Accepted Manuscript

One-pot Preparation of 2,5-Disubstituted and 2,4,5-Trisubstituted Oxazoles from Aromatic Ketones with Molecular lodine, Oxone, and Trifluoromethanesulfonic Acid in Nitriles

Sho Imai, Hiroki Kikui, Katsuhiko Moriyama, Hideo Togo

PII: \quad S0040-4020(15)00877-7
DOI: \quad 10.1016/j.tet.2015.06.022
Reference: TET 26857

To appear in: Tetrahedron

Received Date: 7 May 2015
Revised Date: 3 June 2015
Accepted Date: 4 June 2015

Please cite this article as: Imai S, Kikui H, Moriyama K, Togo H, One-pot Preparation of 2,5Disubstituted and 2,4,5-Trisubstituted Oxazoles from Aromatic Ketones with Molecular Iodine, Oxone, and Trifluoromethanesulfonic Acid in Nitriles, Tetrahedron (2015), doi: 10.1016/j.tet.2015.06.022.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

One-pot Preparation of 2,5-Disubstituted and
Leave this area blank for abstract info.
2,4,5-Trisubstituted Oxazoles from Aromatic Ketones with Iodine, Oxone, and

Trifluoromethanesulfonic Acid in Nitriles

Sho Imai, Hiroki Kikui, Katsuhiko Moriyama, and Hideo Togo*
Graduate School of Science, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522 Japan

$\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5} .4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}, 4-\mathrm{FC}_{6} \mathrm{H}_{4}, 4-\mathrm{ClC}_{6} \mathrm{H}_{4}, 4-\mathrm{BrC}_{6} \mathrm{H}_{4}, 4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$, etc. $\mathrm{R}^{1}=\mathrm{H}, \mathrm{CH}_{3}, \mathrm{CH}_{3} \mathrm{CH}_{2}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{7}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{9}$ $R^{2}=\mathrm{CH}_{3}, \mathrm{CH}_{3} \mathrm{CH}_{2}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}, \mathrm{Ph}$

TETRAHEDRON

Pergamon

One-pot Preparation of 2,5-Disubstituted and 2,4,5-Trisubstituted Oxazoles from Aromatic Ketones with Molecular Iodine, Oxone, and Trifluoromethanesulfonic Acid in Nitriles

Sho Imai, Hiroki Kikui, Katsuhiko Moriyama, and Hideo Togo*
Graduate School of Science, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522 Japan

Abstract

Alkyl aryl ketones were successfully converted into the corresponding 2,5-disubstituted and 2,4,5-trisubstituted oxazoles in good to moderate yields in a one-pot manner, utilizing iodine, Oxone ${ }^{\circledR}$, and trifluoromethanesulfonic acid in nitriles under transition-metal-free conditions. The present method could be used for the preparation of Oxaprozin from benzyl phenyl ketone and succinonitrile. A possible reaction mechanism was proposed in which the key intermediates were α-iodoalkyl aryl ketones and α-iodosylalkyl aryl ketones. © 2015 Elsevier Science. All rights reserved

Keywords: Ketone, Molecular Iodine, Oxazole, Nitrile, One-Pot Reaction

[^0]
1. Introduction

Oxazoles are one of the most important heterocyclic compounds, as the oxazole unit is found in many natural products, ${ }^{1}$ and many biologically active compounds bearing an oxazole unit, ${ }^{2}$ i.e., Inthomycin C (antineoplastic), ${ }^{2 \mathrm{j}}$ Oxaprozin (anti-inflammatory), ${ }^{2 k}$ Bengazole A (antibiotic), ${ }^{21}$ etc., are known. They can be also used as versatile synthetic intermediates. ${ }^{3}$ Therefore, many methods for the synthesis of oxazoles have been developed, although most invole multi-step reactions and/or require harsh reaction conditions. ${ }^{4}$ For example, the intramolecular dehydration of α-acylaminoketones, ${ }^{5}$ the Rh-catalyzed reaction of α-diazo- β-ketocarbonyl compounds with nitriles or amides, ${ }^{6}$ the cyclization of N -propargylamides, ${ }^{7}$ the copper/iodine-catalyzed tandem oxidative cyclization of vinyl halides and amides, ${ }^{8}$ the aza-Wittig reaction of iminophosphoranes bearing on acyl group at α-position with acyl chlorides, ${ }^{9}$ the reaction of α-bromoketones and amides, ${ }^{10}$ and the Au-catalyzed reaction of alkynes and nitriles ${ }^{11}$ were reported. Studies on the direct preparation of oxazoles from easily available compounds have continued actively, examples of which are the preparation of 2,4,5-trisubstituted oxazoles from diethyl trans-2-aryl-3-nitrocyclopropane-1,1-dicarboxylates and nitriles in the presence of SnCl_{4} in 1,2-dichloroethane at room temperature, ${ }^{12 a}$ the preparation of 2,5-diaryloxazoles from chalcone and benzylic amines in toluene in the presence of CuBr_{2} and pyridine under oxygen atmosphere at $110{ }^{\circ} \mathrm{C},{ }^{12 \mathrm{~b}}$ the preparation of 2,5 -diaryloxazoles bearing an amide group at 4-position from N -acyl-2-bromoenamides in the presence of CuI in 1,4-dioxane at $80{ }^{\circ} \mathrm{C},{ }^{12 \mathrm{c}}$ the preparation of 2,5-diaryloxazoles bearing an ester group at 4-position from 3-arylpropargyl ester and benzylic amines in the presence of $\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}$ and CuBr_{2} in DMSO at $100{ }^{\circ} \mathrm{C}$ under air, ${ }^{12 \mathrm{~d}}$ and the preparation of 2,4 -disubstituted and $2,4,5$-trisubstituted oxazoles from α-bromoketones and amides in the presence of silver trifluoromethanesulfonate in ethyl acetate at $50{ }^{\circ} \mathrm{C} .{ }^{12 \mathrm{e}}$ As recent reports of the transition-metal-free preparation of oxazoles include the preparation of 2,5 -disubstituted oxazoles by the reaction of aryl methyl ketones and primary benzylic amines with molecular iodine in DMSO at $100^{\circ} \mathrm{C}$, ${ }^{13 \mathrm{a}}$ the preparation of 2,4,5-trisubstituted oxazoles by the reaction of 1,3-diynes and nitriles in the presence of cesium hydroxide in dioxane at $100{ }^{\circ} \mathrm{C},{ }^{13 \mathrm{~b}}$ and the preparation of 2,4,5-trisubstituted oxazoles by the reaction of 1,3-diynes with N, O-bis(trimethylsilyl)acetamide in the presence of t-BuOK at $120^{\circ} \mathrm{C} .{ }^{13 \mathrm{c}}$

Despite the emergence of a number of reports, new synthetic methods for the direct preparation of oxazoles from easily available or commercially available compounds are highly required.

The preparation of oxazoles from easily available ketones and nitriles under transition-metal-free conditions is very
attractive in view of process chemistry. Here, as part of our basic study of molecular iodine for organic synthesis, ${ }^{14}$ and of our recent report of the preparation of α-sulfonyloxyketones from alkyl aryl ketones, sulfonic acids, molecular iodine, and Oxone ${ }^{\circledR}{ }^{14 \mathrm{u}}$ we would like to report a one-pot transformation of alkyl aryl ketones into the corresponding 2,5-disubstituted and 2,4,5-trisubstituted oxazoles with molecular iodine, Oxone ${ }^{\circledR}$, and TfOH (trifluoromethanesulfonic acid) in nitrile solvents.

