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Abstract 

A novel and efficient method for the one-pot synthesis of 2H-indazole from readily available 

building blocks is reported. The reaction of 2-nitrobenzylamines with zinc and ammonium formate 

underwent partial reduction to nitroso benzylamine followed by an intramolecular cyclization to 

afford 2H-indazole via N-N bond formation. The carboxylic acid moiety of indazole was 

proceeded to regioselective alkyne insertion under ruthenium catalysis to form pyranone-fused 

indazoles. The regioselectivity is influenced by the weak co-ordination of indazole ring nitrogen 

to the metal center. 

Introduction 

The indazole scaffold is a ubiquitous structural motif found in many natural products, 

agrochemicals and pharmaceutically important molecules.1 In particular, 2H-indazole has 

been recognized as a privileged pharmacophore with a broad range of physiological and 
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pharmacological activities and it also acts as a bioisosteric replacement for other 

heterocycle structures such as indoles and benzimidazole.2 For example, Niraparib is a 

known PARP inhibitor for the treatment of ovarian cancer.3 2-Benzyl-3-phenyl-7-

(trifluoromethyl)-2H-indazole has been used a selective liver X receptor modulator. A 

substituted indazole with pyrazine and azetidine is identified as a glucokinase K activator.4-
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Figure 1. Biologically active indazoles and coumarin derivatives  

Similarly, iscoumarin is a well-known heterocycle for its diverse physiological and 

medicinal applications. Oosponal and Oospolactone have demonstrated their potent 

antifungal and antibiotic activities.6 Cytogenin exhibits significant immunomodulating, 

antitumor and antiarthritic activities.7 Moreover, the synthetic drug NM-3 is in the clinical 

trials for its potent antitumour function.8 Owing to their biological significance, numerous 

synthetic methods have been reported in the literature. Among them, the direct N-alkylation 

or arylation of indazole is quite challenging due to the preferential formation of the 

thermodynamically more stable 1H-indazole or a mixture of 1H-indazole and 2H -indazole 

through their tautomeric forms.9 In addition, the separation of N1 and N2 alkylated mixtures 

is laborious and tedious. As an alternative, one of the first methods to prepare 2H-indazole 

was reductive cyclization of ortho-imino-nitrobenzenes mediated by excess of triethyl 

phosphite at high temperature.10 Subsequently, many other methods such as transition metal 
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catalyzed cyclization of iminonitroaromatics and 2-azidoimines were developed.11 A 

variety of other methods including benzyne [3+2] cycloaddition, zincate addition to 

diazonium salts, and alkylation of 1H-indazoles have also been reported.12 Among them, 

reductive cyclization of 2-nitrobenzylamines by using Sn, Ti, Zn and In have attracted 

considerable attention because of the readily available starting material.13 Nevertheless, 

these methods still suffer from setbacks such as unsatisfying yields, longer and harsh 

reaction conditions. Consequently, there is still a need to develop an operationally simple 

and easy means to access this important class of heterocycles. In our strategy, N2-

substituted indazole was obtained selectively with appropriately substituted ortho-nitro 

benzyl amines via partial reduction followed by intramolecular N-N bond formation. 

Similarly, among many available synthetic methods for the preparation of isocoumarin, 

transition-metal catalyzed protocols are proven to be a concise and efficient strategy. 

Especially, less expensive ruthenium (II) catalyzed, chelation assisted C-H 

activation/annulation of aromatic carboxylic acid with internal alkynes has received much 

attention in the recent years.14 

Fused heterocycles containing two or more pharmacophores have played a very 

important role in both medicinal chemistry and organic synthesis.15 While indazoles and 

coumarin are well presented, indazole fused with pyranone bi-heterocycle is rarely reported 

in the literature and no attempt has been made to the synthesize of pyranone-fused 

indazoles. In continuation with our research interest on the development of efficient 

methods for hybrid heterocycles,16 we report herein a novel, atom economic and 

regioselective synthesis of indazole fused pyranone via a sequential, stepwise pathway as 

shown in Scheme 1. In our methodology, methyl 4-(bromomethyl)-3-nitrobenzoate acts as 

a basic substrate to build an indazole skeleton by nucleophilic aliphatic substitution with 

primary amines followed by reductive cyclization. Later, the strategically positioned 

methyl ester is hydrolyzed to a carboxylic acid which subsequently undergoes 

regioselective alkyne insertion through ruthenium catalysis to furnish pyranone-fused 

indazoles. To the best of our knowledge, construction of indazole fused pyranone via step-

wise reductive cyclization and alkyne insertion has never been reported. 
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Scheme 1. A proposed synthetic route for the synthesis of pyranone-fused indazoles  

