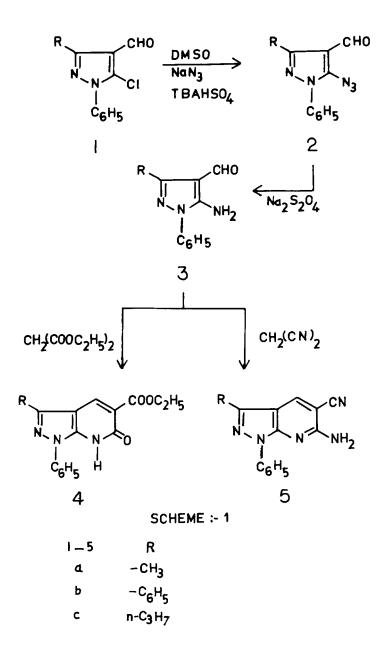
SYNTHETIC COMMUNICATIONS, 26(7), 1341-1348 (1996)

A FACILE SYNTHESIS OF PYRAZOLO[3,4-b]PYRIDINES

V.K. Ahluwalia^{*} and Bindu Goyal Department of Chemistry University of Delhi, Delhi-110007, INDIA


Abstract: Pyrazolo[3,4-b]pyridines (4) and (5) have been obtained by the condensation of 3-(alkyl/aryl)-5-amino-1-phenyl-1H-pyrazole-4-carboxaldehydes (3) with active methylene compounds viz: diethyl malonate and malononitrile.

The discovery that pyrazolo[3,4-b]pyridines are involved in various pharmacological applications^{1,2,3} as good vasodialators, hypotensive, hypoglycemic, antiinflammatory, analgesic and antipyretic agents have promoted a great current interest in facile and general routes to these molecules in synthetically useful yields. The earlier method of synthesis of such systems involve the cyclisation^{4,5} of 4-substituted pyrazolinones with NH4OAc and PPA.

We now report a novel synthetic route to the synthesis of pyrazolo[3,4-b]pyridines which involve annulation of a pyridine ring onto the preformed pyrazole ring. The reaction involves the condensation of 3-(alkyl/aryl)-5-amino-1-phenyl-1H-pyrazole-4-carboxaldehydes (3) with active methylene compounds viz: diethyl malonate and malononitrile (Scheme-1).

o-Aminoaldehyde derivatives are the key intermediates for the synthesis of various biologically active heterocycles.⁶⁻⁹ The essential intermediate 3-(alkyl/aryl)-5-amino-1-phenyl-1H-pyrazole-4-carboxaldehydes (3) has been prepared as follows:

^{*} To whom correspondence should be addressed

2	R	Yield [%]	m.p. [^o C]	Molecular Formulae ^(a) [Mol. Wt.]	IR (Nujol) [cm ⁻¹]	¹ H NMR (CDCl ₃ / TMS) [ð / ppm]
a*	-CH3	75	42-43 Lit ¹¹ 42	C11H9N5O1 (227)	2140 [Azide] 1690 [-C = O] 2750 [-CH = O]	2.4(s, 3H, CH ₃), 7.1- 7.7(m, 5H, C ₆ H ₅), 9.8(s, 1H, CHO)
b	-C6H5	80	54-55	C ₁₆ H ₁₁ N5O ₁ (289)	2160 [Azide] 1710 [-C = O] 2780 [-CH = O]	7.0-7.9(m, 10H, 2xC ₆ H ₅), 9.9(s, 1H, CHO)
с	n-C3H7	70	37	C ₁₃ H ₁₃ N ₅ O ₁ (255)	2140 [Azide] 1700 [-C = O] 2770 [-CH = O]	1.0(t, 3H, CH ₃), 1.7(m, 2H, CH ₂), 2.8(t, 2H, CH ₂), 7.5(m, 5H, C ₆ H ₅), 9.9(s, 1H, CHO)

Table : 1

Physical, IR, ¹	H	NMR and Mass	Spectral of	data of	compounds ((2)
----------------------------	---	--------------	-------------	---------	-------------	-----