2. Results and Discussion

To a solution of acetophenone $\mathbf{1 a}$ in propionitrile (6 mL) were added aq. $\mathrm{H}_{2} \mathrm{O}_{2}$ (ca $30 \%, 1.1$ equiv.), m CPBA (1.1 equiv.) or Oxone ${ }^{\circledR}$ (1.1 equiv.), and molecular iodine (0.7 equiv.) and TfOH (8.0 equiv.), and the reaction mixture was stirred for 5 h under refluxing conditions to provide corresponding oxazole $\mathbf{2 a - A}$ in low yields (entries 1, 2, and 4). The results indicated that Oxone ${ }^{\circledR}$ was the most effective oxidant, and that corresponding oxazole $2 \mathbf{a}-\mathbf{A}$ was not formed at all in the absence of an oxidant (entry 3). Then, various reactions with Oxone ${ }^{\circledR}$ were performed in an attempt to increase the yield of oxazole 2a-A. By changing the amounts of TfOH and molecular iodine, and the reaction time (entries 5~21), it was found that the treatment of acetophenone 1a with molecular iodine (0.7 equiv.), Oxone ${ }^{\circledR}$ (1.1 equiv.), and TfOH (8.0 equiv.) for 5 h under refluxing conditions provided oxazole $\mathbf{2 a} \mathbf{- A}$ in 61% yield (entry 9). Reducing the amounts of molecular iodine and propionitrile decreased the yield of the oxazole, and the use of TsOH or MsOH instead of TfOH also gave oxazole 2a-A in extremely poor yields (< 2% yield). When a mixed solvent of propionitrile (3 mL or 2 mL) and 1,2-dichloropropane (3 mL or 4 mL) was used under the same reaction conditions, the yield of oxazole 2a-A was also decreased (entries 22 and 23).

Table 1. Preparation of 2-Ethyl-5-phenyloxazole with Acetophenone, Molecular Iodine, Oxone ${ }^{\circledR}$, and TfOH in Propionitrile

1a 1.0 mmol

Entry	x (equiv.)	y (equiv.)	Oxidant (equiv.)	a (mL)	Time (h)	Yield a $(\%)$
1	0.7	8.0	aq.H2 O_{2} (1.1)	6.0	5	8
2	0.7	8.0	m CPBA (1.1)	6.0	5	19
3	0.7	8.0	-	6.0	5	0
4^{b}	0.7	8.0	Oxone $^{\circledR}$ (1.1)	6.0	2	37
5	0.7	6.0	Oxone $^{\circledR}$ (1.1)	6.0	2	52
6	0.7	6.0	Oxone $^{\circledR}$ (1.1)	6.0	3	52

7	0.7	6.0	$\begin{gathered} \hline \text { Oxone }^{\circledR} \\ (1.1) \\ \hline \end{gathered}$	6.0	4	50
8	0.7	6.0	$\begin{gathered} \text { Oxone }^{\circledR} \\ (1.1) \end{gathered}$	6.0	5	54
9	0.7	8.0	$\begin{gathered} \text { Oxone }^{\circledR} \\ (1.1) \end{gathered}$	6.0	5	61
10	0.7	1.0	$\begin{gathered} \text { Oxone }^{\circledR} \\ (1.1) \\ \hline \end{gathered}$	6.0	5	3
11	0.7	10.0	$\begin{gathered} \text { Oxone }^{\circledR} \\ (1.1) \\ \hline \end{gathered}$	6.0	5	49
12	0.7	8.0	$\begin{gathered} \text { Oxone }^{\circledR} \\ (1.5) \\ \hline \end{gathered}$	6.0	5	51
13	0.7	8.0	$\begin{gathered} \text { Oxone }^{\circledR} \\ (2.0) \\ \hline \end{gathered}$	6.0	2	24
14	0.5	8.0	$\begin{gathered} \hline \text { Oxone }^{\circledR} \\ (1.1) \end{gathered}$	6.0	5	55
15	0.6	8.0	$\begin{gathered} \text { Oxone }^{\circledR} \\ (1.1) \\ \hline \end{gathered}$	6.0	5	60
16	1.0	6.0	$\begin{gathered} \text { Oxone }^{\circledR} \\ (1.1) \\ \hline \end{gathered}$	6.0	3	30
17	0.2	6.0	$\begin{gathered} \text { Oxone }^{\circledR} \\ (1.1) \end{gathered}$	6.0	3	35
18	0.2	6.0	$\begin{gathered} \text { Oxone }^{\circledR} \\ (2.0) \\ \hline \end{gathered}$	6.0	3	29
19	0.7	6.0	$\begin{gathered} \text { Oxone }^{\circledR} \\ (1.1) \end{gathered}$	6.0	3	34
20	0.7	6.0	$\begin{gathered} \text { Oxone }^{\circledR} \\ (1.1) \end{gathered}$	6.0	3	39
21	0.7	6.0	$\begin{gathered} \text { Oxone }^{\circledR} \\ (1.1) \end{gathered}$	6.0	3	22
22	0.7	8.0	$\begin{gathered} \hline \text { Oxone }^{\circledR} \\ (1.1) \\ \hline \end{gathered}$	3.0^{c}	5	29
23	0.7	8.0	$\begin{gathered} \text { Oxone }^{\circledR} \\ (1.1) \end{gathered}$	$2.0{ }^{\text {d }}$	5	26

Isolated yield ${ }^{b}$ Reaction was carried out at $80^{\circ} \mathrm{C}$. ${ }^{c}$ 1,2-Dichloropropane $(3.0 \mathrm{~mL})$ was added. ${ }^{d} 1,2$-Dichloropropane $(4.0 \mathrm{~mL})$ was added.

Based on the optimum reaction conditions, various substituted acetophenone derivatives $\mathbf{1}$ were treated with molecular iodine (0.7 equiv.), Oxone ${ }^{\circledR}$ (1.1 equiv.), and TfOH (8.0 equiv.) in propionitrile under refluxing

Table 2 Preparation of 2,5-Disubstituted and 2,4,5-Trisubstutited Oxazoles with Alkyl Aryl Ketones, Molecular Iodine, Oxone ${ }^{\circledR}$, and TfOH in Nitriles