Result and Discussion 

Our preliminary investigation began with the reaction of methyl 4-(((thiophene-2-

ylmethyl)amino)methyl)-3-nitrobenzoate 1{1} in the presence of zinc and ammonium 

formate  in methanol to prepare diamine product 2´{1}(Table 1) for the possible synthesis 

of quinazoline with aldehydes.  

 

Table 1. Optimization of the reaction conditions[a] 

NO2

O

O H
N

O

O N
N NH2

O

O H
NS

+

SS 2{1} 2'{1}1{1}

 
 

Entry Reductive agents Yield (%) 
2{1} 2´{1} 

1 Zn (2 equiv)/ HCOONH4 (1 equiv) 45 19 

2 Pd/C (2 equiv) / H2 0 85 

3 Pd/C (2 equiv)/ HCOONH4 (1 equiv) 0 82 

4 Zn (3 equiv)/ HCOONH4 (1 equiv) 62 9 

5 Zn (5 equiv)/ HCOONH4 (1 equiv) 76 0 
a Reaction conditions: the reaction was carried out in 0.165 mmol scale with various reductive agents in 

methanol at room temperature for 1 h. 
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However, to our surprise the reaction furnished an unknown compound (45%) as the 

major product together with the diamine 2´{1} (19%). The absence of benzyl methylene 

peak and the appearance of characteristic signal of C(3)-H as a sharp singlet in the aromatic 

region (7.95 ppm) confirmed the formation of 2H-indazole 2{1}. Further, the structure of 

2{1} was ascertained by X-ray single crystallography (Figure 2) which indicates the N-N 

bond formation. 

N
N

O

O S

2{1}

H (7.95 ppm) 

 
 

Figure 2. ORTEP diagram of compound 2{1} 

We reasoned that under reductive condition, the nitro group underwent partial 

reduction to nitroso benzyl amine which cyclized intramolecularly to furnish indazole via 

N-N bond formation. This unprecedented result encouraged us to develop an exclusive 

method to selectively synthesize indazole ring owing to their notable biological property. 

In order to study the formation of 2{1} exclusively, the reaction conditions were optimized 

with various reducing agents as shown in Table 1. When the same reaction was carried out 

in the presence of palladium on charcoal with hydrogen gas or ammonium formate, only 

diamine 2´{1} (entries 2  and 3) was obtained. Increasing the amount of zinc, significantly 

increases the yield of 2{1} with the diminished formation of 2´{1} (entries 4 and 5). 

However, an exclusive formation of 2{1} in 76% yield was accomplished when ammonium 

formate in methanol was added drop wise to the reaction mixture (entry 5). 

With the optimized conditions in hand, the scope of the reaction was evaluated. As 

shown in Table 2, various substituted 2-nitrobenzylamines were tested for this unique 

transformation. For alkyl substituted substrates, the corresponding 2H-indazoles were 

obtained in good to excellent yields. However, moderate yields were obtained in the case 

of aromatic substituted (2{5} and 2{19}) and bulky substituted (2{8} and 2{9}) 2-

nitrobenzylamine accompanied with compounds 2´{5}, 2´{19}, 2´{8}, and 2´{9}. The 
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moderate yields of indazole formation may be due to the resonance stabilization of nitrogen 

lone pair of aniline type amine within the aromatic ring in the nitroso form (Scheme 2, A). 

