Highly Efficient Synthesis of Allopurinol Locked Nucleic Acid Monomer by C6 Deamination of 8-Aza-7-bromo-7-deazaadenine Locked Nucleic Acid Monomer

Tamer Kosbar,^{a,b} Mamdouh Sofan,^b Laila Abou-Zeid,^c Mohamed Waly,^b Erik B. Pedersen*a

^a Department of Physics, Chemistry and Pharmacy, Nucleic Acid Center, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark

Fax +45 66158780; E-mail: erik@sdu.dk

^b Department of Chemistry, Faculty of Science, Damietta University, 34517 New Damietta, Damietta, Egypt

^c Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt

Received: 26.06.2013; Accepted after revision: 22.08.2013

Abstract: An allopurinol locked nucleic acid (LNA) monomer was prepared by a novel strategy through C6 deamination of the corresponding 8-aza-7-bromo-7-deazaadenine LNA monomer with aqueous sodium hydroxide. An 8-aza-7-deazaadenine LNA monomer was also synthesized by a modification of the new synthetic pathway. *N*-Glycosylation at the 8-position was prevented by steric hindrance from the 7-bromo atom in the starting material 8-aza-7bromo-7-deazaadenine. In the final step of the synthesis, the bromine was removed together with a benzyl protecting group by catalytic reduction with ammonium formate to give the required LNA monomers.

Key words: glycosylations, nucleobases, nucleosides, regioselectivity

In the last two decades, a great deal of interest has been focused on the synthesis and design of modified oligonucleotides, with the aim of developing strong recognition of complementary DNA or RNA sequences.¹⁻³ Many modified oligonucleotides containing bi- and tricyclic carbohydrate-modified nucleotides have been studied, and their duplexes with complementary nucleic acids have been shown to be much more stable than those of the corresponding unmodified duplexes.³ Bicyclic ribonucleotides containing a 2'-O,4'-C-methylene bicyclic sugar moiety were named 'locked nucleic acids' (LNA) when they were introduced in 1998.⁴ The corresponding oligonucleotides show unprecedented thermal stabilities when hybridized with complementary DNA and RNA strands, increasing the melting temperatures of the duplexes in comparison with those of their unmodified analogues.^{4b,5-7} However, the thermal stability of oligonucleotide duplexes can be also be improved by modifying the nucleobase, as well as by modifying carbohydrate moiety. Replacing adenine with 8-aza-7-deazaadenine slightly increased the stability of duplexes, whereas the incorporation of 7-substituted derivatives leads to duplexes that are much more stable than their adenine-containing counterparts.8,9

The glycosylation of allopurinol is a problem in nucleoside synthesis, because the reaction lacks regioselectivity

SYNTHESIS 2013, 45, 3259–3262 Advanced online publication: 13.09.2013 DOI: 10.1055/s-0033-1338531; Art ID: SS-2013-Z0438-OP © Georg Thieme Verlag Stuttgart · New York and gives poor yields.^{10–13} To improve the regioselectivity of the reaction, allopurinol ribonucleoside have been synthesized from starting materials other than allopurinol.^{13–15} For example, 4,6-dichloro-1*H*-pyrazolo[3,4-*d*]pyrimidine has been used in the presence of trimethylsilyl triflate as a catalyst, but additional synthetic steps are required to prepare the target compound.¹⁵ Also, 4-methoxy-1H-pyrazolo[3,4-*d*]pyrimidine¹³ and 4-chloro-1*H*-pyrazolo[3,4d]pyrimidine¹⁴ have been glycosylated by using phasetransfer methods, but both the N-8 and N-9 glycosylated products were formed. This lack of regioselectivity also occurred in glycosylation of 8-aza-7-deazaadenine with 1,2-di-O-acetyl-3-O-benzyl-4-C-[(mesyloxy)methyl]-5-O-mesyl-D-erythro-pentofuranose (2) in the presence of trimethylsilyl triflate.¹⁶ When we searched the literature for possible solutions to this problem, we found that 7-halogenated 8-aza-7-deazapurine-2,6-diamines can be glycosylated in the presence of the Lewis acid boron trifluoride etherate (BF_3 ·Et₂O) to give the N-9 isomer exclusively.¹⁷ Glycosylation at the N-8 position is prevented by the electron-withdrawing effect of the 7-halo group and by steric hindrance.¹⁷ We therefore decided to use 8aza-7-bromo-7-deazaadenine¹⁸ (1) as a starting material for the synthesis of allopurinol LNA and 8-aza-7deazaadenine LNA through a pathway involving an N-9 selective glycosylation followed by debromination.

