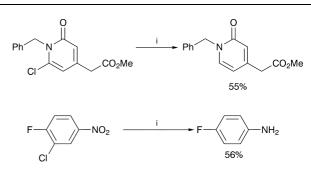
Palladium-catalysed Transfer Hydrogenation of Azobenzenes and Oximes using Ammonium Formate⁺

J. Chem. Research (S), 1998, 160–161[†]

G. K. Jnaneshwara, A. Sudalai^{*} and V. H. Deshpande^{*}

Organic Chemistry: Technology Division, National Chemical Laboratory, Pune 411 008, India


The reductive cleavage of azobenzenes, including the reduction of oximes to their corresponding amines, has been achieved with Pd⁰ using ammonium formate as hydrogen source.

The reduction of aromatic azo and azoxy compounds has received a good deal of attention, both preparatively and analytically.¹ It proceeds *via* the hydrazo derivative to the amine or a mixture of two amines when the original azo compound is unsymmetric. Azobenzene undergoes reductive cleavage to aniline with a number of reagents, such as metal–acid combinations and on transfer hydrogenation over Pd.² Reductive cleavage of azo- and azoxy-benzenes continues to be used in connection with structural determinations of azo dyes. More recently, Cp₂TiBH₄ has been reported to reduce azobenzenes to the corresponding amines.³

Catalytic transfer hydrogenation with Pd/C as catalyst and ammonium formate as hydrogen source has found widespread use in the reduction of various functionalities.⁴ This forms a safe alternative to the use of hydrogen gas. We have recently reported the regiospecific reductive ring opening of epoxides and glycidic esters under transfer hydrogenation using ammonium formate.⁵ In this paper, we wish to report that Pd/C catalyses the reductive cleavage of various azobenzenes as well as the reduction of various oximes to the corresponding amines in moderate yields, using ammonium formate as H₂ source.

Table 1 summarizes the results of the reductive cleavage of the N=N of azobenzenes to give the corresponding amines, using 4 equiv. of ammonium formate at ambient temperature. It is to be noted that reducible groups such as Cl and NO₂ also underwent facile reduction under the reaction conditions employed. However, it is remarkable that selective reduction of a C-Cl bond over a C-F or a C-N (debenzylation) bond⁶ has been achieved with the present system (Scheme 1).

The reduction of various carbon–nitrogen systems to saturated derivatives with various reducing agents provides highly useful processes for the preparation of amines and related functionalities.⁷ The reduction of oximes and subsequent cleavage of the N–O bond to afford primary amines occurs with a variety of potent hydride reagents, including LiAlH₄.⁸ Table 2 gives the various oximes that underwent

 $\mbox{Scheme 1} \quad \mbox{i, HCO}_2 NH_4 \ (2 \ \mbox{mol}), \ 10\% \ \mbox{Pd/C} \ \mbox{(cat.), MeOH, heat, } 5{-6} \ \mbox{h}$

reduction with 2 equiv. of ammonium formate at the reflux temperature to produce the corresponding amines in moderate yields. Further, it is to be noted that C=N has been reduced preferentially over C=C (entries 4 and 5, Table 2). The yield in the case of oxime reduction is only moderate owing to the instability of the amines under the reaction conditions, possibly giving other side products. In conclusion, we have shown that the ammonium formate–Pd/C system is a versatile, selective and rapid method for catalytic hydrogenation of N=N and C=N functionalities.

Experimental

All mps reported are uncorrected. IR spectra were recorded neat or as Nujol mulls (in case of solid samples) on a Perkin Elmer Infrared model 137-E. The ¹H NMR spectra were recorded on Varian FT 80A and Bruker 200 MHz instruments. ¹³C NMR were obtained on a Bruker 200 MHz instrument. The chemical shifts (ppm) were reported with Me₄Si as the internal standard. The mass spectra (MS) were recorded on an automated Finnigan-MAT 1020 C mass spectrometer using an ionization energy of 70 eV.