Table 2. Synthesis of 2H-indazoles via reductive cyclization 

O

O
H3C NO2

O

O
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O
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Entry Product Isolated yield (%) Entry Product Isolated yield (%) 

1 2{1} 76 11 2{11} 70 

2 2{2} 79 12 2{12} 66 

3 2{3} 62 13 2{13} 75 

4 2{4} 65 14 2{14} 75 

5 2{5} 47 15 2{15} 72 

6 2{6} 49 16 2{16} 78 

7 2{7} 71 17 2{17} 68 

8 2{8} 53 18 2{18} 71 
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9 2{9} 51 19 2{19} 45 

10 2{10} 80 20 2{20} 65 

   21 2{21} 79 

          

           Based on the literature reports, a tentative mechanism for the synthesis of 2H-

indazole is depicted in Scheme 2. Initially, 2-nitrobenzylamine was reduced to nitroso 

compound A in the presence of zinc and ammonium formate via reductive addition of two 

hydrogen atoms. It is noteworthy that, because of the presence of nucleophilic benzyl 

nitrogen at the ortho-position, the reduction of nitro group with zinc under acidic condition 

stop at nitroso state for the possible formation of N-N bond. Then, an intramolecular 

nucleophilic addition of benzyl amine on nitroso group delivered intermediate B, upon 

elimination of water to produce 2H-indazoles. The driving force for the proton elimination 

in the final step is due to the formation of the more stable, aromatic like 2H-indazole. 

 

Scheme 2. A plausible mechanism for the formation of 2H-indazoles 
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          In light of a successful reductive cyclization process for the regioselective synthesis 

of 2H-indazoles, the next task is aiming to build a pyranone framework by utilizing an 

acidic form of indazole through metal mediated alkyne insertion. Our attempt was initiated 

by the base hydrolysis (aq. NaOH) of indazole esters to the corresponding acid derivatives. 

After synthesizing these acids, we carried out an oxidative coupling of 3{14,1} with 
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diphenylacetylene 4{1} in the presence of [RuCl2(p-cymene)]2 (5 mol %), Cu(OAc)2.H2O 

(2 equiv) as an oxidant and AgOTf (20 mol %) as an additive in refluxing p-xylene (5 mL) 

for 12 h to deliver the desired product 5{14,1} in 45% yield (see Supporting Information, 

Table S1, entry 1). Encouraged by this promising result, further screening of the reaction 

conditions was carried out as shown in see Supporting Information File in Table S1. From 

these results, we concluded that [RuCl2(p-cymene)]2 (5 mol %), Cu(OAc)2.H2O (2 equiv) 

as an oxidant and AgOTf (20 mol %) as an additive in t-butanol under microwave 

irradiation at 100 °C for 30 minutes provided the optimal results. (See Supporting 

Information, Table S1).  

 

 

 

 

Table 3. Indazole-directed regioselective synthesis of fused bi-heterocycles 

N
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N
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30 min N

N
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O
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R2

O

3 4 5
H2

+

R2=Me, R3=Ph
4{3}

Acids
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R2

R3

R2

R3

R2

R3

R2=R3=COOEt
4{4}

R2=R3=4-CF
3-C6H4

-

4{6}
R2=R3=4-OMe-C

6H4
-

4{5}

R2

R3

R2=R3=C4H3S  4{7}
 

Entry Product Isolated yield (%) Entry Product Isolated yield (%) 

1 5{14,1} 82 12 5{2,1} 77 
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2 5{21,2} 79 13 5{2,2} 75 

3 5{21,3} 68 14 5{2,3} 69 

4 5{11,1} 77 15 5{3,1} 67 

5 5{11,2} 81 16 5{12,1} 65 

6 5{11,3} 69 17 5{9,1} 74 

7 5{13,1} 82 18 5{16,3} 71 

8 5{13,2} 79 19 5{17,4} ND 

9 5{13,3} 68 20 5{17,5} 79 

10 5{10,1} 85 21 5{17,6} 74 

11 5{10,3} 72 22 5{17,7} 81 

         

With the optimized reaction condition in hand, we probed the substrate scope of 

ruthenium catalyzed oxidative annulation with various substituted indazoles and internal 

alkynes (Table 3). A broad range of functional groups were well-tolerated and a variety of 

N2 substituted (alkyl, aryl, heterocyclic) indazoles were synthesized in excellent yields. 