2f-A, 65\%

2p-A, 92\%

2s-A, $64 \%^{e}$

2v-A, $52 \%^{g}$
$\mathrm{C}_{10} \mathrm{H}_{21}$

2a-B, $57 \%^{h}$

2c-B, $55 \%^{h}$

2n-B, $75 \%^{h}$

2a-C, $61 \%^{f}$

2a-D, 47\%

2p-D, 84\%

2n-E, 71\%
${ }^{a}$ isolated yield. ${ }^{b} \mathrm{I}_{2}$ (0.7 equiv.), Oxone ${ }^{\circledR}$ (1.5 equiv.) and TfOH (10 equiv.) were used. ${ }^{c} \mathrm{I}_{2}$ (3.0 equiv.), Oxone ${ }^{\circledR}$ (2.0 equiv.) and TfOH (12 equiv.) were used. ${ }^{d} \mathrm{I}_{2}$ (1.0 euivq.) and Oxone ${ }^{\circledR}$ (1.5 equiv.) were used. ${ }^{e} \mathrm{I}_{2}\left(0.7\right.$ equiv.) and Oxone ${ }^{\circledR}$ (1.7 equiv.) were used. ${ }^{f} \mathrm{I}_{2}$ (0.7 equiv.) and Oxone ${ }^{\circledR}\left(1.5\right.$ equiv.) were used. ${ }^{g} \mathrm{I}_{2}$ (1.0 equiv.), Oxone ${ }^{\circledR}$ (2.0 equiv.) and TfOH (10 equiv.) were used. ${ }^{h}$ Reaction was carriedout at $80^{\circ} \mathrm{C}$.
conditions, and the results are shown in Table 2.
Treatment of p-fluoroacetophenone 1b, p-chloroacetophenone $\mathbf{1 c}, p$-bromoacetophenone $\mathbf{1 d}$, m-bromoacetophenone 1e, o-bromoacetophenone $\mathbf{1 f}$, p-(trifluoromethyl)acetophenone 1g, p-(ethoxycarbonyl)acetophenone $\mathbf{1 h}, p$-nitroacetophenone $\mathbf{1 i}$, and m-nitroacetophenone $\mathbf{1} \mathbf{j}$ under the same conditions provided corresponding 2,5-disubstituted oxazoles $\mathbf{2 b - A} \sim \mathbf{2 j}-\mathbf{A}$ in good yields, respectively. However, the same treatment of p-methylacetophenone $\mathbf{1 k}$, p-phenylacetophenone 11, and m-acetylpyridine $\mathbf{1 m}$ gave corresponding 2,5-disubstituted oxazoles $\mathbf{2 k}-\mathbf{A} \sim \mathbf{2 m} \mathbf{- A}$ in moderate yields, respectively, and the p-methylphenyl group in compound $\mathbf{2 k} \mathbf{k}$ A was iodinated. On the other hand, the same treatment of propiophenone $\mathbf{1 n}$, p-fluoropropiophenone 10, and p-chloropropiophenone 1p with molecular iodine, Oxone ${ }^{\circledR}$, and TfOH in propionitrile under refluxing conditions provided corresponding 2-ethyl-4-methyl-5-aryloxazoles $\mathbf{2 n} \mathbf{- A} \sim 2 \mathbf{p}-\mathbf{A}$ in good yields, respectively. When p-methylpropiophenone $\mathbf{1 q}$ and p-methoxypropiophenone $\mathbf{1 r}$ were subjected to the same procedure and conditions using excess amounts of molecular iodine and Oxone ${ }^{\circledR}$, the iodinated 2-ethyl-4-methyl-5-aryloxazoles 2q-A and 2r-A were obtained in good yields, respectively, due to the iodination of the electron-rich aromatic ring. When butyrophenone $\mathbf{1 s}$, pentanophenone $\mathbf{1 t}$, octanophenone $\mathbf{1 u}$, decanophenone $\mathbf{1 v}$, and dodecanophenone $\mathbf{1 w}$ were used as substrates under the same conditions, corresponding oxazoles $\mathbf{2 s} \mathbf{s} \mathbf{A} \sim 2 \mathbf{w}-\mathbf{A}$ were obtained in moderate yields. The reason for the moderate yields of the oxazoles may be the steric hindrance caused by the long alkyl side chain groups. Then, the solvent was changed to acetonitrile, and the same treatment of acetophenone 1a, p-chloroacetophenone 1c, p-bromoacetophenone 1d, p-nitroacetophenone $1 \mathbf{i}$, propiophenone $\mathbf{1 n}$, and p-chloropropiophenone $\mathbf{1 p}$ under refluxing conditions provided corresponding 2,5-disubstituted and 2,4,5-trisubstituted oxazoles 2a-B, $\mathbf{2 c} \mathbf{- B}, 2 \mathbf{2 d}-\mathbf{B}, \mathbf{2 i}-\mathbf{B}, \mathbf{2 n}-\mathbf{B}$, and $\mathbf{2 p} \mathbf{- B}$ in moderate to good yields, respectively. Moreover, when butyronitrile and isobutyronitrile were used with acetophenone 1a, p-chloroacetophenone 1c, p-bromoacetophenone 1d, p-nitroacetophenone 1i, propiophenone $\mathbf{1 n}$ and p-chloropropiophenone 1p under same reaction conditions at $100{ }^{\circ} \mathrm{C}$, corresponding 2-propyl-5-aryloxazoles ($\mathbf{2 a}-\mathbf{C}$, $\mathbf{2 c} \mathbf{c} \mathbf{C}$, 2d-C, and 2i-C), 2-propyl-4-methyl-5-aryloxazoles ($\mathbf{2 n}-\mathbf{C}$ and $\mathbf{2 p}-\mathbf{C}$), 2-isopropyl-5-aryloxazoles (2a-D, 2c-D, $\mathbf{2 d}-\mathbf{D}$, and $\mathbf{2 i} \mathbf{i - D}$), and 2-isopropyl-4-methyl-5-aryloxazoles ($\mathbf{2 n} \mathbf{- D}$ and $\mathbf{2 p}-\mathbf{D}$), were obtained in moderate to good yields, respectively. Finally, when benzonitrile was used as the nitrile and the same procedure was applied to acetophenone $\mathbf{1 a}$ and propiophenone $\mathbf{1 n}$ at $100{ }^{\circ} \mathrm{C}$, corresponding 2,5-diphenyloxazole

2a-E
and 2,5-diphenyl-3-methylphenyloxazole 2n-E were obtained in moderate to good yields, respectively.

As a synthetic use of the present method, Oxaprozin was prepared in 2 steps in 46% overall yield from benzyl phenyl ketone 1x, as shown in Scheme 1. Moreover, as a
semi-large-scale reaction, when benzyl phenyl ketone 1x (10 mmol) was used as the substrate, Oxaprozin was obtained in 45% overall yield.

To elucidate the reaction mechanism, the present reaction with acetophenone 1a, molecular iodine, Oxone ${ }^{\circledR}$, and TfOH in propionitrile was carried out at room temperature, not refluxing conditions, to give α-iodoacetophenone in 60% yield, as shown in eq. 1. When α-iodoacetophenone was treated with molecular iodine, Oxone ${ }^{\circledR}$, and TfOH in propionitrile under refluxing conditions, 2-ethyl-5-phenyloxazole 2a-A was obtained in 59% yield (eq. 2). Moreover, refluxing treatment of α-iodoacetophenone with Oxone ${ }^{\circledR}$ and TfOH in propionitrile without molecular iodine provided 2-ethyl-5-phenyloxazole 2a-A in 54% yield (eq. 3). On the other hand, treatment of α-iodoacetophenone with molecular iodine and TfOH without Oxone ${ }^{\circledR}$ did not give 2-ethyl-5-phenyloxazole 2a-A (eq. 4). To clarify the specific character of iodine, α-bromoacetophenone was

1a 1.0 mmol

treated with molecular iodine, Oxone ${ }^{\circledR}$, and TfOH in propionitrile under refluxing conditions. However, 2-ethyl-5-phenyloxazole 2a-A was not obtained (eq. 5). Based on those blank experiments, we conclude that molecular iodine plays an important role in this reaction. However, it does not work as a catalyst, as shown in Table 1.

Today, it is well known that Oxone ${ }^{\circledR}$ is a powerful oxidant; iodoarenes and perfluoroiodoalkanes (monovalent iodine) ${ }^{15}$ are oxidized into trivalent iodine species by Oxone ${ }^{\circledR}$. Therefore, we believe that the present oxazole 2 formation reaction proceeds through the α-iodination of the enol form of ketone 1 with a hypoiodite-sulfate species (i.e., $\mathrm{IOSO}_{3}-$). That is formed by the reaction of molecular iodine with Oxone ${ }^{\circledR}$. Once the α-iodoketone is formed, it is smoothly oxidized into an α-iodosylketone, a very reactive intermediate, which reacts rapidly with the nitriles to produce corresponding oxazoles 2, as shown in Scheme 2.

Scheme 2 Plausible Reaction Pathway

3. Conclusion

In conclusion, 2,5-disubstituted and 2,4,5-trisubstituted oxazoles have been prepared in moderate to good yields via the reactions of alkyl aryl ketones with Oxone ${ }^{\circledR}$ and TfOH in the presence of molecular iodine in acetonitrile, propionitrile, butyronitrile, isobutyronitrile, and benzonitrile. We believe that the present method for the preparation of oxazoles is very useful because of its simplicity, and may open new possibilities in the reactions of alkyl iodides with Oxone ${ }^{\circledR}$.