General Experimental Procedure for the Reduction of Azobenzene. —A mixture of azobenzene (1.82 g, 0.01 mol), ammonium formate (2.52 g, 0.04 mol) and 10% Pd/C (180 mg) in MeOH (20 ml) was stirred at room temperature for 5h. The progress of the reaction was monitored by TLC. After the reaction was complete, the

 Table 1
 Pd-catalysed transfer hydrogenation of azobenzenes using ammonium formate as H₂ source

Entry	Substrate	Products ^a (% yield) ^b
1	Azobenzene	Aniline (63)
2	4-Aminoazobenzene	Aniline $(31) + 1.4$ -diaminobenzene (64)
3	4-Hydroxyazobenzene	Aniline (29) + 4-aminophenol (54)
4	4-Methyl-4'-hydroxyazobenzene	p-Toluidine (31) + 4-aminophenol (47)
5	4-Chloro-4'-hydroxyazobenzene	Aniline (25) + 4-aminophenol (48)
6	4-Nitro-4'-hydroxyazobenzene	1,4-Diaminobenzene (49) + 4-aminophenol (34)
7	2-Methoxy-4'-hydroxyazobenzene	o-Anisidine $(30) + 4$ -aminophenol (64)
8	2-Nitro-4-methoxy-4'-hydroxyazobenzene	3,4-Diaminoanisole (21) + 4-aminophenol (55)
9	Acetophenone azine	α-Methylbenzylamine (30)

^aCharacterized by IR, ¹H and ¹³C NMR and MS. ^bIsolated after chromatographic purification.

catalyst was filtered off and the crude product was purified by flash chromatography. Yield: 63%.

General Experimental Procedure for the Reduction of Oximes.— A mixture of acetophenone oxime (1.35g, 0.01 mol), ammonium

^{*}To receive any correspondence. †This is a **Short Paper** as defined in the Instructions for Authors, Section 5.0 [see *J. Chem. Research* (*S*), 1998, Issue 1]; there is therefore no corresponding material in *J. Chem. Research* (*M*).

Table 2 Pd-catalysed transfer hydrogenation of oximes using ammonium formate

Entry	Substrate	Product ^a	Yield (%)
1	Benzaldoxime	Benzylamine	42
2	Acetophenone oxime	α-Methylbenzylamine	41
3	Cyclohexanone oxime	Cyclohexylamine	42
4	β -lonone oxime	2-Amino-4-(2,6,6-trimethylcyclohex-1-en-1-yl)but-3-ene	29
5	Carvone oxime	1-Amino-2-methyl-5-(1-methylethenyl)cyclohex-2-ene	22
6	Methylphenylglyoxalate oxime	2-Phenylglycine methyl ester	45
7	Ethyl (4-methoxyphenyl)glyoxalate oxime	4-Methoxyphenylglycine ethyl ester	55

^aCharacterized by IR, ¹H and ¹³C NMR and MS. ^bIsolated after chromatographic purification.

formate (1.26 g, 0.02 mol) and 10% Pd/C (135 mg) in MeOH (20 ml) was boiled under reflux for 5 h. The progress of the reaction was monitored by TLC. After the reaction was complete, the catalyst was filtered off and the crude product was purified by flash chromatography. Yield: 41%.

2-Phenylglycine methyl ester. $v_{\text{max}}/\text{cm}^{-1}$ 3500–3300, 1740, 1600, 1450, 1400, 1250, 1180, 1100, 1000, 740; δ_{H} (200 MHz, CDCl₃) 2.7 (2 H, br, s, NH₂), 3.70 (3 H, s, OMe), 4.6 (1 H, s > CH), 7.35 (5 H, s, Ar-H); *m*/z 165 (M⁺, 100%), 150 (13%), 135 (4%), 121 (6%), 105 (8%), 91 (6%), 77 (8%).

α-Methylbenzylamine. v_{max}/cm^{-1} 2500–3500, 1600, 1450, 1300, 1000, 700; $\delta_{\rm H}$ (200 MHz, CDCl₃) 1.45 (3 H, s, Me), 1.5 (3 H, s, Me), 3.1–3.5 (2 H, br s, NH₂), 4.1–4.25 (1 H, q, *J* 3.5 Hz, 7CH, 7.4 (5 H, s, Ar-H); *m/z* 121 (M⁺, 4%), 120 (M – 1, 12%), 106 (100%), 79 (52%), 66 (35%).