Remarkably, the coupling reaction occurred regioselectively with C-H1 bond due to the 

possible chelation of indazole nitrogen to the metal center. We next investigated the scope 

of the reaction by using various disubstituted alkynes such as alkyl, aryl, and electron-rich 

and electron deficient symmetrical alkynes which converted to the products with moderate 

to excellent yields. However, with diethyl acetylenedicarboxylate, no conversion was 

observed under the same reaction condition. 

 The reaction of unsymmetrical alkyne (prop-1-yn-1-yl benzene) with indazoles 3 

is highly regioselective in which the alkyne carbon bearing phenyl group is attached to the 

acid group site and the alkyne carbon bearing a methyl group is connected to the ortho-

carbon of the acid to give the desired products (5{21,3}, 5{11,3}, 5{13,3}, 5{10,3}, 5{2,3} 

and 5{16,3}) in good yields. The reason for the high regioselectivity would be the steric 

repulsion between the bulky phenyl group and the indazole ring. The observed 

regioselectivity is ascertained by X-ray single crystallography studies and the ORTEP 

diagrams of the representative compounds 5{2,3} are shown in Figure 3. Interestingly, we 
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didn’t observe any decarboxylative cyclization product in the present catalytic reaction 

system. 

O

N
NO

5{2,3}

 

 

Figure 3. ORTEP diagram of compounds 5{2,3}  

A plausible mechanism for the ruthenium-catalyzed regioselective C-H bond 

activation/annulation reaction is illustrated in Scheme 3. The catalytic cycle commences 

with the formation of five membered ruthenacycle A via acetate assisted irreversible C-H1 

bond activation with the liberation of acetic acid. The regioselective C-H1 bond activation 

is governed by the weak co-ordination of indazole ring nitrogen to the metal center. 

Subsequently, an alkyne insertion furnished seven membered ruthenacycle which upon 

reductive elimination yields the desired pyranone-fused with indazole. The resulting Ru(0) 

is reoxidized to Ru(II) in the presence of Cu(II) salts to reinitiate the catalytic cycle. 

 

 

 

 

 

 

 

Scheme 3. A plausible catalytic cycle for the regioselective alkyne annulation with acids  
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After the successful synthesis of pyranone-fused indazoles, we extended this methodology 

for alkene insertion to the synthesis of indazole-fused furanone scaffold. Gratifying, under the 

optimized condition, oxidative coupling with tert-butyl acrylate took place smoothly to produce 

the target molecule in 82% yield (Scheme 4). 

 

 

 

 

 

 

 

Scheme 4. Alkenylation/cyclization cascade for the synthesis of indazole-fused furanone 
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Similarly, we have successfully carried out selective C3-arylation of indazole fused 

pyranone with aryl halides in the presence of Pd/Ag catalytic system in water as shown in 

(Table 4). 

Table 4.  Selective arylation of indazole-fused pyranone 5{21,2} 

Pd(OAc)2 (10 mol%) Ag
2CO3 (1 eq)N

N
O

O

8{21,2,1}
 78%

H2O,reflux,12 h

I

N
N

O

O

R5

R5

5{21,2}

7

H
8

IMeO

7{1}

IH3C
Aryl halides(7)

7{2}

N
N

O

O

OMe

N
N

O

O

CH3

8{21,2,2}
 80%
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In summary, a new synthetic route to prepare pyranone-fused indazole was explored 

by employing readily available substrates. The 2H-indazole core is accomplished via 

reductive cyclization for N-N bond formation in the presence of zinc/ammonium format at 

ambient temperature. Subsequently, the strategically positioned carboxylic derivatives 

were successfully employed as a suitable substrate for the regioselective C-H bond 

activation /annulation with internal alkynes to deliver indazole-fused pyranones. The new 

protocol offers a concise route for the construction of these bi-heterocycles with diverse 

functionalization.  

 

EXPERIMENTAL SECTION 

Experimental procedure for the synthesis of Methyl 2-(thiophen-2-ylmethyl)-2H-indazole-6-

carboxylate 2{1}. 

