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Abstract—Pd(PPh3)4/PPh3-catalyzed hydrogenolysis of 3a derived from trans-4-hydroxy-L-proline using ammonium formate as a
hydride reagent, provides olefin 4 as a major product, which is hydrolyzed to give (+)-�-allokainic acid. © 2001 Elsevier Science
Ltd. All rights reserved.

Due to their marked biological activity in particular
neuroexcitatory activity in the mammalian central ner-
vous system, caused by acting at the kainate subtype of
ionotropic glutamate receptors, kainic acid and �-allok-
inaic acid have become attractive synthetic targets in
the past two decades.1,2 Over 20 different synthetic
routes to these compounds have been reported, how-
ever, most of the reported protocols suffer from taking
long steps, using expensive reagents, or handling of the
reactions under sensitive conditions.1,2 Herein, we wish
to describe a convenient route to (+)-�-allokainic acid
using a known compound 13 as a key intermediate
(Scheme 1).

As outlined in Scheme 2, we synthesized the ketone 1
from trans-4-hydroxy-L-proline in six steps according
to a known procedure.3 Reaction of 1 with 2-propenyl-
magnesium bromide afforded allyl alcohol 2 in 62%
yield as a mixture of two diastereomers in a ratio of
2/1. Acylation of 2 with acetyl chloride, methyl chloro-
formate, or benzoyl chloride provided 3a, 3b or 3c,
respectively. Obviously, if the O-acyl groups of 3 could

be cleaved in a regioselective and stereoselective man-
ner, we would obtain protected (−)-kainic acid or (+)-�-
allokainic acid efficiently. Thus, a study toward the
Pd-catalyzed hydrogenolysis4 of 3 was undertaken and
the results are summarized in Table 1.

As shown in Table 1, in most cases, this hydrogenolysis
reaction gave olefin 4 as the major product. Its 4-
epimer 5, and regioisomer 6 were also isolated as minor
products. In some cases, diene 7 was isolated. The ratio
for these products was dependent on the catalytic sys-
tems, hydride reagent, or reaction temperature. The
best selectivity was observed when Pd(PPh3)4/PPh3 was
used as a catalytic system, HCO2NH4 was used as a
hydride reagent, and the reaction was carried out in
refluxing THF. In this case the olefin 4 was isolated in
69% yield (entry 1). Changing the palladium source or
the hydride reagent slightly reduced the selectivity
(compare entries 1–4). When dppp was used as the
ligand, the major product was the diene 7, which indi-
cated that this ligand promoted �-hydrogen elimination
in this case (entry 5). It was reported that tri-n-

Scheme 1.
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Scheme 2.

Table 1. Pd-catalyzed hydrogenolysis of 3a

Catalyst Ligand Hydride reagentb Solvent Yield (%)cEntry Substrate

4 5 6 7

Ph(Ph3P)4 PPh3 A THF 691 153a 8 –
Pd(OAc)2 PPh3 A THF3a 622 17 8 –

3a3 Ph(Ph3P)4 PPh3 B THF 57 28 8 –
3a4 Pd(OAc)2 PPh3 B THF 53 27 10 –

Pd(OAc)2 dppp A THF3a –5 – – 46d

6 Ph(Ph3P)43a P(Bu-n)3 A THF 34d – – –
Pd(OAc)2 P(Bu-n)3 B THF3a 31d7 – – –

3a8 Ph(Ph3P)4 PPh3 A 1,4-dioxane 50 20 7 13
3a9 Pd(OAc)2 PPh3 A 1,4-dioxane 50 19 6 9

Ph(Ph3P)4 PPh3 A THF3b 5710 20 8 8
11 Ph(Ph3P)43c PPh3 A THF 37 16 10 –

a Reaction conditions: 3 (0.5 mmol), catalyst (0.025 mmol), ligand (0.1 mmol), hydride reagent (1.0 mmol), refluxed in indicated solvent for 2 h
(in 1,4-dioxane) or 6–12 h (in THF).

b A: HCO2NH4; B: HCO2H/NEt3.
c Isolated yield.
d Some unidentified products were isolated.

butylphosphine was a better ligand for terminal olefin
formation,4b however, in the present reaction it led to
formation of other side products (entries 6 and 7). In
addition, either raising the reaction temperature or
using other esters also reduced the selectivity (compare
entries 1 and 8, 1 and 10, 11).

The stereochemical outcome of this hydrogenolysis
reaction is illustrated in Fig. 1. After reaction of allyl
esters 3 with Pd(0), two (�-allyl)palladium complexes A

and B might form, which are attacked by hydride from
the rear of the Pd species to produce either olefin 4 or
5. There is a stronger steric interaction between the Pd
species and the 3-substituent in the intermediate B, and
so the intermediate A should be more stable than B,
thereby giving the olefin 4 as the major product.

Refluxing olefin 4 in aqueous sodium hydroxide fol-
lowed by a purification with Dowex-50W provided
(+)-�-allokainic acid5 in 75% yield. Thus, we have

Figure 1.
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Scheme 3.

developed a 10-step route to (+)-�-allokainic acid in
12% overall yield. Similarly, the olefin 5 was converted
into (−)-kainic acid in 50% yield (Scheme 3). Attempts
to improve the selectivity for 5 by changing the sub-
strates in order to develop an efficient synthesis for
(−)-kainic acid is being pursued in our laboratory.
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