4. Experimental

4.1. General. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were obtained with JEOL-JNM-ECX400, JEOL-JNM-ECS400, and JEOL-JNM-ECA500 spectrometers. Chemical shifts are expressed in ppm downfield from TMS in δ units. Mass spectra were recorded on JMS-T100GCV, JMS-HX110, and Thermo LTQ Orbitrap XL spectrometers. IR spectra were measured with a JASCO FT/IR-4100 spectrometer. Melting points were determined with a Yamato Melting Point Apparatus Model MP-21. Silica gel 60 (Kanto Kagaku Co.) was used for column chromatography.
4.2 Typical Procedure for Preparation of 2-Ethyl-5-phenyloxazole 2a-A: To a solution of acetophenone 1a $(120 \mathrm{mg}, 1 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}(6 \mathrm{~mL})$ were added TfOH ($0.70 \mathrm{~mL}, 8 \mathrm{mmol}$), molecular iodine $(178 \mathrm{mg}, 0.7 \mathrm{mmol})$, and Oxone ${ }^{\circledR}(676 \mathrm{mg}, 1.1 \mathrm{mmol})$. The mixture was stirred for 5 h at $100{ }^{\circ} \mathrm{C}$ under an Ar atmosphere. After the reaction, the reaction mixture was poured into a sat. aq $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and sat. aq NaHCO_{3} solution, and extracted with $\mathrm{EtOAc}(3 \times 30 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After being filtration and removal of the solvent under reduced pressure, the residue was purified by short flash column chromatography on silica gel (EtOAc-hexane, 1:4) to give 2-ethyl-5-phenyloxazole 2a-A in 61% yield.
4.3 Typical Procedure for Preparation of Oxaprozin: To a solution of benzyl phenyl ketone $\mathbf{1 x}(196 \mathrm{mg}, 1 \mathrm{mmol})$ in succinonitrile (6 mL) were added $\mathrm{TfOH}(0.35 \mathrm{~mL}, 4 \mathrm{mmol})$, molecular iodine ($178 \mathrm{mg}, 0.7 \mathrm{mmol}$), and Oxone ${ }^{\circledR}$ (676 mg , 1.1 mmol). The mixture was stirred for 5 h at $60^{\circ} \mathrm{C}$ under an Ar atmosphere. After the reaction, the reaction mixture was poured into a sat. aq $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and sat. aq NaHCO_{3} solution, and extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After being filtration and removal of the solvent under reduced pressure, the residue was purified by short flash column chromatography on silica gel (EtOAc-hexane, 1:4) to give 2-cyanoethyl-4,5-diphenyloxazole 2x-E in 60% yield. Then, $2 x-E(55 \mathrm{mg}, 0.2 \mathrm{mmol})$ in 1,4 -dioxane (1 mL) was added to a mixture of $4 \mathrm{M} \mathrm{NaOH}(2 \mathrm{~mL})$ and aq. $\mathrm{H}_{2} \mathrm{O}_{2}$ (concentration: 30.0-35.5 \%, 1 mL). The mixture was stirred for 20 h at $100^{\circ} \mathrm{C}$ under an Ar atmosphere. After cooling to room temperature, the reaction mixture was diluted with $1 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$ and extracted with EtOAc (3 $\times 30 \mathrm{~mL}$). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After being filtration and removal of the solvent under reduced pressure, the residue was purified by short flash column chromatography on silica gel (EtOAc-hexane, 1:2) to give Oxaprozin in 77% yield.

2-Ethyl-5-phenyloxazole 2a-A

Oil. IR (neat): 2980, 1557, 1489, 1448, 1132, $759,690 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.40(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$, $2.86(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{tt}, J=7.6$ and $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=8.0$ and $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.61$ (dd, J $=1.4,8.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 165.4, 150.8, 128.8, 128.2, 128.0, 123.9, 121.7, 21.8, 11.2. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{ON}=$ 174.0913, Found $=174.0914$.

2-Ethyl-5-(4'-fluorophenyl)oxazole 2b-A

Oil. IR (neat): 2981, 1571, 1509, 1233, 1028, 834, $597 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.39(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$, $2.85(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.06-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.60(\mathrm{~m}$, 2 H), $7.15(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.3$, $162.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=248.0 \mathrm{~Hz}\right), 150.0,125.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=7.6 \mathrm{~Hz}\right)$, $124.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right), 115.8,121.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21.9 \mathrm{~Hz}\right)$, 21.7, 11.1. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{ONF}=192.1819$, Found $=192.0817$.
2-Ethyl-5-(4'-chlorophenyl)oxazole 2c-A

Oil. IR (neat): 2981, 1572, 1485, 1133, 1092, 955, 819, 738 cm^{-1}. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.38(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $3 \mathrm{H}), 2.85(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.53 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.7,149.9,133.8,129.1,126.7,125.2$, 122.1, 21.8, 11.1. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{ONCl}=208.0524$, Found $=208.0523$.

2-Ethyl-5-(4'-bromophenyl)oxazole 2d-A

Mp $50-51^{\circ} \mathrm{C}$. IR (neat): $2360,1573,1481,1402,1132,954$, $812 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.39(\mathrm{t}, J=7.8$ Hz, 3 H), 2.85 (q, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.23 (s, 1 H), 7.48 (d, J $=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=165.7,149.9,132.0,127.2,125.4,122.2$, 121.9, 21.8, 11.1. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{ONBr}=252.0019$, Found $=252.0016$.
2-Ethyl-5-(3'-bromophenyl)oxazole 2e-A
Mp 44-45 ${ }^{\circ} \mathrm{C}$. IR (neat): 2980, 1582, 1550, 1281, 1133, 957, $780 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.39(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 3 \mathrm{H}), 2.86(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{t}, J$ $=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dt}, J=7.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{dd}, J=$ $7.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.76 (s, 1 H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta=165.9,149.4,130.9,130.3,130.1,126.8,123.0$, 122.7, 122.4, 21.8, 11.1. . HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{ONBr}=252.0019$, Found $=252.0016$.

2-Ethyl-5-(2'-bromophenyl)oxazole 2f-A

Oil. IR (neat): 2939, 1578, 1551, 1141, 1020, 843, $742 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.40(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$, $2.87(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.38 (td, $J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.66 (dd, $J=8.1,1.1 \mathrm{~Hz}, 1$ $\mathrm{H}), 7.72-7.76(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 165.4, 148.4, 134.1, 128.9 (2C), 128.3, 127.5, 126.5, 119.7, 21.7, 11.1. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{ONBr}=252.0019$, Found $=252.0018$.

2-Ethyl-5-(4'-trifluoromethylphenyl)oxazole 2g-A

Oil. IR (neat): 2985, 2359, 1621, 1558, 1416, 1043, 956, $798,594 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.41(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.88(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.65$ $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.3 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.3,149.5,131.4,129.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=32.4\right.$ $\mathrm{Hz}), 125.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.8 \mathrm{~Hz}\right), 123.9,123.9\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=271.8\right.$ Hz), 123.5, 21.8, 11.1. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{ONF}_{3}=242.0787$, Found $=242.0784$.
2-Ethyl-5-(4'-ethoxycarbonylphenyl)oxazole 2h-A
Mp 90-91 ${ }^{\circ} \mathrm{C}$. IR (neat): 2359, 1717, 1557, 1281, 1111, 957 , $829,700 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.41(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.88(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 7.35$ $(\mathrm{s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.07(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.5,166.3,149.9$, 132.2, 130.2, 129.3, 123.8, 123.6, 52.2, 21.8, 11.1. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~N}=232.0968$, Found $=232.0964$.

2-Ethyl-5-(4'-nitrophenyl)oxazole 2i-A

Mp 81-82 ${ }^{\circ} \mathrm{C}$. IR (neat): 2359, 1684, 1557, 1506, 1327, $1145,1043,951,849,688 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=1.42(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.90(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2$ H), $7.44(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.28(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.2,148.8$,
146.9. 133.9, 125.3, 124.4, 124.2, 21.8, 11.1. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{~N}_{2}=219.0764$, Found $=219.0762$.

2-Ethyl-5-(3'-nitrophenyl)oxazole 2j-A

Oil. IR (neat): 2359, 1559, 1520, 1346, 1137, 963, 739, 681 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.42(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $3 \mathrm{H}), 2.90(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.13-8.17(\mathrm{~m}, 1 \mathrm{H})$, $8.46(\mathrm{t}, J=1.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 166.5, 148.6, 148.6, 129.9, 129.8, 129.3, 123.8, 122.4, 118.6, 21.8, 11.1. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{~N}_{2}=219.0764$, Found $=219.0760$.
2-Ethyl-5-(3'-iodo-4'-methylphenyl)oxazole 2 k -A
Oil. IR (neat): $2978,1562,1478,1130,1028,957,879,812$, $671 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.39(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 3 \mathrm{H}$), 2.44 (s, 3 H), 2.85 ($\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.18 ($\mathrm{s}, 1$ H), 7.23-7.27 (m, 1 H), 7.48 (dd, $J=8.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 8.06 $(\mathrm{d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $165.5,149.1,141.2,134.1,129.8,127.5,123.7,121.9$, 101.3, 27.9, 21.7, 11.1.

