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Abstract A highly efficient photocatalytic reduction of

nitroarenes using TiO2/polyethylene glycol 400-water

(TiO2/PEG–H2O) is reported. This system at deoxygenated

and illuminated (sunlight or violet LED) conditions effi-

ciently reduced nitroarenes using oxalic acid or ammonium

formate as a sacrificial electron donor. Reducible func-

tional groups such as chloro, hydroxy, flouro, bromo and

carbonyl were intact under the optimized reaction condi-

tions. The 0.1 and 0.5–1 mmol amount of nitroarenes was

used under sunlight and violet LED (400 nm) irradiation,

respectively. Reusability of the nanotitania was success-

fully carried out four times. The analyses of the recovered

catalyst after five runs including TEM, XRD, TGA and

CHN were done and results showed that PEG is located on

TiO2; no change in morphology, crystallinity and particle

sizes was observed.

Keywords Violet LED � Sunlight � PEG-TiO2 �
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Introduction

Energy consumption is a future challenge. Therefore,

renewable and natural energy sources, such as sunlight, can

be employed as a green source of energy (Zhou and Hu

2010). To this aim, nanochemistry allows the use of

inexpensive materials and inexpensive processing tech-

nologies to harvest sunlight and open up new views to

attain higher solar energy conversion performance at lower

costs (Atwater and Polman 2010; Scholes et al. 2011;

Schuller et al. 2010; Schwede et al. 2010). In addition,

recently, light-emitting diodes (LED) have been applied as

a marvelous instrument to initiate photocatalytic reactions.

LEDs can emit light of different wavelength (infrared,

visible, or near-ultraviolet).

Since the 1970s, photocatalytic processes have attracted

substantial attention and are still very active and evolving

research areas (Chen and Mao 2007). Heterogeneous

photocatalysis by semiconductor materials has been gain-

ing increasing interest in photocatalytic water cleavage

(Brimblecombe et al. 2008; Esswein and Nocera 2007;

Kanan and Nocera 2008; Tang et al. 2008), photodegra-

dation of dyes (Shan et al. 2008) and phenols (Lea and

Adesina, 2001) and in organic synthesis (Di Paola et al.

2008; Mahdavi et al. 1993; Rios-Berny et al. 2010; Gao

et al. 2015; Flores et al. 2007; Ramdar et al. 2016; Fried-

mann et al. 2016) due to its likely potential for solar energy

conversion. TiO2, because of its unique chemical and

physical properties, such as high efficiency, low cost,

physical and chemical stability, widespread availability,

and noncorrosive property is broadly used in the fields of

solar energy conversion and photocatalysis (Di Paola et al.

2008). TiO2-P25 as an active and available catalyst is used

widely in photodegradation and organic synthesis. Li et al.

first reported a photoinduced reduction of nitro compounds
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to the corresponding amines using TiO2-P25 as a catalyst

under UV light; they used 2 ml of a 0.01 M solution of

nitrobenzene in the reaction (Mahdavi et al. 1993).

Gray and Thurnauer reported that TiO2-P25 can also be

active in visible light. They reported the presence of small

rutile crystallites causes rapid electron transfer from rutile

to lower energy anatase lattice trapping sites under visible

illumination leading to a more stable charge separation and

the photoactivity of TiO2-P25 in visible light. It was con-

cluded that extension of the photoactivity into visible

wavelengths is due to antenna effect of the rutile phase

(Hurum et al. 2003). The selective reduction of nitroarenes

with sunlight and blue LED irradiation using TiO2-P25 in

ethanol as solvent was reported by us (Zand et al. 2014). In

addition, we reported (Abdollahi et al. 2014b) aqueous-

phase chemoselective reduction of a wide range of aro-

matic nitro substrates (0.1 mmol scale) in the presence of

b-cyclodextrin-TiO2 (b-CD-TiO2) under sunlight irradia-

tion. The b-CD was introduced as a green nest for reduc-

tion of nitroarenes. Through this method, overcome of

some semiconductor limitations in water, associated with

the low solubility of substrates and overoxidation of

organic compounds which are a result of the oxidant spe-

cies produced (such as �OH and O2
-�/HO2

� ) in a photocat-

alytic process, was achieved.

