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Abstract: Enantioselective epoxidations of alkenes (12 examples)
were achieved using a Shi-type carbohydrate-derived hydrate and
Oxone. The chiral platform provided by the catalyst tolerates a wide
range of substituents providing high yields and enantioselectivities
(80–95.5% ee). However, styrene derivatives were only converted
with poor selectivities (11–26% ee).
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Asymmetric alkene epoxidation is a powerful route to
chiral epoxides,1 which are useful synthetic intermediates
for the asymmetric synthesis of complex molecules2 or
chiral catalysts.3 Chiral dioxiranes, generated in situ from
chiral ketones and potassium peroxomonosulfate
(KHSO5), are practically unrivalled in the epoxidation of
unfunctionalised trans and trisubstituted alkenes.1b,d,4 The
development by Shi and co-workers of carbohydrate-de-
rived ketones4a–4c and KHSO5 (Oxone) as the stoichiomet-
ric oxidant is perhaps the most efficient of these
methodologies and the fructose derivative 1 is the most
well known of these catalysts (Figure 1).5

Figure 1 Shi’s standard catalyst 1, diester fructose derivative 2 and
hydrate 3

The diester fructose derivative 2 is even more attractive in
terms of robustness and substrate scope in the asymmetric
epoxidation of alkenes: Shi has reported its use in the ep-
oxidation of a,b-unsaturated esters,6 and our group7 has
extended its use to unfunctionalised alkenes using low
catalyst loadings.8 Furthermore, we have developed a se-
lective and efficient preparation method for both diester 2
and its hydrate 3 and recently reported that hydrate 3
shows the same high catalytic activity as its parent com-
pound 2 in epoxidation studies of a model trans alkene.7

The currently accepted model for epoxidations mediated
by 1 is based on Shi’s analysis of the stereochemistry of
the produced epoxides. A chiral dioxirane derived from
ketone 1 has two diastereomeric oxygens and on the basis
of sterical arguments the equatorial oxygen is likely to be
the more accessible one for olefin approach, with the ma-
jor enantiomer resulting via a spiro transition state.5

Singleton and Wang have recently supported this analysis
through the use of experimental kinetic isotope effects
(KIE) and DFT calculations.9 We have recently reported a
study via isotopic labelling studies that further, experi-
mentally, supports this model of dioxirane-mediated ep-
oxidations.10 Our results revealed several key aspects
about the origin of the stereoinduction. Namely, the ep-
oxidation process comprises highly stereoselective attack
of the b face of 2 by HSO5

–, oxygen transfer from the di-
oxirane to the alkene proceeds predominately through ap-
proach of the Si-alkene face onto the b face of dioxirane
and that attack of the most hindered face of the dioxirane
by the alkene does not take place to any measurable ex-
tent.

Preliminary epoxidation studies of a model trans alkene
showed that hydrate 3 was at least as useful a chiral cata-
lyst as ketone 1.7 We thus sought to perform an in depth
study of the catalytic properties and substrate scope of hy-
drate 3. Described herein is the application of this com-
pound as a mediator in the asymmetric epoxidation of
unfunctionalised alkenes (Scheme 1 and Table 1).

The epoxidations (Scheme 1) were carried out under stan-
dard conditions,12 organoaqueous media with 10 mol% of
compound 3 at 0 °C, as this offered a good balance be-
tween conversion and selectivity.7 The pH value was a
key parameter in dioxirane-catalysed epoxidations,5

hence the optimal pH value for epoxidation with 3 was in-
vestigated using trans-stilbene (4a) as a test substrate. The
pH values from 9 to 10 were obtained by simultaneously
adding aqueous K2CO3 and a solution of Oxone in pH 6
buffer (see footnote a in Table 1).13 Lower conversions
were observed at pH 10 (39% yield) than at pH 9 (55%
yield). Conversely, enantioselectivity improved with
higher pH (89% and 95% ee, respectively). The lower sta-
bility of the oxidant at higher pH values may account for
these low conversions. In order to overcome this problem,
the amount of Oxone was doubled while the pH value was
fixed at 10. As expected, a higher conversion was
achieved (63% yield; Table 1, entry 1). The best yield
(95%) and enantioselectivity (95.5% ee) of all the tested
conditions was obtained by switching from catalytic to
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substoichiometric amounts of hydrate 3 (30 mol%, entry
2). However, we considered reaction conditions involving
catalytic amounts of 3, lower amounts of Oxone and lower
pH values to be optimal in terms of atom economy (i.e.
amounts of catalyst used and waste generated), hence they
were chosen for the study of the epoxidation of several
alkenes. Though for some difficult cases the pH value, the
amount of catalyst or Oxone were increased. The results
are summarised in Table 1.

