Downloaded by: University of Pittsburgh. Copyrighted material.

Pyrimidine-5-carbonitriles from Methyl N-(Aminocarbonyl)- or N-(Aminothiocarbonyl)-imidates

Jiří Krechl, a Miguel A. Pérez, *b Francisco J. Cuadrado, c José L. Sotoc

- ^a Department of Organic Chemistry, Prague Institut of Chemical Technology, Suchbatarova 5, CS-166 28 Prague 6, Czechoslovakia
- ^b Departamento de Química, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- ^c Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, E-28040 Madrid, Spain

A number of substituted pyrimidine-5-carbonitriles and ethyl pyrimidine-5-carboxylates are prepared by reaction of methyl *N*-(aminocarbonyl)- or *N*-(aminothiocarbonyl)imidates with malononitrile, methyl cyanoacetate, or diethyl malonate.

Carbon-nitrogen double bonds bearing an electron-with-drawing substituent on nitrogen and a leaving group in carbon, such as *N*-substituted imidic esters, can undergo addition of suitable nucleophiles followed by elimination. The intermediates formed in such a way can cyclize intramolecularly to aromatic heterocycles. Thus alkyl *N*-cyanoimidates from pyrimidines¹⁻³ and alkyl N-acylimidates or *N*-(methoxycarbonyl)imidates afford 1,2,4-triazoles⁴ or triazolones and pyrimidine-5-carbonitriles.⁵ We now report the reaction of methyl *N*-(ethyl- or phenylaminocarbonyl)imidates 3 or their thiocarbonyl analogues 7 with the sodium salt of malononitrile and related nucleophiles to yield a variety of new pyrimidines. The intermediates in these processes are similar to the ones isolated in the treatment of 3-alkoxy-2-cyanopropenenitriles with ureas.^{6,7}

The methyl N-(ethyl- or phenylaminocarbonyl)imidates 3 were prepared from methyl imidates 1 and ethyl or phenyl isocyanates 2 by a modification of a reported⁸ procedure (Table 1). The reaction of equimolar amounts of the methyl N-(aminocarbonyl)imidates 3a-f, malonitrile and sodium methoxide in dry methanol led to the 6-amino-2-oxopyrimidine-5-carbonitriles 4a, b, d-f in good yields (Table 2). In an analogous reaction with methyl cyanoacetate, the intermediate initially formed cyclized intramolecularly with participation of the methoxycarbonyl group and not of the carbonitrile group, which agrees with our previous experience with other substrates³ and can be explained on steric grounds, as we have discussed in detail previously.³ Thus, the 2,4-dioxo-3-phenyl-pyrimidine-5-

	R ¹ -	CH ₃ O HN F	R ² —N= 2 50°C, 24 h (for r.t., 24 h (for N) N R ² 1-f	=C=O for 3a-c) 3d-f)	
20-8	2% CN CN NaOCH ₃ CH ₃ OH r.t., 14 h	56 -70%	CN CO ₂ CH ₃ NaOCH ₃ CH ₃ OH reflux, 15 h	35-60%	CO ₂ C ₂ H ₅ CO ₂ C ₂ H ₅ NaOC ₂ H ₅ C ₂ H ₅ OH reflux, 7 d
R^1 H_2N N R^2 4a,b,d-f		$ \begin{array}{c c} R^1 \\ NC \\ NH \\ N \\ N \\ N \\ O \\ R^2 $ 5d-f		C ₂ H ₅ O ₂ C NH N N N N N N N N N N O R ²	
3-6	R ¹	R ²	3–6	R ¹	R ²
a b c	C ₂ H ₅ C ₆ H ₅ 4-CH ₃ C ₆ H ₄	$C_{6}H_{5}$ $C_{2}H_{5}$ $C_{2}H_{5}$	d e f	C ₆ H ₅ 4-CH ₃ C ₆ H ₄ 4-ClC ₆ H ₄	C ₆ H ₅ C ₆ H ₅ C ₆ H ₅