(a) : Microanalysis was found to be in agreement with the expected values

• : MS (m/z) : 227 (M^+)

The reaction of 3-(alkyl/aryl)-5-chloro-1-phenyl-1H-pyrazole-4-carboxaldehydes¹⁰ (1) with sodium azide and DMSO in presence of phase transfer catalyst viz: tetrabutylammonium hydrogen sulfate gave the corresponding 3-(alkyl/aryl)-5-azido-1-phenyl-1H-pyrazole-4-carboxyldehyde (2) derivatives in good yields (70-80 %). One of the azido compound 2a, was obtained earlier¹¹ in 67 % yields without the use of phase transfer catalyst. The 3-(alkyl/aryl)-5azido-1-phenyl-1H-pyrazole-4-carboxaldehydes (2) on reduction with sodium dithionite in alcoholic medium gave the required intermediate (3) in 70-75 % yields. This reduction was earlier carried out by hydrogen sulfide in alcoholic medium¹² in comparatively low yields (60 %).

Compounds (3) on reaction with diethyl malonate gave the corresponding 3-(alkyl/aryl)-5-carbethoxy-6,7-dihydro-6-oxo-1-phenyl-1Hpyrazolo[3,4-b]pyridine derivatives (4) in (80-85 %) yields. However, the

3	R	Yield [%]	m.p. [^o C]	Molecular Formulae ^(a) [Mol. Wt.]	I R (Nujol) [cm ⁻¹]	¹ H NMR (CDCl ₃ / TMS) [ð / ppm]
a*	-CH3	70	66-67	C ₁₁ H ₁₁ N ₃ O ₁ (201)	3350 [NH ₂] 1660 [-C = O] 2770 [-CH = O]	2.4(s, 3H, CH ₃), 6.1(s, 2H, NH ₂), 7.3- 7.8(m, 5H, C ₆ H ₅), 9.8(s, 1H, CHO)
b	-C ₆ H5	75	50-52	C ₁₆ H ₁₃ N ₃ O ₁ (278)	3350 [NH ₂] 1660 [-C = O] 2790 [-CH = O]	6.0(s, 2H, NH ₂), 7.3- 7.8(m,10H, 2xC ₆ H ₅), 9.8(s, 1H, CHO)
С	n-C3H7	70	41-42	C ₁₃ H ₁₅ N ₃ O ₁ (229)	3350 [NH ₂] 1660 [-C = O] 2780 [-CH = O]	1.1(t, 3H, CH ₃), 1.8(m, 2H, CH ₂), 2.8(t, 2H, CH ₂), 6.1(s, 2H, NH ₂), 7.6(m, 5H, C ₆ H ₅), 9.8(s, 1H, CHO)

Table	:	2
-------	---	---

Physical, IR, ¹H NMR and Mass Spectral data of compounds (3)

(a) : Microanalysis was found to be in agreement with the expected values

* : MS (m/z): 201 (M⁺)

reaction of (3) with malononitrile in presence of triethylamine gave the corresponding 3-(alkyl/aryl)-6-amino-5-cyano-1-phenyl-1H-pyrazolo[3,4-b] pyridines (5) in good yields (70-80 %).

The structures of compounds 2,3,4 and 5 were assigned on the basis of their microanalysis, ¹H NMR, IR and Mass spectral data.

Experimental

Melting points were uncorrected. IR spectra were recorded on a Shimadzu infrared spectrophotometer IR-435 (ν_{max} . in cm⁻¹).¹H NMR spectra were recorded in CDCl₃ on a Perkin-Elmer R-32 (90 MHz) spectrometer, using TMS as an internal standard (chemical shifts in δ , ppm).