2-Ethyl-5-(p-biphenyl)oxazole 21-A

Mp 105-107 ${ }^{\circ} \mathrm{C}$. IR (neat): 2359, 1557, 1388, 1132, 997, $732,669 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.41(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.88(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.37$ (tt, $J=1.1,7.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.46(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.61-7.70 (m, 6 H$).{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 165.6, 150.4, 139.8, 139.5, 137.9, 128.7, 127.6, 127.2, 124.4, 122.1, 93.3, 21.8, 11.2. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{ON}=250.1226$, Found $=250.1220$.

2-Ethyl-5-(3'-pyridyl)oxazole 2m-A

Mp 192-195 ${ }^{\circ} \mathrm{C}$. IR (neat): 3649, 2359, 1734, 1254, 1037, $767,631 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta=1.28(\mathrm{t}$, $J=7.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.83(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{ddd}, J=$ $7.9,4.8,0.9 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{dt}, J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $8.52(\mathrm{dd}, J=5.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.91(\mathrm{~d}, J=1.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6): $\delta=165.7,149.0,147.5$, 144.9, 131.0, 124.1, 124.0, 123.8, 21.1, 11.0 HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ON}_{2}=175.0866$, Found $=175.0863$.

2-Ethyl-4-methyl-5-phenyloxazole 2n-A

Oil. IR (neat): 2979, 2360, 1568, 1242, 1017, 763, $669 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$, $2.40(\mathrm{~s}, 3 \mathrm{H}), 2.81(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=8.0 \mathrm{~Hz}$, 1 H), 7.42 ($\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.58 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=163.7,144.8,131.4$, 129.4, 128.7, 127.2, 125.1, 21.6, 13.2, 11.2. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{ON}=188.1070$, Found $=$ 188.1073.

2-Ethyl-4-methyl-5-(4'-fluorophenyl)oxazole 20-A
Oil. IR (neat): 2982, 2361, 1560, 1500, 1230, 1132, 955, $836 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.37(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.09-7.15$ (m, 2 H), 7.51-7.57 (m, 2 H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=163.6,161.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=248.0 \mathrm{~Hz}\right), 144.0,130.9,126.8(\mathrm{~d}$, $\left.J_{\text {C-F }}=8.6 \mathrm{~Hz}\right), 125.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.8 \mathrm{~Hz}\right), 115.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21.9\right.$ Hz), 21.5, 13.0, 11.1. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ONF}=206.0976$, Found $=206.0981$.

2-Ethyl-4-methyl-5-(4'-chlorophenyl)oxazole 2p-A
Oil. IR (neat): 2981, 1573, 1491, 1244, 1093, 827, $714 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.37(\mathrm{t}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H})$, $2.38(\mathrm{~s}, 3 \mathrm{H}), 2.81(\mathrm{q}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.50(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=164.0,143.9,133.0,131.9,128.9,127.8,126.2$, 21.6, 13.3, 11.2. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ONCl}=222.0680$, Found $=222.0685$.

2-Ethyl-4-methyl-5-(3'-iodo-4'-methylphenyl)oxazole

 2q-AOil. IR (neat): 2978, 1571, 1486, 1380, 1239, 1023, 817, $702,665 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.37(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 3 \mathrm{H}$), 2.37 (s, 3 H), 2.45 ($\mathrm{s}, 3 \mathrm{H}$), 2.80 (q, $J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.24-7.29 (m, 1 H), $7.44(\mathrm{dd}, J=8.1,1.6 \mathrm{~Hz}, 1$ H), $8.02(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=163.9,143.2,140.3,135.2,131.8,129.7,128.6,124.8$, 101.3, 27.9, 21.6, 13.2, 11.2. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{ONI}=328.0193$, Found $=328.0192$.

2-Ethyl-4-methyl-5-(3'-iodo-4'-methoxyphenyl)oxazole

 2r-AOil. IR (neat): 2978, 1573, 1491, 1283, 1254, 1108, 1031, 809, 731, $621 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.37$ (t, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $3.91(\mathrm{~s}, 3 \mathrm{H}), 6.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, 1 H), 7.99 (s, 1 H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=163.5$, 157.2, 143.2, 136.2, 130.6, 126.4, 124.0, 110.7, 86.3, 56.4, 21.6, 13.0, 11.2. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{NI}=344.0142$, Found $=344.0142$.

2,4-Diethyl -5-phenyloxazole 2s-A

Oil. IR (neat): 2976, 2359, 1698, 1567, 1220, 1014, 665 cm^{-1}. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.30(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $3 \mathrm{H}), 1.37(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.75(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $2.82(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{tt}, J=7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.42(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=163.9,144.2,137.2,129.4$, 128.6, 127.3, 125.2, 21.7, 20.4, 13.3, 11.3. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{ON}=202.1226$, Found $=$ 202.1222.

2-Ethyl-4-propyl-5-phenyloxazole 2t-A

Oil. IR (neat): $2964,2359,1698,1449,1260,1175,764$, $670 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.01(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 3 \mathrm{H}), 1.37(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.76$ (sext, $J=7.4 \mathrm{~Hz}, 2$ $\mathrm{H}), 2.70(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.81(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.28$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=163.8$, 144.6, 135.9, 129.4, 128.6, 127.2, 125.2, 29.0, 22.1, 21.7, 13.9, 11.3. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{ON}$ $=216.1383$, Found $=216.1379$.

2-Ethyl-4-hexyl-5-phenyloxazole 2u-A

Oil. IR (neat): 2928, 1702, 1568, 1495, 1448, 1238, 1016, $763,692 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.88(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.28-1.44(\mathrm{~m}, 9 \mathrm{H}), 1.67-1.76$ (m, 2 H), 2.71 (t, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.82(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=163.8,144.5,136.2$, 129.4, 128.7, 127.3, 125.3, 31.6, 29.2, 28.9, 27.2, 22.6, 21.7,
14.0, 11.4. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{ON}=$ 258.1852, Found $=258.1853$.

2-Ethyl-4-octyl-5-phenyloxazole 2v-A

Oil. IR (neat): $2925,2854,1721,1569,1462,1220,1065$, 1014, 762, $692 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.88$ (t, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H}$), 1.21-1.41 (m, 13 H), 1.67-1.76 (m, 2 H), 2.71 (t, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), $2.82(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.29$ ($\mathrm{tt}, J=7.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.42(\mathrm{tt}, J=7.2,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.56$ $(\mathrm{dt}, J=7.2,1.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 163.8, 144.5, 136.2, 129.4, 129.2, 128.7, 127.3, 125.3, 31.8, 29.6, 29.4, 28.9, 27.2, 22.6, 21.8, 14.1, 11.4. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{ON}=286.2165$, Found $=$ 286.2164.

2-Ethyl-4-decyl-5-phenyloxazole 2w-A

Oil. IR (neat): 2924, 2853, 2360, 1700, 1569, 1463, 1240, 1015, 692, $671 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.88$ (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$), 1.21-1.42 (m, 17 H), 1.66-1.75 (m, 2 H), $2.70(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.82(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=163.8$, $144.5,136.2,129.4,128.7,127.3,125.3,31.9,29.6$ (3C), 29.4, 29.3, 28.9, 27.2, 22.7, 21.8, 14.1, 11.4. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{ON}=314.2478$, Found $=$ 314.2478.

2-Methyl-5-phenyloxazole 2a-B
Mp 57-58.5 ${ }^{\circ} \mathrm{C}$. IR (neat): 1558, 1484, 1215, 1129, 941, $763,692 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.52(\mathrm{~s}, 3$ H), $7.20(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=161.0,151.0,128.8,128.1,128.0,123.9,121.8$, 14.0. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{ON}=$ 160.0757 , Found $=160.0755$.