Table 1. Methyl N-(Aminocarbonyl)imidates 3 Prepared

Product	Yield ^a (%)	mp ^b (°C)	Molecular Formula ^c	IR (KBr) ^d ν (cm ⁻¹)	1 H-NMR (CDCl ₃ /TMS) c δ , J (Hz)
3a	87	104–107	C ₁₁ H ₁₄ N ₂ O ₂ (206.3)	3260, 1660, 1640	1.18 (t, 3 H, $J = 7$, CH ₃); 2.43 (q, 2 H, $J = 7$, CH ₂); 3.72 (s, 3 H, CH ₃ O); 6.9–7.7 (m, 6 H, H _{arom} + NH)
3b	90	78-79	$C_{11}H_{14}N_2O_2$ (206.2)	3280, 1660, 1640	1.02 (t, 3 H, $J = 7$, CH ₃); 3.15 (q, 2 H, $J = 7$, CH ₂); 3.83 (s, 3 H, CH ₃ O); 5.7 (br s, 1 H, NH); 7.2–7.9 (m, 5 H, H _{370m})
3c	98	69-70	$C_{12}H_{16}N_2O_2$ (220.3)	3420, 1650, 1610	1.07 (t, 3H, $J = 7$, CH ₃); 2.40 (s, 3H, CH ₃); 3.20 (q, 2H, $J = 7$, CH ₂); 3.87 (s, 3H, CH ₃ O); 5.1 (br s, 1H, NH); 7.0–7.9 (m, 4H, H _{acom})
3d	99	116-118	$C_{15}H_{14}N_2O_2$ (254.3)	3380, 1640, 1590	3.90 (s, 3H, CH ₃ O); 7.0–7.8 (m, 11H, H _{arom} + NH)
3e	97	125-126	$C_{16}H_{16}N_2O_2$ (268.3)	3290, 1665, 1625	2.30 (s, 3H, CH ₃); 3.87 (s, 3H, CH ₃ O); 7.0-7.7 (m, 10H, H _{arom} + NH)
3f	81	124–126	$C_{15}H_{13}CIN_2O_2$ (288.7)	3230, 1660, 1620	3.90 (s, 3 H, CH ₃ O); 7.0–7.9 (m, 10 H, H _{arom} + NH)

^a Yield of isolated pure product.

^b Uncorrected. Products recrystallized from 2-PrOH.

Satisfactory microanalysis obtained: C \pm 0.32, H \pm 0.31, N \pm 0.32, CI + 0.28.

d Recorded on a Perkin-Elmer 257 Infrared spectrophotometer.

Recorded on a Varian T-60A spectrometer.

Table 2. 2-Oxopyrimidine-5-carbonitriles 4, 5, 6 Prepared

Product	Yield ^a (%)	mp ^b (°C) (solvent)	Molecular Formula ^e	IR (KBr) ^d v (cm ⁻¹)	1 H-NMR (DMSO- d_{6} /TMS) e δ , J (Hz)
4a	20	275-276	C ₁₃ H ₁₂ N ₄ O	3400-3300,	1.20 (t, 3H, $J = 7$, CH ₃); 2.60 (q, 2H, $J = 7$, CH ₂);
		(EtOH)	(240.3)	2220, 1670	$7.2-7.8 \text{ (m, 7H, H}_{arom} + NH_2^f)$
4b	60	237-238	$C_{13}H_{12}N_4O$	3400-3200,	2.30 (t, 3 H, $J = 7$, CH ₃); 4.07 (q, 2 H, $J = 7$, CH ₂);
		(MeOH)	(240.3)	2220, 1650	7.4–7.9 (m, 5H, H_{arom}); 8.3 (br s, 2H, NH_2^{f})
4d	79	260-261	$C_{17}H_{12}N_4O$	3400-3300,	$6.3-8.3 \text{ (m, 12 H, H}_{arom} + NH_2^f)$
		(MeOH)	(288.3)	2220, 1655	
4e	89	254-256	$C_{18}H_{14}N_4O^g$	3350-3100,	2.43 (s, 3H, CH ₃); 7.1–7.8 (m, 11H, $H_{arom} + NH_2^f$)
		(MeOH)	(302.3)	2210, 1660	
4f	69	283-284	$C_{17}H_{11}CIN_4O$	3300, 2220,	$7.3-8.1 \text{ (m, 11 H, H}_{arom} + NH_2^f)$
		(EtOH)	(322.8)	1660	*****
5d	56	292-294	$C_{17}H_{11}N_3O_2$	3500, 2220,	$7.2-7.9$ (m, 10 H, H_{arom}); 12.7 (s, 1 H, NH + OH ^f)
		(MeOH)	(289.3)	1730, 1650	
5e	70	276-277	$C_{18}H_{13}N_3O_2$	3500, 2230,	2.43 (s, 3H, CH ₃); 7.2-7.8 (m, 9H, H _{arom}); 12.5 (s,
		(MeOH)	(303.3)	1740, 1670	$1H, NH + OH^{f}$
5f	69	342-344	$C_{17}H_{10}ClN_3O_2^h$	3500, 2230,	6.3 (br s, 1 H, NH + OH ^f); $7.1-7.9$ (m, 9 H, H _{arom})
		(MeOH)	(323.7)	1740, 1650	
6d	60	230-232	C ₁₉ H ₁₆ N ₂ O ₄	3250-2800,	1.03 (t, 3H, $J = 7$, CH ₃); 4.13 (q, 2H, $J = 7$, CH ₂);
		(EtOH)	(336.4)	1710, 1650,	$7.0-7.6$ (m, 10 H, H_{arom}); 9.66 (s, 1 H, NH + OH ^f)
		` '	,	1620	with the second
6e	35	244-247	$C_{20}H_{18}N_2O_4$	3200-2800,	1.08 (t, 3H, $J = 7$, CH ₃); 2.37 (s, 3H, CH ₃); 4.13 (q,
		(EtOH)	(350.4)	1700, 1650,	2H, $J = 7$, CH ₂); 6.9–7.6 (m, 9H, H _{arom}); 9.8 (br s,
				1620	$1H, NH + OH^{f}$