Table	:	3
-------	---	---

Physical, IR, ¹H NMR and Mass Spectral data of compounds (4)

4	R	Yield [%]	m.p. [^o C]	Molecular Formulae ^(a) [Mol. Wt.]	IR (Nujol) [cm ⁻¹]	¹ H NMR (CDCl ₃ / TMS) [δ / ppm]
a*	-CH3	85	285	C ₁₆ H ₁₅ N ₃ O ₃ (297)	3320 [-NH] 1670 [-COOEt]	1.4(t,3H,CH ₃), 2.6(s, 3H,CH ₃), 4.4(q, 2H, CH ₂), 7.4(m, 3H, C ₆ H ₅), 8.2(d, 2H, C ₆ H ₅), 8.6(s, 1H, CH = C), 12.2(br., 1H, NH, D ₂ O exch.)
b	-C6H5	75	270	C ₂₁ H ₁₇ N ₃ O ₃ (369)	3330 [-NH] 1660 [-COOEt]	1.4(t,3H,CH ₃), 4.4(q, 2H, CH ₂), 7.4(m, 6H, 2xC ₆ H ₅), 8.0(d, 4H, 2xC ₆ H ₅), 8.8(s, 1H, CH = C), 12.1(br., 1H, NH, D ₂ O exch.)
c	n-C3H7	75	185-186	C ₁₈ H ₁₉ N ₃ O ₃ (325)	3320 [-NH] 1670 [-COOEt]	1.0(t,3H,CH ₃), 1.4(t, 3H,CH ₃), 1.8(m, 2H, CH ₂),2.8(t,2H,CH ₂), 4.6(q,2H,OCH ₂), 7.4(m, 3H, C ₆ H ₅), 8.3(d, 2H, C ₆ H ₅), 8.6(s, 1H, CH = C), 12.2(br., 1H, NH, D ₂ O exch.)

(a): Microanalysis was found to be in agreement with the expected values

* : MS (m/z) : 297 (M^+)

3-(Alkyl/aryl)-5-azido-1-phenyl-1H-pyrazole-4-carboxaldehydes (2) from 3-(alkyl/aryl)-5-chloro-1-phenyl-1H-pyrazole-4-carboxaldehydes (1) : General Procedure:

A mixture of 5-chloro-3-methyl-1-phenyl-1H-pyrazole-4-carboxaldehyde¹⁰ (1a; 1.0 g; 5 mmol), sodium azide (0.4 g; 6 mmol), tetrabutylam-

5	R	Yield [%]	m.p. [^o C]	Molecular Formulae ^(a) [Mol. Wt.]	IR (Nujol) [cm ⁻¹]	¹ H NMR (Py-d5 / TMS) [δ / ppm]
а*	-CH3	70	225-26	C14H11N5 (249)	3350 [-NH2] 2200 [-C≡N]	2.5(s, 3H,CH ₃), 4.7(s, 2H, NH ₂), 7.3(m, 3H, C ₆ H ₅), 8.4(d, 2H, C ₆ H ₅), 8.6(s, 1H, CH = C)
b	-C6H5	70	305	C19H13N5 (311)	3360 [-NH2] 2200 [-C ☴ N]	4.4(s, 2H, NH ₂), 7.5(m, 6H, 2xC ₆ H ₅), 8.6(d, 4H, 2xC ₆ H ₅), 8.8(s, 1H, CH=C)
с	n-C3H7	65	130-132	C ₁₆ H ₁₅ N ₅ (277)	3340 [-NH2] 2200 [-C ≡ N]	1.0(t, 3H, CH ₃), 1.8(m, 2H, CH ₂), 4.7(s, 2H, NH ₂), 7.3(m, 3H, C ₆ H ₅), 8.5(d, 2H, C ₆ H ₅), 8.7(s, 1H, CH = C)

Table:4

Physical, IR, ¹H NMR and Mass Spectral data of compounds (5)

(a) : Microanalysis was found to be in agreement with the expected values

* : MS(m/z) : 249 (M⁺)

monium hydrogen sulfate (0.2 g; 0.6 mmol) and DMSO (4 ml) was stirred at 45-50 °C for 1.5 h and then poured over the crushed ice. The resultant solid product was filtered, washed with water, dried and recrystallised from benzene-petroleum ether. The characterisation data of compounds prepared are given in Table-1.