We achieved selective *N*-9 glycosylation of 8-aza-7-bromo-7-deazaadenine (1) with 1,2-di-*O*-acetyl-3-*O*-benzyl-4-*C*-[(mesyloxy)methyl]-5-*O*-mesyl-D-*erythro*-pentofuranose (2)^{4g} in the presence of two equivalents of tin(IV) chloride as a Lewis acid in refluxing acetonitrile. The nucleoside **3** (the *N*-9 isomer) was separated in 62% yield as the only product, and no traces of the *N*-8 isomer were detected (Scheme 1).

Treatment of nucleoside **3** with 2 M aqueous sodium hydroxide in 1,4-dioxane with stirring at room temperature for one hour resulted in deacetylation and ring closure of the sugar moiety to give the LNA monomer **4** in 88% yield. No chromatography was necessary during the workup, and the product could be used in the next step without additional purification. Benzoate displacement of the 5'-mesylate group in **4** gave the corresponding 5'-O-benzoyl LNA monomer **5** in 84% yield (Scheme 1).

Scheme 1

Enzymatic C6 deamination of adenosine analogues is a well-known reaction.^{19–25} Density functional theory calculations have shown that 8-aza-7-deazapurine is more readily hydrated than are simple purines.²⁵ Furthermore, the hydrate of 8-aza-7-bromo-7-deazapurine has been shown to be more stable than that of its 7-unsubstituted

Synthesis 2013, 45, 3259-3262

analogue.²⁵ Accordingly, we expected C6 deamination of 8-aza-7-bromo-7-deazaadenine to take place on treatment with hydroxide ion. Indeed, when compound **5** was refluxed in 2 M aqueous sodium hydroxide and 1,4-dioxane for 24 hours, both 5'-O-debenzoylation and C6 deamination occurred to give the deprotected keto derivative **8** in about 90% yield, but when compound **5** was treated with a mixture of concentrated ammonium hydroxide and pyridine at 60 °C for 24 hours, the 5'-O-debenzoylated product **6** was obtained in 85% yield, and no C6 deamination occurred (Scheme 2).

Removal of the 3'-O-benzyl group and debromination of compounds **6** and **8** was achieved through catalytic transfer hydrogenation by stirring the compounds with ammonium formate and palladium(II) hydroxide/carbon in refluxing methanol. This gave the target products **7** and **9**, respectively (Scheme 2). The ¹H NMR and ¹³C NMR spectra of compound **7** agreed with previously published data, ¹⁶ and the NMR spectra of the allopurinol part of **9** corresponded well with previously published data for allopurinol nucleosides.¹³

In summary, we have developed a highly efficient method for synthesizing the allopurinol LNA monomer **9** through C6 deamination of the 8-aza-7-bromo-7-deazaadenine LNA monomer **5**. The new method helps to overcome problems associated with lack of regioselectivity and low yields in glycosylation of allopurinol. In parallel, a new synthetic pathway for 8-aza-7-deazaadenine LNA monomer **7** was developed, in which the corresponding bromo derivative **6** was debrominated after reduction with palladium(II) hydroxide/carbon and ammonium formate.

NMR spectra were recorded on a Bruker 400 MHz NMR spectrometer at 400 MHz for ¹H and at 101 MHz for ¹³C with TMS as an internal standard; chemical shifts (δ) are quoted in ppm. Electrospray ionization high-resolution mass spectra were recorded on a PE SCI-EX API Q-Star Pulsar spectrometer. For accurate determinations of ion masses, the [M + H]⁺ or [M + Na]⁺ ion was peak matched by calibration with NaI.

(2*R*,3*R*,4*S*)-2-(4-Amino-3-bromo-1*H*-pyrazolo[3,4-*d*]pyrimidin-1-yl)-4-(benzyloxy)-5,5-bis[(mesyloxy)methyl]tetrahydrofuran-3-yl Acetate (3)

8-Aza-7-bromo-7-deazaadenine¹⁸ (1; 2.83 g, 13.22 mmol) and 1,2di-O-acetyl-3-O-benzyl-4-C-[(mesyloxy)methyl]-5-O-mesyl-D*erythro*-pentofuranose^{4g} (2; 6.75 g, 13.22 mmol) were placed in a dried flask under argon. Anhyd MeCN (50 mL) was added by syringe, and the mixture was stirred for 15 min. SnCl₄ (3.10 mL, 26.4 mmol) was then added by syringe, and the mixture was refluxed for 24 h then cooled to r.t. The reaction was quenched with sat. aq NaHCO₃ (50 mL), and the mixture was extracted with EtOAc (3 × 100 mL). The organic layers were combined, dried (Na₂SO₄), concentrated, and purified by flash column chromatography [silica gel, MeOH–CH₂Cl₂ (1:25)] to give a white solid; yield: 62% (5.50 g); mp 90–92 °C.