The hydrate-derived species 3 effectively catalysed the
epoxidation of a variety of trans-aryl-disubstituted olefins
(Table 1, entries 1–8), providing ee values ranging from
83% to 95.5%. Species 3 was found to be comparable to
Shi’s diester fructose derivative 2 for a number of alkenes
(4a,c,g,h).7 Olefin substrates with a wide range of groups,
such as aryl or alkyl substituents, benzyloxy ethers, hy-
droxymethyl or chloromethyl substituents were tolerated.
Under the same experimental conditions, the epoxidation
of diaryl-substituted alkenes proceeded with the highest
selectivity, followed by arylalkyl-substituted alkenes and,
lastly, dialkyl-substituted alkenes (cf. entries 2, 4 and 9 in
Table 1). Several trisubstituted olefins (Table 1, entries
10–12) were also epoxidised with high selectivity. How-
ever, disappointingly, the epoxidation of styrenes by 3
showed only poor selectivities (entries 13 and 14), though
conversions remained high, under all tested conditions. In
all cases, where known, the absolute configurations of the
obtained products are in agreement with the currently ac-
cepted mechanism of epoxidation by chiral dioxiranes de-
rived from ketone 1.5

In summary, hydrate 3 has been found to be comparable
to Shi’s diester fructose derivative 2 in epoxidations in-
volving Oxone and we have expanded the substrate scope
catalysed by 3-derived species for a number of structural-
ly varied alkenes. Current efforts are directed towards ex-
ploiting this methodology towards epoxidations of more
difficult substrates, such as styrenes and tetrasubstituted
alkenes.

Scheme 1 Epoxidations mediated by hydrate 3 as the precatalyst
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Table 1 Epoxidations Mediated by Hydrate 3 as Precatalyst

Entry Alkene  Reaction conditionsa Yield 
(%)b

ee 
(%)c

1 4a 3 (10 mol%),
Oxone (3.2 equiv), K2CO3 (6.8 equiv)

63 93.5
(R,R)-5a

2 4a 3 (30 mol%),
Oxone (3.2 equiv), K2CO3 (6.8 equiv)

95 95.5
(R,R)-5a

3 4b 3 (10 mol%),
Oxone (1.6 equiv), K2CO3 (2.4 equiv)

60 83
(R,R)-5b

4 4b 3 (30 mol%),
Oxone (3.2 equiv), K2CO3 (6.8 equiv)

83 89
(R,R)-5b

5 4c 3 (10 mol%),
Oxone (3.2 equiv), K2CO3 (6.8 equiv)

89 86
(R,R)-5c

6 4d 3 (30 mol%),
Oxone (3.2 equiv), K2CO3 (6.8 equiv)

80 90
(R,S)-5d

7 4e11 3 (10 mol%),
Oxone (1.6 equiv), K2CO3 (2.4 equiv)

52 90d

5e

8 4f 3 (10 mol%),
Oxone (1.6 equiv), K2CO3 (2.4 equiv)

99 83e

5f

9 4g 3 (30 mol%),
Oxone (1.6 equiv), K2CO3 (7.2 equiv)

n.d.f 80
(R,R)-5g

10 4h 3 (10 mol%),
Oxone (1.6 equiv), K2CO3 (2.4 equiv)

52 92
(R)-5h

11 4i 3 (10 mol%),
Oxone (1.6 equiv), K2CO3 (2.4 equiv)

41 83
(R,R)-5i

12 4j 3 (10 mol%),
Oxone (1.6 equiv), K2CO3 (2.4 equiv)

82 92
(R,R)-5j

13 4k 3 (10 mol%),
Oxone (1.6 equiv), K2CO3 (2.4 equiv)

99 26
(R)-5k

14 4l 3 (10 mol%),
Oxone (1.6 equiv), K2CO3 (2.4 equiv)

99 11g

5l

a Oxone and base were simultaneously added during a period of 2 h. 
The reaction mixture was further stirred at 0 °C for 16 h. The pH val-
ues were increased throughout the addition period from 6 to ca. 9 
when K2CO3 (2.4 equiv) was used, and to ca. 10 in the other cases.
b Isolated material.
c Enantiomeric excesses.
d Unreported epoxide, configuration was assumed to be R,R.
e Configuration was assumed to be R,R.
f Not determined (5g was distilled together with the solvent during the 
workup).
g Configuration assumed to be R.
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