PEGs as green inexpensive phase transfer catalysts have

other properties such as low toxicity, water solubility, ease

of recoverability, thermal stability, low volatility and

biodegradability. Among PEGs, liquid PEG-400 can be

used as solvent with or without water addition (Harris et al.

1982; Ido et al. 1997; Mates and Ring 1987; Hasan Nia

et al. 2015; Sheftel and Victor 2000).

Now, based on our experience of working with semi-

conductor photocatalysts such as TiO2 and CdS in nitro

reduction in aqueous and organic phases (Abedi et al. 2013;

Eskandari et al. 2013, 2014; Abdollahiet al. 2014a, b; Zand

et al. 2014; Safari and Kazemi 2016), we report here a

protocol for selective photocatalytic reduction of nitroare-

nes in water using TiO2/PEG–H2O photocatalytic condi-

tion under sunlight and violet LED irradiation. We

introduce a method that would increase the amount of

substrate to 0.5–1 mmol of nitroarenes.

Experimental

Nitro compounds, polyethylene glycol-400 (PEG-400) and

oxalic acid were purchased from Merck Co. Ammonium

formate (HCO2NH4) and titanium dioxide (TiO2-P25) were

supplied by Fluka and Degussa Co., respectively. All

chemicals were used as received without further purifica-

tion. Deionized water was used in all experiments. CHNS

analysis was recorded with ElementarVario EL III. TEM

images were obtained with Philips CM120, VEGA\-

TESCAN-XMU. Thermogravimetric analysis was con-

ducted from room temperature to 700 �C in a nitrogen flow

using a NETZSCH STA 409 PC/PG instrument. Nitrogen

sorption analysis (Belsorp, BELMAX, Japan) was used for

further analysis of the catalyst. FTIR spectra were recorded

on Bruker-vector 22.

Nitro compounds (0.1 mmol under sunlight and

0.5 mmol under UV LED irradiation) were dissolved in

PEG-400 (1.5 ml) and then 10 ml of water was added to

the solution; commercial TiO2 (P25) (40 mg) and oxalic

acid (1.5 equimolar) were added into a round bottom Pyrex

flask (25 ml).The reaction mixture was degassed by Argon

gas (20 min) and sealed with a septum. Afterwards, the

flask was irradiated under stirring with sunlight or violet

LED (see the data in Table 2). After the completion of the

reaction according to GC monitoring, NaHCO3 was added

to increase pH = 7 and the mixture was stirred at room

temperature. The aqueous layer was extracted with EtOAc

(2 9 10 ml). The organic layer was dried with sodium

sulfate, filtered and evaporated in vacuum.

Results and discussion

One problem of heterogeneous photocatalytic reactions is

low amount of substrate (Eskandari et al. 2014; Hakki et al.

2013; Mahdavi et al. 1993; Shiraishi et al. 2012; Wang et al.

1997; Zand et al. 2014). In our previous report (Abdollahi

et al. 2014b), we used b-CD-TiO2 for the reduction of

nitroarenes (1:1 b-CD:nitroarene, 0.1 mmol scale) in water

under sunlight irradiation. The guest–host nitroarenes-b-CD
solubilized in water and also the dispersity and aggregation

prevention of TiO2 were demonstrated to have been

improved. Today, the LED irradiation has many advantages;

LEDs are inexpensive and available in different forms, but

unfortunately, the b-CD-TiO2 photocatalysis was unsuc-

cessful under blue LED irradiation. PEGs are known as

available, nanoparticle stabilizer, nonexpensive and water

dispersive agents (HasanNia et al. 2015).Also PEGwas used

for preparation of TiO2 (Bu et al. 2004) and combination of

PEG-TiO2reduces TiO2 cytotoxicity (Mano et al. 2012).