¹H NMR (400 MHz, DMSO- d_6): $\delta = 8.26$ (s, 1 H), 7.44–7.28 (m, 5 H), 6.45 (d, J = 2.6 Hz, 1 H), 5.80 (dd, J = 5.5, 2.6 Hz, 1 H), 4.89 (d, J = 5.5 Hz, 1 H), 4.69 (d, J = 11.2 Hz, 1 H), 4.62 (d, J = 11.1 Hz, 1 H), 4.53 (d, J = 11.1 Hz, 1 H), 4.47 (d, J = 11.0 Hz, 1 H), 4.38 (d, J = 10.7 Hz, 1 H), 4.29 (d, J = 10.8 Hz, 1 H), 3.21 (s, 3 H), 3.12 (s, 3 H), 2.09 (s, 3 H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 169.37, 157.39, 157.29, 154.75, 137.00, 128.28, 128.16, 127.89, 120.60, 99.70, 86.03, 83.04, 78.21, 73.35, 73.23, 68.33, 68.04, 36.79, 36.52, 20.42.

HRMS (ESI): $m/z [M + Na]^+$ calcd for $C_{22}H_{26}BrN_5NaO_{10}S_2$: 686.0197; found: 686.0172.

[(1*R*,3*R*,4*R*,7*S*)-3-(4-Amino-3-bromo-1*H*-pyrazolo[3,4-*d*]pyrimidin-1-yl)-7-(benzyloxy)-2,5-dioxabicyclo[2.2.1]hept-1yl]methyl Mesylate (4)

2 M aq NaOH (10 mL) was added to a solution of acetate **3** (5.0 g, 7.52 mmol) in 1,4-dioxane (40 mL). The solution was stirred at r.t. for 1 h, and then the solvents were removed under reduced pressure. The residue was suspended in CH_2Cl_2 (150 mL), washed with sat. aq NaHCO₃ (150 mL), dried (Na₂SO₄), and concentrated under reduced pressure to give a white solid; yield: 88% (3.50 g). This was used in the next step without further purification.

¹H NMR (400 MHz, CDCl₃): $\delta = 8.32$ (s, 1 H), 7.45–7.26 (m, 5 H), 6.36 (s, 1 H), 5.00 (s, 1 H), 4.78 (d, J = 11.8 Hz, 1 H), 4.72 (d, J = 11.8 Hz, 1 H), 4.57 (d, J = 12.1 Hz, 1 H), 4.51 (d, J = 12.1 Hz, 3 H), 4.48 (s, 1 H), 4.19 (d, J = 7.9 Hz, 1 H), 4.01 (d, J = 7.9 Hz, 1 H), 3.02 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ = 157.42, 157.38, 155.16, 136.95, 128.61, 128.50, 128.33, 120.19, 100.49, 84.62, 84.38, 79.02, 78.08, 72.72, 72.46, 65.82, 37.77.

HRMS (ESI): m/z [M + H]⁺ calcd for $C_{19}H_{21}BrN_5O_6S$: 526.0390; found: 526.0388.

[(1*R*,3*R*,4*R*,7*S*)-3-(4-Amino-3-bromo-1*H*-pyrazolo[3,4-*d*]pyrimidin-1-yl)-7-(benzyloxy)-2,5-dioxabicyclo[2.2.1]hept-1yl]methyl Benzoate (5)

NaOBz (1.75 g, 12 mmol) was added to a solution of mesylate 4 (3.2 g, 6 mmol) in anhyd DMF (50 mL). The mixture was stirred at 100 °C for 6 h then cooled to r.t., filtered, and concentrated under reduced pressure. The residue was suspended in EtOAc (100 mL), washed with sat. aq NaHCO₃ (3×50 mL), dried (Na₂SO₄), and concentrated under reduced pressure to give the desired product as a white solid; yield: 84% (2.80 g).