2-Methyl-5-(4'-chlorophenyl)oxazole 2c-B
Mp 59-60 ${ }^{\circ} \mathrm{C}$. IR (neat): 2359, 1552, 143, 1129, 1091, 938, $816,669 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.53(\mathrm{~s}, 3$ H), $7.20(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=8.9$ $\mathrm{Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=161.2,150.1$, 133.8, 129.1, 126.6, 125.1, 122.2, 14.1. HRMS (ESI) [M $+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{ONCl}=194.0367$, Found $=$ 194.0365.

2-Methyl-5-(4'-bromophenyl)oxazole 2d-B

Mp 81-83 ${ }^{\circ} \mathrm{C}$. IR (neat): 2359, 1549, 1481, 1210, 1133, 939, $822,671 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.53(\mathrm{~s}, 3$ H), $7.21(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.9$ $\mathrm{Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=161.3,150.1$, 132.0, 127.1, 125.4, 122.4, 121.9, 14.1. HRMS (ESI) [M $+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{ONBr}=237.9862$, Found $=$ 237.9859.

2-Methyl-5-(4'-nitrophenyl)oxazole 2i-B
Mp 160-162 ${ }^{\circ} \mathrm{C}$. IR (neat): 1557, 1504, 1327, 1102, 941, 850, $753,688,529 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $2.58(\mathrm{~s}, 3 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.28$ $(\mathrm{d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $162.8,149.0,146.9,133.8,125.4,124.4,124.1,14.2$. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{O}_{3} \mathrm{~N}_{2}=$ 205.0608 , Found $=205.0605$.

2,4-Dimethyl-5-phenyloxazole 2n-B

Mp 88-90 ${ }^{\circ} \mathrm{C}$. IR (neat): $2360,1569,1393,1281,1003,824$, $669,531 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.37(\mathrm{~s}, 3$ $\mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 7.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.5$
$\mathrm{Hz}, 2 \mathrm{H}$), 7.57 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=159.7,144.2,137.8,132.4,128.7,126.6,92.5$, 13.9, 13.3. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{ON}$ $=174.0913$, Found $=174.0911$.

2,4-Dimethyl-5-(4'-chlorophenyl)oxazole 2p-B

Oil. IR (neat): $2360,1712,1491,1264,1090,1009,824$, $755 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.36(\mathrm{~s}, 3 \mathrm{H})$, 2.47 ($\mathrm{s}, 3 \mathrm{H}$), $7.39(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.5,144.1,132.9$, 131.9, 128.8, 127.6, 126.1, 13.8, 13.1. HRMS (ESI) [M + $\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{ONCl}=208.0524$, Found $=$ 208.0521.

2-Propyl-5-phenyloxazole 2a-C

Oil. IR (neat): 2964, 1556, 1149, 1133, 941, 759, $690 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.04(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$), 1.85 (sext, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.81(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.22$ (s, 1 H), $7.30(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.61(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 164.5, 150.8, 128.8, 128.2, 128.0, 123.9, 121.7, 30.1, 20.5, 13.7. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{ON}=$ 188.1070, Found $=188.1066$.

2-Propyl-5-(4'-chlorophenyl)oxazole 2c-C
Oil. IR (neat): 2964, 1569, 1485, 1186, 1092, 941, 819, 737 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.04(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3$ H), 1.85 (sext, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.21 ($\mathrm{s}, 1 \mathrm{H}$), $7.37(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=164.7,149.8,133.7$, 129.0, 126.7, 125.1, 122.1, 30.1, 20.5, 13.7. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ONCl}=222.0680$, Found $=$ 222.0677.

2-Propyl-5-(4'bromophenyl)oxazole 2d-C

Oil. IR (neat): 2959, 1566, 1481, 1286, 1007, 940, 813, 753 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.03(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3$ H), 1.85 (sext, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $2.80(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.23(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=164.8,149.9,132.0$, 127.2, 125.4, 122.2, 121.8, 30.1, 20.5, 13.7. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ONBr}=266.0175$, Found $=$ 266.0169.

2-Propyl-5-(4'-nitrophenyl)oxazole 2i-C

Mp 76-77 ${ }^{\circ} \mathrm{C}$. IR (neat): $1607,1506,1328,1104,940,851$, $687 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.05(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 3 \mathrm{H}$), 1.88 (sext, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.85 (t, $J=7.5 \mathrm{~Hz}, 2$ H), 7.44 ($\mathrm{s}, 1 \mathrm{H}$), 7.76 (d, $J=9.1 \mathrm{~Hz}, 2 \mathrm{H}$), 8.28 (d, $J=9.0$ $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=166.4,148.8$, 146.9, 134.0, 125.3. 124.4, 124.2, 30.2, 20.4, 13.7. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{~N}_{2}=233.0921$, Found $=233.0916$.

2-Propyl-4-methyl-5-phenyloxazole 2n-C

Oil. IR (neat): 2964, 1704, 1566, 1386, 1241, 1015, 762, $536 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.03(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}$), 1.84 (sext, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.40 (s, 3H), 2.76 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.9$ $\mathrm{Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=162.8,144.8,131.4,129.4,128.7,127.2,125.0$, 30.1, 20.6, 13.7, 13.3. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{ON}=202.1226$, Found $=202.1223$.
2-Propyl-4-methyl-5-(4'-chlorophenyl)oxazole 2p-C
Oil. IR (neat): 2965, 1620, 1572, 1491, 1241, 827, $713 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.02(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$), 1.83 (sext, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.75(\mathrm{t}, J=7.6$
$\mathrm{Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2$ H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=163.0,143.8,132.9$, 131.9, 128.8, 127.8, 126.1, 30.0, 20.5, 13.9, 13.3. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{ONCl}=236.0837$, Found $=236.0833$.

2-Isopropyl-5-phenyloxazole 2a-D

Oil. IR (neat): 2974, 1697, 1554, 1288, 1138, 940, 761, 689 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.41(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $6 \mathrm{H}), 3.15(\mathrm{sep}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.6,150.6,128.8$, 128.3, 128.0, 123.9, 121.5, 28.5, 20.4. HRMS (ESI) [M + $\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{ON}=188.1070$, Found $=$ 188.1066.

2-Isopropyl-5-(4'-chlorophenyl)oxazole 2c-D

Oil. IR (neat): 2974, 1567, 1485, 1407, 1139, 1092, 961, $819,739 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.40(\mathrm{~d}, J$ $=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 3.15(\mathrm{sep}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H})$, $7.37(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.8,149.7$, 133.7, 129.0, 126.8, 125.2, 122.0, 28.5, 20.4. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ONCl}=222.0680$, Found $=$ 222.0678.

2-Isopropyl-5-(4'-bromophenyl)oxazole 2d-D

Oil. IR (neat): 2974, 1696, 1550, 1480, 1106, 1072, 940, $817 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.40(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 6 \mathrm{H}), 3.14(\mathrm{sep}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.9,149.7,132.0,127.2,125.4,122.1$, 121.8, 28.5, 20.4. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ONBr}=266.0175$, Found $=266.0169$.
2-Isopropyl-5-(4'-nitrophenyl)oxazole 2i-D
Mp $75-76^{\circ} \mathrm{C}$. IR (neat): $1607,1546,1509,1328,1106,852$, $737,687 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.43(\mathrm{~d}, J$ $=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 3.19(\mathrm{sep}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H})$, $7.76(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.28(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.5,148.7,146.9,134.0$, 125.2, 124.4, 124.2, 28.6, 20.4. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{~N}_{2}=233.0921$, Found $=233.0916$.

2-Isopropyl-4-methyl-5-phenyloxazole 2n-D

Oil. IR (neat): 2973, 1564, 1445, 1243, 1015, 764, $692 \mathrm{~cm}^{-1}$ ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.39(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}$), $2.40(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{sep}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=7.2 \mathrm{~Hz}$, 1 H), 7.42 ($\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$), $7.58(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.9,144.6,131.3$, 129.4, 128.6, 127.2, 125.1, 28.3, 20.5, 13.3. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{ON}=202.1226$, Found $=$ 202.1224.

2-Isopropyl-4-methyl-5-(4'-chlorophenyl)oxazole 2p-D
Oil. IR (neat): $2974,1569,1490,1388,1245,1010,827$, $705 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.38(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 6 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{sep}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}$, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=167.1,143.7,132.9,131.8,128.9,127.9$, 126.2, 28.3, 20.5, 13.3. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{ONCl}=236.0837$, Found $=236.0832$.