Herein we report a new method for nitro aromatic reduction

inwater under sunlight and violet LED and in the presence of

PEG-400-modified TiO2 as catalyst.

Nitrobenzene was chosen as a model compound for the

study of optimized reaction conditions. Oxalic acid was

chosen as a sacrificial reagent as in our previous work

(Abdollahi et al. 2014b). The reduction reaction was car-

ried out under sunlight irradiation. 0.1 mmol of nitroben-

zene dissolved in 1.5 ml of different water dispersive

agents: diethylene glycol, triethylene glycol, PEG-400 and

diglyme (Table 1, entries 4,6–8). These solutions were
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added to 10 ml of water including 40 mg of TiO2-P25. The

reaction progress was monitored with GC (Table 1).

Excellent results were obtained for triethylene glycol,

PEG-400 and diglyme. The PEG-400 was selected for its

availability and low cost. The optimization of PEG

amounts was carried out and 1.5 ml of PEG-400 was

chosen (Table 1, entries 2–5).

The photocatalytic behavior of the reaction was con-

firmed through reactions in the absence of photocatalyst

and light at separate experiments (Table 1, entries 13, 14).

The effect of nitrobenzene amounts (0.05, 0.1 and

0.2 mmol) was optimized. The best conversion was

obtained for 0.1 mmol of nitrobenzene after sunlight irra-

diation for 3.5 h (Table 1, entries 15,16).

Table 1 The optimization on photocatalytic reduction of nitrobenzene in the presence of TiO2-P25

NO2
TiO2

Hole Scavenger

Light

H2O

NH2
Dispersive agent

Entry Dispersive agent (ml) Hole scavenger Light source TiO2 amount (mg) Yield (%)a

1 – Oxalic acid Sun 40 38

2 PEG 400 (0.5) Oxalic acid Sun 40 44

3 PEG 400 (1) Oxalic acid Sun 40 91

4 PEG 400 (1.5) Oxalic acid Sun 40 96

5 PEG 400 (2) Oxalic acid Sun 40 98

6 Diethylene glycol (1.5) Oxalic acid Sun 40 41

7 Triethylene glycol (1.5) Oxalic acid Sun 40 97

8 Diglyme (1.5) Oxalic acid Sun 40 100

9 PEG 400 (1.5) – Sun 40 43

10 PEG 400 (1.5) EtOH Sun 40 70

11 PEG 400 (1.5) Ammonium formate Sun 40 95

12 PEG 400 (1.5) Sodium sulphite Sun 40 61

13b PEG 400 (1.5) Oxalic acid Sun – 0

14c PEG 400 (1.5) Oxalic acid – 40 0

15d PEG 400 (1.5) Oxalic acid Sun 40 100

16e PEG 400 (1.5) Oxalic acid Sun 40 76

17 PEG 400 (1.5) Oxalic acid Sun 30 50

18 PEG 400 (1.5) Oxalic acid Sun 35 86

19 PEG 400 (1.5) Oxalic acid Sun 50 97

20 PEG 400 (1.5) Oxalic acid Sun 60 96

21 PEG 400 (1.5) Oxalic acid Blue LED 80 0

22f PEG 400 (1.5) Oxalic acid Violet LED 40 100

23 g PEG 400 (1.5) Oxalic acid Violet LED 40 100

24 h PEG 400 (1.5) Oxalic acid violet LED 40 100(92i)