Yield of isolated pure product.

f Signal exchangeable with trifluoroacetic acid.

4e: MS: m/z (%): 302 (M⁺, 31), 119 (7), 77 (15).ⁱ **5f:** MS: m/z (%): 323 (M⁺, 40), 204 (14), 119 (100).ⁱ

Recorded at 70 eV on a Varian MAT spectrometer.

Table 3. 2-Thioxopyrimidine-5-carbonitriles 8, 9 Prepared

Product	Yield ^a (%)	mp ^b (* C)	Molecular Formula ^c	$IR (KBr)^d$ $v(cm^{-1})$	1 H-NMR (DMSO- d_{6} /TMS) e δ , J (Hz)
8a	65	258-259	C ₁₃ H ₁₂ N ₄ S	3400-3140,	2.43 (s, 3H, CH ₃); 4.00 (s, 3H, CH ₃ N); 7.1–7.9 (m,
8b	71	262-263	(256.3) C ₁₇ H ₁₂ N ₄ S (304.4)	2220 3360-3120, 2220	4H, H_{arom}); 8.4 (br s, 2H, NH_2^f) 7.2-8.3 (m, $H_{arom} + NH_2^f$)
8c	69	250252	C ₁₈ H ₁₄ N ₄ S (318.4)	3450-3220, 2215	2.43 (s, 3H, CH_3); 7.2–8.1 (m, 11H, $H_{arom} + NH_2^f$)
9b	40	320-322	C ₁₇ H ₁₁ N ₃ OS (305.4)	3200-2800, 2240, 1690	$7.0-8.1 \text{ (m, } H_{arom} + NH)$
9c	80	308-310	$C_{18}H_{13}N_3OS$ (319.4)	3300-2800, 2240, 1690	2.40 (s, 3H, CH ₃); 7.1–7.8 (m, 10H, $H_{arom} + NH$)

Yield of isolated pure product.

Uncorrected. Products recrystallized from MeOH.

Signal exchangeable with trifluoroacetic acid.

Uncorrected.

Satisfactory microanalysis obtained: $C \pm 0.38$, $H \pm 0.43$, N = 0.39,

Recorded on a Perkin-Elmer 257 Infrared spectrophotometer.

Recorded on a Varian T-60A spectrometer. Compounds 6d and 6e measured in CDCl₃.

Satisfactory microanalysis obtained: $C \pm 0.37$, $H \pm 0.22$, $N \pm 0.44$; for **9b**, **c**: S + 0.26.

Recorded on a Perkin-Elmer 257 Infrared spectrophotometer.

Recorded on a Varian T-60A spectrometer.

124 Papers Synthesis

carbonitriles **5d-f** were isolated in good yields. Similarly, with diethyl malonate the ethyl 2,4-dioxopyrimidine-5-carboxylates **6d, e** were obtained.

Starting from the methyl N-(methyl- or phenylaminothiocarbonyl)imidates 9,10 7 and malononitrile, the 4-amino-2-thioxopyrimidine-5-carbonitriles 8a-c were obtained in good yields (Table 3). In an analogous reaction with methyl cyanoacetate, the intramolecular cyclization with the methoxycarbonyl group was again observed leading to the 4-oxo-2-thioxo-pyrimidine-5-carbonitriles 9b, c.

Methyl N-(Ethyl- or phenylaminocarbonyl)imidates 3; General Procedure:

A mixture of the appropriate imidate 1 (0.1 mol) and ethyl (or phenyl) isocyanate 2 (0.1 mol) is allowed to stand at room temperature (3d-f) or at $50 \,^{\circ}\text{C}$ (3a-e) for 24 h. The solid reaction mixture is then placed under vacuum (10^{-3} Torr) for 3 h at room temperature. The crude product is recrystallized from 2-propanol to yield compounds 3a-f (Table 1).