¹H NMR (400 MHz, CDCl₃): δ = 8.31 (s, 1 H), 7.94 (d, *J* = 7.2 Hz, 2 H), 7.55 (t, *J* = 7.4 Hz, 1 H), 7.43–7.28 (m, 7 H), 6.42 (s, 1 H), 5.19 (s, 1 H), 4.81–4.66 (m, 3 H), 4.57–4.42 (m, 2 H), 4.25 (d, *J* = 7.8 Hz, 1 H), 4.08 (d, *J* = 7.7 Hz, 1 H).

¹³C NMR (100 MHz, CDCl₃): δ = 165.98, 157.37, 157.26, 155.18, 137.13, 133.11, 129.82, 128.51, 128.40, 128.15, 127.87, 127.57, 120.01, 100.49, 84.71, 84.52, 78.88, 78.05, 72.64, 72.62, 60.55.

HRMS (ESI): m/z [M + H]⁺ calcd for $C_{25}H_{23}BrN_5O_5$: 552.0877; found: 552.0865.

[(1*S*,3*R*,4*R*,7*S*)-3-(4-Amino-3-bromo-1*H*-pyrazolo[3,4-*d*]pyrimidin-1-yl)-7-(benzyloxy)-2,5-dioxabicyclo[2.2.1]hept-1-yl]methanol (6)

Concd aq NH₄OH (8 mL) was added to a solution of benzoate **5** (0.55 g, 1 mmol) in pyridine (4 mL), and the solution was heated at 60 °C for 24 h. The mixture was then concentrated under reduced pressure, co-evaporated with toluene, and purified by column chromatography [silica gel, CH₂Cl₂–MeOH (30:1)] to give a white solid; yield: 85% (0.38 g); mp 160–162 °C.

¹H NMR (400 MHz, DMSO- d_{δ}): $\delta = 8.26$ (s, 1 H), 7.46–7.29 (m, 5 H), 6.13 (s, 1 H), 4.96 (t, J = 5.2 Hz, 1 H), 4.81 (s, 1 H), 4.66 (s, 2 H), 4.35 (s, 1 H), 3.96 (d, J = 7.9 Hz, 1 H), 3.83 (d, J = 7.9 Hz, 1 H), 3.74 (dd, J = 5.2, 12.7 Hz, 1 H), 3.68 (dd, J = 12.9, 5.2 Hz, 1 H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 157.32, 157.13, 154.64, 137.70, 128.19, 128.16, 127.85, 119.76, 99.31, 87.00, 83.70, 78.41, 77.35, 72.04, 71.17, 57.14.

HRMS (ESI): $m/z [M + Na]^+$ calcd for $C_{18}H_{18}BrN_5NaO_4$: 470.0434; found: 470.0431.

(1*S*,3*R*,4*R*,7*S*)-3-(4-Amino-1*H*-pyrazolo[3,4-*d*]pyrimidin-1-yl)-1-(hydroxymethyl)-2,5-dioxabicyclo[2.2.1]heptan-7-ol (7)

Bromo compound 6 (0.35 g, 0.78 mmol) was suspended in MeOH (10 mL), and the mixture was cooled 0 °C. 20% Pd(OH)₂/C (0.25 g) was added in portions during 10 min and then the mixture was allowed to stand for 10 min. HCO_2NH_4 (0.75 g) was added in small portions, and then the mixture was allowed to warm to r.t. for 1 h. The solution was then refluxed for 6 h, more HCO_2NH_4 (0.5 g) was added, and the mixture was refluxed for a further 6 h. The hot solution was filtered through a Celite pad that was washed with boiling MeOH. Evaporation of the filtrate gave white crystals; yield: 87% (0.19 g); mp 244–246 °C (MeOH).

¹H NMR (400 MHz, CD₃OD): δ = 8.20 (s, 1 H), 8.13 (s, 1 H), 6.25 (s, 1 H), 5.11 (s, 1 H), 4.37 (s, 1 H), 4.10 (d, *J* = 8.0 Hz, 1 H), 3.95 (d, *J* = 8.0 Hz, 1 H), 3.88 (s, 2 H).

¹³C NMR (100 MHz, CD₃OD): δ = 159.86, 157.16, 155.22, 134.81, 101.84, 88.95, 85.93, 82.14, 73.82, 73.12, 59.45.

HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{11}H_{14}N_5O_4$: 280.1040; found: 280.1036.

