dailey, W. P. J. Org. Chem. 2006, 71, 5012-5015.
- [3] Nelson, V.; Serianz, A.; Kovacic, P. J. Org. Chem. 1976, 41, 1751-1754.
- [4] (a) Derkach, N. Y.; Lyapina, T. V.; Levchenko, E. S. *Zh. Org. Khim.* 1980, *16*, 33–39;
 (b) Zibarev, A. V.; Dolenko, G. N.; Krupoder, S. A.; Mazalov, L. N.; Poleshchuk, O. Kh.; Furin,

6 👄 V. SRIRAMOJU ET AL.

G. G.; Yakobson, G. G. Zh. Org. Khim. 1980, 16, 390–398; (c) Derkach, N. Y. Zh. Org. Khim. 1984, 20, 2377–2383.

- [5] Smart, G. N. R.; Wright, G. F. Can. J. Res. 1948, 26B, 284; Chem. Abstr. 1948, 42, 5844a.
- [6] Baumgarten, H. E.; Bower, F. A. J. Am. Chem. Soc. 1954, 76, 4561-4564.
- [7] Qian, X.; Yu, Z.; Auffrant, A.; Gosmini, C. Chem. Eur. J. 2013, 19, 6225-6229.
- [8] Yin, Z.; Wang, Z.; Li, W.; Wu, X. Eur. J. Org. Chem. 2017, 2017, 1769-1772.
- [9] Guillemin, J. C.; Denis, J. M. Synthesis 1985, 1985, 1131-1133.
- [10] Zimmer, H.; Audrieth, L. F. J. Am. Chem. Soc. 1954, 76, 3856–3857; (b) Alt, G. H.; Knowles, W. S. Org. Syn. Coll. 1965, 45, 16–19.
- [11] Narender, N.; Srinivasu, P.; Kulkarni, S. J.; Raghavan, K. V. Synth. Commun. 2002, 32, 279–286;
 (b) Narender, N.; Mohan, K. V. V. K.; Srinivasu, P.; Kulkarni, S. J.; Raghavan, K. V. Indian J. Chem. 2004, 43B, 1335–1338.
- [12] Sridhar, M.; Raveendra, J.; Reddy, M. K. K.; Reddy, G. K.; Sairam, V. V. Tetrahedron Lett. 2013, 54, 3993–3996.
- [13] Vinodkumar, S.; Raveendra, J.; Srinivas, K.; Sridhar, M. Chem. Lett. 2017, 46, 560–562.
- [14] Sridhar, M.; Raveendra, J.; Vinodkumar, S.; Rajpal, S. Green Chem. 2014, 16, 3125-3131.
- [15] Macharla, A. K.; Nappunni, R. C.; Nama, N. Tetrahedron Lett. 2012, 53, 1401–1405.
- [16] Kim, J. N.; Ryu, E. K. J. Org. Chem. 1992, 57, 6649-6650.
- [17] Hirano, M.; Yakabe, S.; Monobe, H.; Morimoto, T. Can. J. Chem. 1997, 75, 1905-1912.