4-Methoxyphenylglycine ethyl ester. ν_{max}/cm^{-1} 3500–3300, 1740, 1600, 1250, 1050, 820; $\delta_{\rm H}$ (200 MHz, CDCl₃) 1.3–1.4 (3 H, t, J 3 Hz, CH₃), 4.3 (3 H, s, OMe), 4.2–4.4 (H, q, J 4 Hz, CH₂), 4.45 (1 H, s, >CH), 6.9–6.95 (2 H, d, J 8 Hz, ArH), 7.3–7.35 (2 H, d, J 8 Hz, Ar-H); *m*/z 209 (M⁺, 2%) 208 (M-1, 33%), 164 (4%), 145 (5%), 136 (12%), 111 (12%), 97 (25%), 83 (35%), 77 (12%), 57 (100%).

1-Amino-2-methyl-5-(1-methylethenyl)cyclohex-2-ene. ν_{max}/cm^{-1} 2500–3500, 1610, 1450, 1390, 950, 500; $\delta_{\rm H}$ (200 MHz, CDCl₃) 1.2–1.35 (1 H, m, CH), 1.75 (3 H, s, CH₃), 1.9 (3 H, s, CH₃), 2.05– 2.4 (4 H, M, 2>CH₂), 3.2–3.3 (1 H, dd, J 3 and 5 Hz, >CH—), 4.65 (2 H, m =CH₂), 6.0–6.1 (1 H, m =CH—), 10.1 (2 H, br, s, NH₂); *m*/z 151 (M⁺, 2%), 150 (M – 1, 9%), 135 (5%), 124 (5%), 109 (5%), 99 (9%), 93 (9%), 84 (29%), 69 (100%).

2-Amino-4-(2,6,6-trimethylcyclohex-1-en-1-yl)but-3-ene. ν_{max}/cm^{-1} 3000–3500, 1600, 1450, 940, 500; $\delta_{\rm H}$ (90 MHz, CDCl₃): 0.7–0.85 (4 H, m, CH₂), 1.6–1.7 (9 H, s, 3Me), 2–2.1 (3 H, m, CH₂), 2.3–2.9 (3 H, m, CH₃), 4.6 (2 H, s, CH₂), 5.8 (2 H, dd, J 3 and 5 Hz, ==CH---), 8.9–9.0 (2 H, br, s, NH₂); m/z 193 (M⁺, 12%), 192 (M - 1, 100%), 160 (40%), 146 (5%), 134 (8%), 120 (5%), 105 (10%), 91 (15%), 77 (12%).

GKJ thanks CSIR (New Delhi) for the award of a Senior Research Fellowship.

Received, 14th August 1997; Accepted, 17th November 1997 Paper E/7/05957D

References

- 1 H. Zollinger, Azo and Diazo Chemistry: Aliphatic and Aromatic Compounds, Interscience, New York, 1989; B. T. Newbold in The Chemistry of the Hydrazo, Azo and Azoxy Groups (ed. S. Patai), Wiley, London, 1975, p. 599.
- 2 T. L. Ho and G. A. Olah, Synthesis, 1977, 169.
- 3 P. Dosa, I. Kronish, J. McCallum, J. Schwartz and M. C. Barden, J. Org. Chem., 1996, **61**, 4886.
- 4 (a) S. Ram and R. E. Ehrenkaufer, *Synthesis*, 1988, 91; (b) R. A. W. Johnstone, A. H. Willby and I. D. Entwistle, *Chem. Rev.*, 1985, **85**, 129.
- 5 J. P. Varghese, A. Sudalai S. and S. Iyer, *Synth. Commun.*, 1995, **25**, 2267.
- 6 B. M. Adger, C. O. Farrell, N. J. Lewis and M. B. Mitchell, Synthesis, 1987, 53.
- 7 R. O. Hutchins and M. K. Hutchins, *Comprehensive Organic Synthesis*, eds. B. M. Trost and I. Fleming, Pergamon Press, Oxford, 1991, vol. 8, p. 25.
- 8 T. L. Girchrist, *Comprehensive Organic Synthesis*, eds. B. M. Trost and I. Fleming, Pergamon Press, Oxford, 1991, vol. 8, p. 381.