25j b-cyclodextrin Oxalic acid violet LED 40 2(8k)

a Sunlight intensity between (870 and 1070 Lux)
b Without TiO2

c In dark
d 0.05 mmol nitrobenzene was used
e 0.2 mmol nitrobenzene was used
f Nitrobenzene (0.1 mmol) oxalic acid (0.15 mmol), 3 h
g Nitrobenzene (0.5 mmol) oxalic acid (0.75 mmol), 7 h
h Nitrobenzene (1 mmol) oxalic acid (1.5 mmol), 13 h
i Isolated yield
j b-CD (1 mmol), nitrobenzene (1 mmol), oxalic acid (1.5 mmol), 13 h
k 0.1 mmol b-CD was used
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To exploit the optimal light absorption (Kisch 2010), we

investigated the effect of TiO2-P25 amounts on the con-

version of nitrobenzene under the above conditions. The

best result was found when 40 mg of TiO2 was used for

0.1 mmol of nitrobenzene, 1.5 ml of PEG-400, 10 ml of

water and 0.15 mmol of oxalic acid under sunlight irradi-

ation (Table 1, entries 17–20; Fig. 1).

The effect of the sacrificial additives on the reduction of

nitrobenzene as a model reaction has been checked out by

comparing preliminary yields in the presence and absence

of additives. In the absence of any additive in the reaction

conditions just 43% conversion was observed due to

reducing ability of PEG (Table 1, entry 9). Among the used

additives, oxalic acid and ammonium formate were found

as excellent reducing agents (Table 1, entries 10–12).

In addition, it is well known that a primary alcohol (such

as methanol or ethanol) can be used as both a hole scav-

enger and solvent in the photocatalytic reduction of

nitroaromatics, generating corresponding aldehydes as the

oxidation product. Since these aldehydes are toxic, a

‘‘greener’’ sacrificial reagent converting to a nontoxic

compound is preferable. Oxalic acid and ammonium for-

mate are green sacrificial hole scavengers because they are

easily oxidized to carbon dioxide (CO2) (Imamura et al.

2011).

Similar to our previous report (Zand et al. 2014), we

tried to use blue LED as a light source. We found even in

much lower concentration of nitrobenzene (0.01 mmol),

TiO2-P25(80 mg), oxalic acid (0.015 mmol), PEG (1.5 ml)

and water (10 ml) under blue LED (4 9 3 W); after 24 h

no reduction occurred (Table 1, entry 21). Because of LED

importance, we were encouraged to use more powerful

LEDs; the reaction was repeated with violet LED

(395–405 nm) (2 9 3 W). Very interestingly, the reaction

was completed after 3 h (Table 1, entry 22). This fantastic

result led to testing the reaction for the practical reduction

of nitrobenzene (1 mmol) (Table 1, entries 22–24). Again

the reaction was completed after 13 h with a 92% isolated

yield. Fluorescence spectrum of TiO2/polyethylene glycol

400–water mixture at excitation wavelength of 400 showed

emissions at 524.2 and 470.89 nm. This fact confirmed the

activity of the catalyst under violet LED irradiation. The

TiO2/polyethylene glycol 400–water mixture did not show

any emission at 440 nm, and this evidence also confirmed

inactivity of the photocatalyst under blue LED irradiation

(see Figure S1, S2 in Supporting Information). For com-

parison, the use of violet LED was also checked by b-CD-
TiO2 method. Using TiO2 40 mg, 1:1 and 1:10 b-CD:ni-
trobenzene (1 mmol scale of nitrobenzene) in water under

violet LED (2 9 3 W), only 2 and 8% conversion was

shown, respectively, after 13 h (Table 1, entry 25).