3-(Alkyl/aryl)-5-amino-1-phenyl-1H-pyrazole-4-carboxaldehydes (3) : General Procedure:

A mixture of (2a; 0.6 g; 2.6 mmol), sodium dithionite (0.35 g; 2.7 mmol) and methanol (6 ml) was refluxed for 3.5 h. The reaction mixture was filtered, inorganic residue washed with methanol (5 ml) and the combined

PYRAZOLO[3,4-b]PYRIDINES

methanolic solution was distilled and poured over crushed ice. The resultant solid product was filtered, washed with water, dried and recrystallised from benzene-petroleum ether. The characterisation data of compounds prepared are given in Table-2.

3-(Alkyl/aryl)-5-carbethoxy- 6,7-dihydro-6-oxo-1-phenyl-1H-pyrazolo[3,4-b] pyridines (4) : General Procedure:

A mixture of 5-amino-3-methyl-1-phenyl-1H-pyrazole-4-carboxaldehyde (3a; 0.5 g; 2.5 mmol) and diethyl malonate (2.5 g; 2.4 ml; 15 mmol), was heated for 6 h at 150-60 °C. The reaction mixture was macerated with petroleum ether and seperated yellow solid product was filtered, dried and recrystallised from methanol. The characterisation data of compounds prepared are given in Table-3.

3-(Alkyl/aryl)-6-amino-5-cyano-1-phenyl-1H-pyrazolo[3,4-b]pyridines (5): General Procedure:

A mixture of **3a** (0.5 g; 2.5 mmol), malononitrile (0.17 ml; 2.6 mmol), triethylamine (6 drops) and methanol (15 ml) was refluxed on steam bath for 2 h. The white coloured product obtained on cooling was filtered and recrystallised from methanol. The characterisation data of compounds prepared are given in Table 4.

Acknowledgement : Thanks are due to "Bureau of Police Research and Development", New Delhi for financial assistance.

References:

- 1. Kokai Japan, Chem. Abstr., 1976, <u>84</u>, P-164771.
- 2. Kuo Sh.CH; Huang, L.J. and Nakamura, H.; J. Med. Chem., 1984, 27, 539.
- Motokuni, R.; Tauaka, M.; Hashimoto, S. and Suzue, T.; Japan Kokai; 7778895; *Chem. Abstr.*, 1977, <u>87</u>, 168629 m.
- Mityurina, K.V.; Kharchenko, V.G. and Cherkesova, L.V.; *Khim. Geterot-sikl. Soedin*; 1981, <u>3</u>, 403; *Chem. Abstr.*, 1981, <u>95</u>, 24909r.

- Metwally, S.A.; Younes, M.I. and Nour, A.M.; Bull. Fac. Sci., 1988, <u>17(1)</u>, 1; Chem. Abstr., 1990, <u>12</u>, 118705t.
- 6. Hawes, E.M. and Gorecki, D.K.J.; J. Het. Chem.; 1972, 9, 703.
- 7. Hawes, E.M. and Gorecki, D.K.J.; J. Het. Chem.; 1974, 11, 151.
- 8. Reddy, K.R.; Mogilaiah, K. and Sreenivasulu, B.; J. Ind. Chem. Soc., 1986, Vol LXIII, 443.
- 9. Reddy, K.V.; Mogilaiah, K. and Sreenivasulu, B.; J. Ind. Chem. Soc., 1986, Vol LXIII, 984.
- 10. Kvtko, Ya. and Porai, B.A.; Koshits. Zh., Organ. Khim.; 1966, 2(1), 169.
- 11. Molina, P.; Arques, A. and Vinader, M.V.; J. Org. Chem., 1988, 53, 4654.
- 12. Ahluwalia, V.K.; Dahiya, A. and Garg, V.; unpublished results.

(Received in Japan 5 June 1995)