2,5-Diphenyloxazole 2a-E

Mp 66-69 ${ }^{\circ} \mathrm{C}$. IR (neat): $2359,1542,1480,1133,1058,760$, $705 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.35(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.43-7.52(\mathrm{~m}, 6 \mathrm{H}), 7.73(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $8.12(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=161.1$,
151.2, 130.3, 128.9, 128.8, 128.4, 128.0, 127.4, 126.3, 124.2, 123.4. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{ON}=222.0913$, Found $=222.0910$.

2,5-Diphenyl-4-methyloxazole 2n-E

Mp 79-80 ${ }^{\circ} \mathrm{C}$. IR (neat): $1483,1442,1067,777,763,738$, $688 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.50(\mathrm{~s}, 3 \mathrm{H})$, $7.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.49(\mathrm{~m}, 5 \mathrm{H}), 7.68(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.07-8.11(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=159.3,145.4,133.3,130.1,129.1,128.8,128.7$, 127.6, 127.4, 126.2, 125.3, 13.5. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{ON}=236.1070$, Found $=236.1065$.

2-(2'-Cyaboethyl)-4,5-diphenyloxazole 2x-F

Mp 107-109 ${ }^{\circ} \mathrm{C}$. IR (neat): 2987, 2359, 2254, 1585, 1439, 1216, 1058, 765, $593 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=2.95(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-$ 7.41 (m, 6 H), 7.55-7.66 (m, 4 H$).{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=159.1,146.1,135.3,132.0,128.8,128.7,128.6$, $128.5,128.3,127.8,126.5,118.3,24.5,15.0$.

Oxaprozin

Mp 157-158 ${ }^{\circ} \mathrm{C}\left(\mathrm{Mp} 163{ }^{\circ} \mathrm{C}\right.$, commercially available) IR (neat): 2939, 1718, 1569, 1443, 1274, 965, 922, 693, 675 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.96(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 3.20(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.39(\mathrm{~m}, 6 \mathrm{H})$, 7.54-7.64 (m, 4 H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $176.6,161.8,145.5,134.8,132.0,128.7,128.6,128.6$ (2C), 128.2, 127.9, 126.4, 30.9, 23.2.

Acknowledgments

Financial support in the form of a Grant-in-Aid for Scientific Research (No. 20550033) from the Ministry of Education, Culture, Sports, Science, and Technology in Japan, and Iodine Research Project in Chiba University, is gratefully acknowledged.

References

1. (a) Nicolaou, K. C.; Bella, M.; Chen, D. Y.; Huang, X.; Ling, T.; Snyder, S. A. Angew. Chem. Int. Ed. 2002, 41, 3495. (b) Yeh, V. S. C. Tetrahedron, 2004, 60, 11995. (c) Linder, J.; Blake, A. J.; Moody, C. J. Org. Biomol. Chem. 2008, 6, 3908. (d) Pattenden, G.; Ashweek, N. J.; Baker-Glenn, C. A. G.; Walker, G. M.; Yee, J. G. K. Angew. Chem. Int. Ed. 2007, 46, 4359 . (e) Jin, Z. Nat. Prod. Rep. 2011, 28, 1143. (f) Oxazoles: Synthesis, Reactions, and Spectroscopy, Part A; Palmer, D. C.; Ed.; John Wiley \& Sons: Hoboken, NJ, 2003. (g) Oxazoles: Synthesis, Reactions, and Spectroscopy, Part B; Palmer, D. C.; Ed.; John Wiley \& Sons: Hoboken, NJ, 2004.
2. (a) Jin, Z. Nat. Prod. Rep. 2005, 22, 196. (b) Jin, Z. Nat. Prod. Rep. 2006, 23, 464. (c) Jin, Z. Nat. Prod. Rep. 2009, 26, $382 . \quad$ (d) Desroy, N.; Moreau, F.; Briet, S.; Le Fralliec, G.; Floquet, S.; Durant, L.; Vongsouthi, V.; Gerusz, V.; Denis, A.; Escaich, S. Bioorg. Med. Chem. 2009, 17, 1276. (e) Heng, S.; Gryncel, K. R.; Kantrowitz, E. R. Bioorg. Med. Chem. 2009, 17, 3916. (f) Perner, R. J.; Koenig, J. R.; DiDomenico, S.; Gomtsyan, A.; Schmidt, R. G.; Lee, C.; Hsu, M. C.; McDonald, H. A.; Gauvin, D. M.; Joshi, S.; Turner, T. M.