To a solution of methyl 3-nitro-4-(((thiophen-2-ylmethyl)amino)methyl)benzoate 1{1} 

(100 mg, 0.326 mmol) in methanol (6 mL) was added zinc (104 mg, 1.633 mmol) followed 

by ammonium formate (20 mg, 0.344 mmol) in methanol (1 mL) was added dropwise. The 

resulting reaction mixture was stirred at room temperature for 1 h. After the completion of 

the reaction, the reaction mixture was filtered through a pad of celite and washed with 

methanol (10 mL). The filtrate was evaporated and dissolved in CH2Cl2 (15 mL). The 

precipitated ammonium formate was filtered off. The resulting crude product was purified 

by silica gel column chromatography (EtOAc/Hexane = 3/10) to afford the desired product 

2{1} (67 mg, 76 %) 

Methyl 2-(thiophen-2-ylmethyl)-2H-indazole-6-carboxylate 2{1} 

Brown solid; yield 67 mg, 76%; mp 94-96 °C; 1H NMR (300 MHz, CDCl3) δ 8.53 (s, 1H), 7.96 

(s, 1H), 7.71 (dd, J = 8.8, 1.2 Hz, 1H), 7.64 (d, J = 8.8 Hz, 1H), 7.32 (dd, J = 5.2, 1.2 Hz, 1H), 

7.16 (d, J = 3.6 Hz, 1H), 7.01 (dd, J = 5.2, 3.6 Hz, 1H), 5.79 (s, 2H), 3.95 (s, 4H); 13C NMR (75 

MHz, CDCl3) δ 183.1, 167.9, 148.5, 137.1, 128.5, 128.3, 127.6, 127.4, 124.5, 123.1, 121.9, 121.8, 

120.7, 52.6; IR (cm-1, neat): 2948, 1714, 1502; MS (EI-MS) m/z: 272 (M+); HRMS: calculated for 

C14H12N2O2S m/z: 272.0619; found 272.0618. 
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Experimental procedure for the synthesis of 2-cyclopentyl-8,9-diphenylpyrano[3,4-

g]indazol-6(2H)-one 5{14,1}.  

To an oven dried microwave vial was added 2-cyclopentyl-2H-indazole-6-carboxylic acid 

(70 mg, 0.304 mmol), diphenyl acetylene (65 mg, 0.365 mmol), [RuCl2(p-cymene)]2 (9 mg, 

0.0152 mmol), Cu(OAc)2.H2O (121 mg, 0.608 mmol) followed by AgOTf ( 16 mg, 0.0608 

mmol) in t-BuOH (3 mL). The reaction tube was sealed and irradiated at a ceiling 

temperature of 100 °C using 150 W for 30 min. Upon completion of reaction, the residue 

was filtered through a pad of celite and the filtrate was concentrated in vacuo. The resulting 

crude product was purified by column chromatography (EtOAc/hexane= 1/5) on silica gel 

to afford compound 5{14,1} (101 mg, 82 %) 

2-cyclopentyl-8,9-diphenylpyrano[3,4-g]indazol-6(2H)-one 5{14,1}.  

Brown semi solid; yield 62 mg, 71%; 1H NMR (300 MHz, CDCl3) δ 7.95 (d, J = 8.8 Hz, 1H), 7.87 

(s, 1H), 7.67 (d, J = 8.8 Hz, 1H), 7.40–7.32 (m, 7H), 7.21–7.19 (m, 3H), 4.64 (quint, J = 7.4 Hz, 

1H), 1.99–1.93 (m, 2H), 1.82–1.75 (m, 2H), 1.58–1.51 (m, 4H); 13C NMR (75 MHz, CDCl3) δ 

163.4, 153.0, 143.9, 136.9, 133.7, 132.6, 132.0, 129.8, 129.1, 128.3, 128.1, 127.8, 125.4, 122.2, 

121.2, 120.6, 117.3, 117.1, 64.9, 33.9, 25.1;IR (cm-1, neat): 2954, 1714, 1492; MS (EI-MS) m/z: 

406 (M+); HRMS: calculated for C27H22N2O2 m/z: 406.1681; found 406.1681. 
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