1-{(1*S*,3*R*,4*R*,7*S*)-7-(Benzyloxy)-1-(hydroxymethyl)-2,5-dioxabicyclo[2.2.1]hept-3-yl}-3-bromo-1,5-dihydro-4*H*-pyrazolo[3,4*d*]pyrimidin-4-one (8)

2 \dot{M} aq NaOH (25 mL) and H₂O (7 mL) were added to a solution of benzoate **5** (2.7 g, 4.9 mmol) in 1,4-dioxane (25 mL). The mixture was refluxed for 24 h, cooled to r.t., and neutralized with AcOH (4 mL). Sat. aq NaHCO₃ (25 mL) was added, and the mixture was extracted with CH₂Cl₂ (2 × 100 mL). The organic layers were combined, dried (Na₂SO₄), and concentrated under reduced pressure to give a white solid; yield: 90% (2.00 g). The product was used in the next step without further purification.

¹H NMR (400 MHz, DMSO- d_6): $\delta = 8.17$ (s, 1 H), 7.45–7.31 (m, 5 H), 6.07 (s, 1 H), 4.79 (s, 1 H), 4.71 (d, J = 11.9 Hz, 1 H), 4.67 (s, 1 H), 4.66 (d, J = 11.9 Hz, 1 H), 4.50 (s, 1 H), 3.96 (d, J = 8.0 Hz, 1 H), 3.83 (d, J = 7.9 Hz, 1 H), 3.74 (d, J = 12.8 Hz, 1 H), 3.69 (d, J = 12.6 Hz, 1 H).

¹³C NMR (100 MHz, DMSO-*d*_{*b*}): δ = 156.32, 153.47, 150.12, 137.66, 128.18, 127.87, 127.61, 122.64, 104.79, 87.24, 83.97, 78.34, 77.32, 72.02, 71.21, 57.09.

HRMS (ESI): m/z [M + H]⁺ calcd for $C_{18}H_{18}BrN_4O_5$: 449.0455; found: 449.0445.

1-[(1*S*,3*R*,4*R*,7*S*)-7-Hydroxy-1-(hydroxymethyl)-2,5-dioxabicyclo[2.2.1]hept-3-yl]-1,5-dihydro-4*H*-pyrazolo[3,4-*d*]pyrimidin-4-one (9)

20% Pd(OH)₂/C (1.28 g) and HCO₂NH₄ (3.8 g) were added to a suspension of compound **8** (1.8 g, 4 mmol) in MeOH (30 mL), and the solution was refluxed for 6 h. More HCO₂NH₄ (1.5 g) was then added and the mixture was refluxed for a further 6 h. The hot solution was filtered through a Celite pad that was washed with boiling MeOH. Evaporation of the filtrate gave white crystals; yield: 89% (1.00 g); mp 196–198 °C (MeOH).

¹H NMR (400 MHz, DMSO- d_6): δ = 12.35 (br s, 1 H), 8.19 (s, 1 H), 8.14 (s, 1 H), 6.07 (s, 1 H), 5.70 (br s, 1 H), 4.89 (s, 1 H), 4.84 (br s, 1 H), 4.32 (s, 1 H), 3.96 (d, J = 7.8 Hz, 1 H), 3.80 (d, J = 7.8 Hz, 1 H), 3.73 (d, J = 12.7 Hz, 1 H), 3.68 (d, J = 12.7 Hz, 1 H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 157.00, 152.69, 148.69, 135.59, 105.91, 87.58, 83.80, 79.91, 71.88, 71.57, 57.54.

HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{11}H_{13}N_4O_5$: 281.0880; found: 281.0871.

Acknowledgement

The Ministry of Higher Education of Egypt is gratefully acknowledged for a predoctoral channel fellowship to Tamer Kosbar.

Supporting Information for this article is available online at http://www.thieme-connect.com/ejournals/toc/synthesis.