6-Amino-1,4-diaryl- or arylalkyl-2-oxo-1,2-dihydropyrimidine-5-carbonitriles 4; General Procedure:

To a solution of Na (0.14 g, 6 mmol) in dry MeOH (15 mL), malononitrile (0.33 g, 5 mmol) and the appropriate imidate 3 (5 mmol) are added. After the reaction mixture is stirred at room temperature for 14 h, it is neutralized with glacial HOAc (0.4 g, 7 mmol) and diluted with water (50 mL). The precipitate is collected by filtration and recrystallized from MeOH (or EtOH for 4a, f) to yield the pyrimidine-5-carbonitriles 4a, b, d-f (Table 2).

3,6-Diaryl-2,4-dioxo-1,2,3,4-tetrahydropyrimidine-5-carbonitriles 5; General Procedure:

To a solution of Na (0.28 g, 12 mmol) in dry MeOH (15 mL), methyl cyanoacetate (0.57 g, 5 mmol) and the appropriate imidate 3 (5 mmol) are added. The solution is stirred under reflux for 15 h and allowed to cool to room temperature. The reaction mixture is neutralized with glacial HOAc (0.8 g, 14 mmol) and diluted with water (50 mL). The precipitate is collected by filtration and recrystallized from MeOH to yield the pyrimidine-5-carbonitriles 5d-f (Table 2).

Ethyl 3,6-Diaryl-2,4-dioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylates 6; General Procedure:

Ethyl propanedioate (0.8 g. 5 mmol) and an imidate 3 (5 mmol) are added to a solution of Na (0.28 g, 12 mmol) in dry EtOH (15 mL). The solution is heated under reflux with stirring for 7 d and allowed to cool to room temperature. The reaction mixture is neutralized with conc. $\rm H_2SO_4$ (to pH 4) and the solvent is evaporated. The residue is diluted

with water (50 mL) and extracted with CHCl₃ (3×20 mL). The organic layer is dried (MgSO₄), evaporated and recrystallized from EtOH to afford the ethyl pyrimidine-5-carboxylates **6d**, **e** (Table 2).

6-Amino-1,4-diaryl- or arylalkyl-2-thioxo-1,2-dihydropyrimidine-5-carbonitriles 8; General Procedure:

To a solution of Na (0.14 g, 6 mmol) in dry MeOH (15 mL) propanedinitrile (0.33 g, 5 mmol) and the appropriate imidate 7 (5 mmol) are added. After stirring the reaction mixture at room temperature for 16 h, glacial HOAc (0.4 g, 7 mmol) and water (50 mL) are added. The precipitate is collected by filtration and recrystallized from MeOH to yield the pyrimidine-5-carbonitriles 8a-c (Table 3).

3,6-Diaryl-4-oxo-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbonitriles 9; General Procedure:

To a solution of Na (0.28 g, 12 mmol) in dry MeOH (15 mL), methyl cyanoacetate (0.57 g, 5 mmol) and the appropriate imidate 7 (5 mmol) are added. The solution is stirred under reflux for 24 h and allowed to cool to room temperature. The reaction mixture is neutralized with glacial HOAc (0.8 g, 14 mmol) and diluted with water (50 mL). The precipitate is collected by filtration and recrystallized from MeOH to yield the pyrimidine-5-carbonitriles 9b, c (Table 3).

The authors are indebted to the Comisión Asesora de Investigación Científica y Técnica of Spain for financial support.

Received: 22 April 1987

- (1) Pérez, M.A., Soto, J.L. Heterocycles 1983, 20, 463.
- (2) Pérez, M. A., Soto, J. L., Carrillo, J. R. Synthesis 1983, 5, 402.
- (3) Pérez, M.A., Soto, J.L., Guzmán, F., Alcalá, H. J. Chem. Soc. Perkin Trans. 1 1985, 87, and references cited therein.
- (4) Pérez, M. A., Dorado, C., Soto, J. L. Synthesis 1983, 483.
- (5) Cuadrado, F.J., Pérez, M.A., Soto, J.L. J. Chem. Soc. Perkin Trans. 1 1984, 2447.
- (6) Whitehead, C.W. J. Am. Chem. Soc. 1953, 75, 671.
- (7) Whitehead, C. W., Traverso, J. J. Am. Chem. Soc. 1955, 77, 5867.
- (8) Etienne, A., Le Berre, A., Lonchambon, G., Roques, J., Lemmens, B. C. R. Acad. Sci. Ser. C 1976, 283, 537.
- Etienne, A., le Berre, A., Lonchambon, G., Roques, J., Lemmens, B. C. R. Acad. Sci. Ser. C 1977, 285, 33.
- (10) Soto, J. L., Cuadrado, F. J., Krechl, J., Pérez, M. A. Proceedings of the Symposium on the Chemistry of Heterocyclic Compounds (VIIIth) and of Nucleic Acid Components (VIth), Prague, 1984, p. 73.