Reilly, R. M.; Kyn, P. R.; Kort, M. E. Bioorg. Med. Chem. 2010, 18, 4821. (g) Choi, M. J.; No, E. S.; Thorat, D. A.; Jang, J. W.; Yang, H.; Lee, J.; Choo, H.; Kim, S. J.; Lee, C. S.; Ko, S. Y.; Lee, J.; Nam, G.; Pae, A. N. J. Med. Chem. 2013, 56, 9008. (h) Jin, Z. Nat. Prod. Rep. 2013, 30, 869. (i) Rai, G.; Joshi, N.; Jung, J. E.; Liu, Y.; Schultz, L.; Yasgar, A.; Perry, S.; Diaz, G.; Zhang, Q.; Kenyon, V.; Jadhav, A.; Simeonov, A.; Lo, E. H.; Leyen, K. V.; Maloney, D. J.; Holman, T. R. J. Med. Chem. 2014, 57. 4035. (j) Hale, K. J.; Grabski, M.; Manaviazar, S.; Maczka, Org. Lett. 2014, 16, 1164. (k) Wenlock, M. C.; Barton, P.; Luker, T. Bioorg. Med. Chem. Lett. 2011, 21, 3550. (1) Chandrasekhar, S,; Sudhakar, A. Org. Lett. 2010, 12, 236.
3. (a) Vedejs, E.; Barda, D. A. Org. Lett. 2000, 2, 1033.
(b) Mann, E.; Kessler, H. Org, Lett. 2003, 5, 4567. (c) Wang, Q.; Xia, Q.; Ganem, B. Tetrahedron Lett. 2003, 44, 6825. (d) Atkins, J. M.; Vedejs, E. Org. Lett. 2005, 7, 3351. (e) Zhang, J.; Polishchuk, E. A.; Chen, J.; Ciufolini, M. A. J. Org. Chem. 2009, 74, 9140. (f) Zhang, J.; Ciufolini, M. A. Org. Lett. 2009, 11, 2389. (g) Jouanno, L.; Mascio, V. D.; Tognetti, V.; Joubert, L.; Sabot, C.; Renaud, P. J. Org. Chem. 2014, 79, 1303.
4. Typical reviews: (a) Turchi, I. J.; Dewar, M. J. Chem. Rev. 1975, 75, 389. (b) Wiley, R. H. Chem. Rev. 1945, 37, 401.
5. (a) Cornforth, J. W.; Cornforth, R. H. J. Chem. Soc. 1947, 96. (b) Robinson, R. J. J. Chem. Soc., Trans 1909, 95, 2167 (c) Gabriel, S. Ber. Bunsen-Ges. Phys. Chem. 1910, 43, 134. (d) Brain, C. T.; Paul, J. M. Synlett 1999, 1642. (e) Wipf, P.; Miller, C. P. J. Org. Chem. 1993, 58, 3604. (f) Morwick, T.; Hrapchak, M.; DeTuri, M.; Campbell, S. Org. Lett. 2002, 4, 2665.
6. (a) Moody, C. J.; Doyle, K. J. Prog. Heterocycl. Chem. 1997, 9, 1. (b) Bagley, M. C.; Buck, R. T.; Hind, S. L.; Moody, C. J. J. Chem. Soc., Perkin Trans. 1 1998, 591. (c) Doyle, K. J.; Moody, C. J. Tetrahedron Lett. 1992, 33, 7769. (d) Davies, J. R.; Kane, P. T.; Moody, C. J. J. Org. Chem. 2005, 70, 7305. (e) Shi, B.; Blake, A. J.; Lewis, W.; Campbell, I. B.; Judkins, B. D.; Moody, C. J. J. Org. Chem. 2010, 75, 152.
7. (a) Senadi, G. C.; Hu, W.-P.; Hsiao, J.-S.; Vandavasi, J. K.; Chen, C.-Y.; Wang, J.-J. Org. Lett. 2012, 14, 4478. (b) Wipf, P.; Aoyama, Y.; Benedum, T. E. Org. Lett. 2004, 6, 3593. (c) Arcadi, A.; Cacchi, S.; Cascia, L.; Fabrizi, G.; Marinelli, F. Org. Lett. 2001, 3, 2501. (d) Saito, A.; Iimura, K.; Hanzawa, Y. Tetrahedron. Lett. 2010, 51, 1471. (e) Beccalli, E. M.; Borsini, E.; Broggini, G.; Palmisano, G.; Sottocornola, S. J. Org. Chem. 2008, 73, 4746. (f) Nilsson, B. M.; Hacksell, U. J. Heterocyclic Chem. 1989, 26, 269. (g) Wipf, P.; Rahman, L. T.; Rector, S. R. J. Org. Chem. 1998, 63, 7132. (h) Coqueron, P.-Y.; Didier, C.; Ciufolini, M. A. Angew. Chem., Int. Ed. 2003, 42, 1411.
8. (a) Martin, R.; Cuenca, A.; Buchwald, S. L. Org. Lett. 2007, 9, 5521. (b) Schuh, K.; Glorius, F. Synthesis 2007, 2297.
9. (a) Fresneda, P. M.; Molina, P. Synlett 2004, 1. (b) Xie, H.; Yuan, D.; Ding, M.-W. J. Org. Chem. 2012, 77, 2954.
(c) Fresneda, P. M.; Castaneda, M.; Blug, M.; Molina, P. Synlett 2007, 324. (d) Huang, N.-Y.; Nie, Y.-B.; Ding, M.-W. Synlett 2009, 611. (e) Takeuchi, H.; Yanagida, S.-I.; Ozaki, T.; Hagiwara, S.; Eguchi, S. J. Org. Chem. 1989, 54, 431.
10. (a) Moody, C. J.; Swann, E. J. Med. Chem. 1995, 38, 1039. (b) Panek, J. S.; Beresis, R. T. J. Org. Chem. 1996, 61, 6496.
11. (a) Milton, M. D.; Inada, Y.; Nishibayashi, Y.; Uemura, S. Chem. Comm. 2004, 23, 2712. (b) He, W.; Li, C.; Zhang, L. J. Am. Chem. Soc. 2011, 133, 8482. (c) Hashmi, A. S.; Schuster, A. M.; Schmuck, M.; Rominger, F. Eur. J. Org. Chem. 2011, 4595. (d) Egorova, O. A.; Seo, H.; Kim, Y.; Moon, D.; Rhee, Y. M.; Ahn, K. H. Angew. Chem., Int. Ed. 2011, 50, 11446. (e) Hashmi, A. S. Angew. Chem., Int. Ed. 2010, 49, 5232. (f) Luo, Y.; Ji, K.; Li, Y.; Zhang, L. J. Am. Chem. Soc. 2012, 134, 17412.
12. (a) Selvi, T.; Srinivasan, K. Chem. Commun. 2014, 50, 10845. (b) Liu, D.; Yu, J.; Cheng, J. Tetrahedron 2014, 70, 1149. (c). Liu, B.; Zhang, Y.; Huang, G.; Zhang, X.; Niu, P.; Wu, J.; Yu, W.; Chang, J. Org. \& Biomol. Chem. 2014, 12, 3912. (d). Zheng, J.; Zhang, M.; Huang, L.; Hu, X.; Wu. W.; Huang, H.; Jiang, H. Chem. Commun. 2014, 50, 3609. (e). Bailey, J. L.; Sudini, R. R. Tetrahedron Lett. 2014, 55, 3674.
13 (a) Gao, Q.; Fei, Z.; Zhu, Lian, M.; Y.; Jia, F.; Liu, M.; She, N.; Wu, A. Tetrahedron 2013, 69, 22. (b) Ming, L.; Tang, J.; Zhao, X. Synthesis 2014, 46, 2499. (c) Zhang, L.; Zhao, X. J. Org. Lett. 2015, 17, 184.

14 Reviews: (a) Togo, H.; Iida, S. Synlett. 2006, 2159. (b) Togo, H. J. Synth. Org. Chem. 2008, 66, 652; Papers: (c) Mori, N.; Togo, H. Synlett 2004, 880. (d) Mori, N.; Togo, H. Tetrahedron. 2005, 61, 5915. (e) Ishihara, M.; Togo, H. Synlett 2006, 227. (f) Iida, S.; Togo, H. Synlett 2006, 2633. (g) Ishihara, M.; Togo, H. Tetrahedron 2007, 63, 1474. (h) Iida, S.; Togo, H. Synlett 2007, 407. (i) Iida, S.; Togo, H. Synlett 2008, 1639. (j) Iida, S.; Ohmura, H. Togo, Tetrahedron 2009, 65, 6257; (k) Ohmura, H.;

Takahata, M.; Togo, H. Tetrahedron Lett. 2010, 51, 4378. (l) Suzuki, Y.; Ishiwata, Y.; Moriyama, K.; Togo, H. Tetrahedron Lett. 2010, 51, 5950. (m) Takahashi, S.; Togo, H. Heterocycles 2010, 82, 593. (n) Suzuki, Y.; Yoshino, T.; Moriyama, K.; Togo, H. Tetrahedron. 2011, 67, 3809. (o) Baba, H.; Moriyama, K.; Togo, H. Tetrahedron Lett. 2011, 52, 4303. (p) Suzuki, Y.; Moriyama, K.; Togo, H. Tetrahedron 2011, 67, 7956. (q) Ushijima, S.; Dohi, S.; Moriyama, K.; Togo, H. Tetrahedron 2012, 68, 1436. (r) Baba, H.; Moriyama, K.; Togo, H. Synlett. 2012, 23, 1175. (s) Ushijima, S.; Moriyama, K.; Togo, H. Tetrahedron 2012, 68, 4701. (t) Dohi, S.; Moriyama, K.; Togo, H. Tetrahedron 2012, 68, 6557. (u) Kikui, H.; Moriyama, K.; Togo, H. Synthesis, 2013, 791. (v) Ishii, G.; Harigae, R.; Moriyama, K.; Togo, H. Tetrahedron, 2013, 69, 1462. (w) Shimojo, H.; Moriyama, K.; Togo, H. Synthesis, 2013, 45, 2155. (x) Miyagi, K.; Moriyama, K.; Togo, H. Eur. J. Org. Chem., 2013, 5886. (y) Tsuchiya, D.; Kawagoe, Y.; Moriyama, K.; Togo, H. Org. Lett., 2013, 15, 4194. (z) Dohi, S.; Moriyama, K.; Togo, H. Eur. J. Org. Chem., 2013, 7815. (za) Kawagoe, Y.; Moriyama, K. Togo, H. Eur. J. Org. Chem., 2014, 4115.
15. (a) Thottumkara, A. P.; Bowsher, M. S.; Vinod, T. K. Org. Lett. 2005, 7, 2933. (b) Yakura, T.; Konishi, T. Synlett 2007, 765. (c) Chen, C.; Feng, X.; Zhang, G.; Zhao, Q.; Huang, G. Synthesis 2008, 3205. (d) Uyanik, M.; Akakura, M.; Ishihara, K. J. Am. Chem. Soc. 2009, 131, 251. (e) Uyanik, M.; Fukatsu, R.; Ishihara, K. Org. Lett. 2009, 11, 3470. (f) Tanaka, A.; Togo, H. Synlett, 2009, 3360.

Supplementary Material

H-NMR and C-NMR charts of all oxazoles.

X: parts per Million : Carbon 13

[^0]: * Corresponding author. Tel.: 81-43-290-2792; fax:81-43-290-2792; e-mail: togo@faculty.chiba-u.jp..