After optimizing the reaction conditions, to consider the

scope of the developed method, the reduction of various

nitro compounds containing different functional groups

was performed. As shown in Table 2, the photocatalytic

reduction of diverse aromatic nitro compounds including

electron-rich and electron-deficient functional groups pro-

ceeded readily at experimental conditions and afford well

to excellent yields of the corresponding aromatic amines

(Table 2). For example m-chloronitrobenzene and m-ni-

trotoluene both converted to the m-chloroaniline and m-

toluidine after 3 h with excellent yields (Table 2, entries 2,

5). It seems that solubility of nitroarenes and their corre-

sponding products has major role in the reactivity. It was

observed that p-nitrophenol with appropriate solubility but

with an electron donating group was completely converted

to the p-aminophenol (Table 2, entry 7). In contrast, p-

nitrobromobenzene, the low water solubility including

electron-withdrawing group, only converted to the p-bro-

moaniline with 36% (Table 2, entry 8). Then with

increasing the amount of PEG from 1.5 to 2 ml, increased

solubility condition of substrate, the conversion enhanced

to 100% (Table 2, entry 8). Under LED irradiation, due to

higher concentration of nitroarenes (0.5 mmol) compared

to sunlight irradiation, the importance of solubility and also

adsorption and desorption of material (nitro and its amine)

on titania, increased, e.g., no products were found for 1,2-

dinitrobenzene and o-nitroaniline (Table 2 entries 10, 11)

and conversion yield of nitronaphthalene decreased to 34%

(Table 2 entry 9).

There is an enormous interest in developing efficient,

active and environmentally sustainable systems that would

perform the selective reduction of nitro compounds in the

presence of other reducible functional groups, such as

ketones, aldehydes or halides (Tafesh and Weiguny 1996).

In our present method, any dehalogenation was not

occurred when we used 1-chloro-3-nitrobenzene and

1-bromo-4-nitrobenzene as nitro compound, which has

been observed in some previously reported methods

(Table 2, entries 2, 8). Under the present reaction condi-

tions, high chemoselectivity with an excellent yield was

observed when 3-nitroacetophenone was used and no
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Fig. 1 The optimization of TiO2 amount used in the reduction of

nitrobenzene under sunlight irradiation
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Table 2 Reduction of nitro

compounds using TiO2/PEG–

H2O under sunlight and violet

LED irradiation

Entry Nitro Time (h)

In sun

Time(h)in 
LED

Amine
Yield (%)

In sunb

Yield (%)

In LEDc

1

3.5 16 96 100a

2

3 22 95 100

3

3.5 26 100 100

4

4.5 28 88 92

5

3 22 100 100

6

3 18 100 98

7

4 44 100 100

8

3 22 36(100)d 100

9

4.5 22 80 34

10
5 24 73 0

11
6 24 32(41)d 0

12

3.5 12 100 100

13e

3.5 - 100 -
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unwanted reduction of the carbonyl group was observed

(Table 2, entry 6). A good regioselectivity was observed in

the reduction of 1,2-dinitrobenzene (Table 2, entry 10).

To consider reusability of the TiO2/PEG–H2O catalytic

system, the reduction of nitrobenzene at optimum condition

was monitored for five runs and the catalyst showed good

activity. The little decrease after the fifth run can be due to

removing PEG and TiO2 under washing step (Fig. 2), see

also Supporting Information). In addition, to better study

the catalyst photoactivity, prevention of removing PEG and

TiO2, and scalability of the reaction, we examined the

stepwise increasing of nitrobenzene to the optimized

reaction. In each step in the presence of 40 mg of TiO2,

0.1 mmol of nitro benzene and 0.15 mmol of oxalic acid

were added stepwise to the reaction mixture. The excellent

results were achieved even after five runs in only 40 mg

starting TiO2. This fact shows scalability of the reaction in

addition to high activity and stability of the catalyst in this

method (Fig. 3).

The main question about nature of catalyst is: what is

the role of PEG? Then, study of adsorption of PEG on TiO2

can be useful. For this purpose, the TiO2 was added to

PEG/water (1.5 ml/10 ml) and TiO2 was separated after

3 h. The separated TiO2 was used for reduction of some

nitroarenes without the addition of PEG. Very interest-

ingly, the excellent results were obtained for nitrobenzene,

3-chloronitrobenzene and 3-nitrotoluene without any PEG

400 addition (Table 2, entries 13–15). CHN analysis of the

separated TiO2 showed 7.3% weight carbon (Table 3) and

TGA analysis showed 12.96% weight loss can be refer to

polyethylene glycol located on the titania (see Figure S3 in

Supporting Information). In addition, the FTIR of separated

TiO2-P25 (PEG-TiO2) confirmed the organic moiety (see

Figure S5 in Supporting Information). To show that how

Table 2 continued Entry Nitro Time (h)