References

- (1) (a) Uhlmann, E.; Peyman, A. *Chem. Rev.* **1990**, *90*, 543.
 (b) Beaucage, S. L.; Iyer, R. P. *Tetrahedron* **1993**, *49*, 6123.
 (c) Freier, S. M.; Altmann, K. H. *Nucleic Acids Res.* **1997**, *25*, 4429.
- (2) (a) Herdewijn, P. Liebigs Ann. Chem. 1996, 1337. (b) Egli, M. Antisense Nucleic Acid Drug Dev. 1998, 8, 123.
- (3) (a) Tarköy, M.; Bolli, M.; Schweizer, B.; Leumann, C. *Helv. Chim. Acta* **1993**, *76*, 481. (b) Altmann, K. H.; Kesselring, R.; Francotte, E.; Rihs, G. *Tetrahedron Lett.* **1994**, *35*, 2331. (c) Christensen, N. K.; Petersen, M.; Nielsen, P.; Jacobsen, J. P.; Olsen, C. E.; Wengel, J. J. Am. Chem. Soc. **1998**, *120*, 5458. (d) Steffens, R.; Leumann, C. J. J. Am. Chem. Soc. **1997**, *119*, 11548.
- (4) (a) Singh, S. K.; Nielsen, P.; Koshkin, A. A.; Wengel, J. *Chem. Commun.* 1998, 455. (b) Koshkin, A. A.; Singh, S. K.; Nielsen, P.; Rajwanshi, V. K.; Kumar, R.; Meldgaard, M.; Olsen, C. E.; Wengel, J. *Tetrahedron* 1998, 54, 3607. (c) Obika, S.; Nanbu, D.; Hari, Y.; Andoh, J.; Morio, K.; Doi, T.; Imanishi, T. *Tetrahedron Lett.* 1998, 39, 5401. (d) Koshkin, A. A.; Nielsen, P.; Meldgaard, M.; Rajwanshi, V. K.; Singh, S. K.; Wengel, J. J. Am. Chem. Soc. 1998, 120, 13252. (e) Wengel, J. Acc. Chem. Res. 1999, 32, 301. (f) Obika, S.; Hari, Y.; Sugimoto, T.; Sekiguchi, M.; Imanishi, T. *Tetrahedron Lett.* 2000, 41, 8923. (g) Koshkin, A. A.; Fensholdt, J.; Pfundheller, H. M.; Lomholt, C. J. Org. *Chem.* 2001, 66, 8504.

- (5) Kierzek, E.; Mathews, D. H.; Ciesielska, A.; Turner, D. H.; Kierzek, R. *Nucleic Acids Res.* **2006**, *34*, 3609.
- (6) Obika, S.; Nanbu, D.; Hari, Y.; Morio, K.; In, Y.; Ishida, T.; Imanishi, T. *Tetrahedron Lett.* **1997**, *38*, 8735.
- (7) Pasternak, A.; Kierzek, E.; Pasternak, K.; Turner, D. H.; Kierzek, R. Nucleic Acids Res. 2007, 35, 4055.
- (8) Seela, F.; Kaiser, K. Helv. Chim. Acta 1988, 71, 1813.
- (9) Seela, F.; Zulauf, M. J. Chem. Soc., Perkin Trans. 1 1999, 479.
- (10) Cuny, E.; Lichtenthaler, F. W. *Nucleic Acids Res., Spec. Publ.* **1975**, *1*, 25.
- (11) Lichtenthaler, F. W.; Cuny, E. Chem. Ber. 1981, 114, 1610.
- (12) Schmidt, R. R.; Guillard, W.; Karg, J. Chem. Ber. 1977, 110, 2445.
- (13) Seela, F.; Steker, H. Helv. Chim. Acta 1985, 68, 563.
- (14) Seela, F.; Steker, H. J. Chem. Soc., Perkin Trans. 1 1985, 2573.
- (15) Cottam, H. B.; Revankar, G. R.; Robins, R. K. Nucleic Acids Res. 1983, 11, 871.
- (16) Pasternak, A.; Kierzek, R.; Gdaniec, Z.; Gdaniec, M. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2008, 64, 0467.
- (17) Seela, F.; Xu, K. Org. Biomol. Chem. 2007, 5, 3034.
- (18) Leonova, T. S.; Yashunskii, V. G. *Khim. Geterotsikl. Soedin.* **1982**, 7, 982.
- (19) Erion, M. D.; Reddy, M. R. J. Am. Chem. Soc. 1998, 120, 3295.
- (20) Evans, B.; Wolfenden, R. Biochemistry 1973, 12, 392.
- (21) Agarwal, R. P.; Sagar, S. M.; Parks, R. E. Jr. *Biochem. Pharmacol.* **1975**, *24*, 693.
- (22) Albert, A. Adv. Heterocycl. Chem. 1976, 20, 117.
- (23) Shewach, D. S.; Krawczyk, S. H.; Acevedo, O. L.; Townsend, L. B. *Biochem. Pharmacol.* **1992**, *44*, 1697.
- (24) Hernandez, S.; Ford, H. Jr.; Marquez, V. E. *Bioorg. Med. Chem.* 2002, *10*, 2723.
- (25) Pokharel, S.; Jayalath, P.; Maydanovych, O.; Goodman, R. A.; Wang, S. C.; Tantillo, D. J.; Beal, P. A. J. Am. Chem. Soc. 2009, 131, 11882.