In sun

Time(h)in 
LED

Amine
Yield (%)

In sunb

Yield (%)

In LEDc

14e

3 - 98 -

15e

3 - 99 -

a 1 mmol Of nitrobenzene is used
b Reaction conditions: nitro compound (0.1 mmol), TiO2 (0.04 g), H2O (10 ml), oxalic

acid (0.15 mmol, PEG-400 (1.5 ml) and sunlight intensity between 870 and 1070 Lux
c Reaction conditions: nitro compound (0.5 mmol), TiO2 (0.04 g), H2O (10 ml), oxalic

acid (0.75 mmol, PEG 400 (1.5 ml) and with two 400-nm LEDs irradiation (2 9 3 W)
d Reaction was carried out in the presence of 2 ml of PEG-400
e Reduction was carried out in the presence of 40 mg of separated PEG-TiO2 under

sunlight irradiation
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Fig. 2 Reusability of the catalyst in nitrobenzene reduction under

sunlight
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Fig. 3 Reusability of the catalytic mixture through stepwise addition

of reactants under sunlight

Table 3 CHN analysis data for recycled PEG-TiO2 catalyst and

PEG-TiO2 before reaction

Catalyst %N %C %H

PEG-TiO2 0.0 7.297 1.151

Washed TiO2-PEG 0.0 1.04 0.2

Reused separated PEG-TiO2-P25 0.716 11.53 2.136
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absorption of PEG-400 takes place on TiO2, several

experiments were carried out; first, PEG-TiO2 was washed

in 60 �C and CHN analysis showed a decrease on PEG, so

this can be due to physical adsorption on TiO2 surface

(physisorption) (Table 3). The pH change of TiO2/PEG–

H2O was measured under sunlight irradiation and no

change was observed, this also confirms the physisorption

of PEG on TiO2 surface. Astruc et al. also show H-bonding

interaction between triethylene glycol and surface OH

bonds of metal oxides (Deraedt et al. 2015). These results

can be explained through adsorption of PEG on the surface

of titania and organic moieties mounted during reduction of

nitrobenzene. CHN analyses of the PEG-TiO2, washed

PEG-TiO2 and reused separated PEG-TiO2 catalysts

showed 7.29, 1.04 and 11.53% w/w of carbon (Table 3). In

addition, TGA analyses showed 12.96 and 13.1% weight

loss for PEG-TiO2 and reused separated PEG-TiO2,

respectively (see Figure S3, S4 in Supporting Information).

XRD pattern of reused separated PEG-TiO2 catalyst did

not show any change in the TiO2 crystalline phase (Fig-

ure S6 in Supporting Information).

TEMs of PEG-TiO2 and reused separated PEG-TiO2

catalysts show no change in the particle size (Fig. 4,

Scheme 1).

In summary, we have reported a highly efficient pho-

tocatalytic reduction of nitro aromatic compounds

employing TiO2/PEG–H2O. In this method, nitroarene,

with electron-donating and electron-withdrawing groups,

has been employed successfully. The relatively high scale

of 0.1 and 0.5–1 mmol nitro compounds was used under

violet LED (400 nm) and sunlight irradiation, respectively.

The study of the catalytic system showed that PEG

attached physically on the surface of nanotitania. PEG-

TiO2 is a very efficient photocatalyst. PEG caused better

water dispersity and stability of the catalyst against

agglomeration. Excellent reusability, environmentally

benign and high-scale amount of starting materials make

this method a promising one for practical reduction of

nitroarenes. In addition, the physisorbed PEG-TiO2 catalyst

was separated from TiO2/PEG–H2O mixture and interest-

ingly showed highly efficient activity in aqueous photo-

catalytic reduction of nitroarenes.
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