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Abstract: The synthesis of a highly functionalised azepine which
can be further derivatised by common chemical transformations is
described herein. The present synthesis comprises high-yielding re-
action steps and features a new method for the synthesis of azepines
via TBSOTf-mediated cyclisation of terminal formamides.
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Azepines are widely found in natural products that often
show interesting biological profiles. Representative
examples are brasilibactin A,1 nocardimicins,2 A-5030833

and bengamide,4 which show cytotoxic, M3 receptor
binding inhibitory, bacterial translocase I inhibitory or
methionine aminopeptidase inhibitory activities, respec-
tively. Furthermore, the azepine moiety is an important
pharmacophore in a number of drug candidates being in-
vestigated in pharmaceutical industry (Figure 1). Equally
noteworthy is its application as a b-turn mimetic in pepti-
domimetic drug development approaches.5

Despite its importance, there is only a limited number of
syntheses that conveniently form the azepine ring.6

Among the most frequently used methodologies is the
Beckmann rearrangement of oxime derivatives,7 and

Aubé et al. developed a photochemical rearrangement em-
ploying oxaziridine derivatives8 (Scheme 1). The lactams,
which are obtained in both cases, are then reduced with,
for example, lithium aluminium hydride.

Scheme 1 Classic azepine syntheses

Very recently, Houpis et al.9 and Diederich et al.10 inde-
pendently developed elegant methodologies based on
ring-closing metathesis.

In the course of our ongoing efforts to explore new chem-
ical space, we became interested in the syntheses of 6,6-
dimethyl-5-oxo-4,5,6,7-tetrahydroazepine-1,3-dicarbox-
ylic acid 1-tert-butyl ester 3-ethyl ester (1, Scheme 2). To
the best of our knowledge, such highly substituted azepine
ring systems are little described in the literature. If the
methods mentioned above would furnish the desired
compound at all, tedious, multistep syntheses would be re-
quired. We therefore planned to accomplish the synthesis
via an intramolecular enamine formation as the key step
by cyclisation of formamide 3.

Scheme 2 Retrosynthetic analysis

We started our synthesis by oxidising commercially avail-
able benzyl-protected 1,4-butanediol 4 with Dess–Martin
periodinane.11 The desired aldehyde was obtained in
quantitative yield and was directly used for the following
nucleophilic addition of isobutyronitrile12 to give 5 in
67% yield (Scheme 3). Protection of the secondary
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Figure 1 Azepine-containing pharmaceutical compounds
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alcohol succeeded in quantitative yield using triisopropyl-
silyl chloride (TIPSCl) at 50 °C. The reduction of the
nitrile to a primary amine was first attempted using LAH,
but unfortunately under these reaction conditions the
TIPS group was cleaved off. Here a combination of
DIBAL-H and NaBH4 was much milder and the desired
amine 6 was obtained quantitatively without any depro-
tection of the alcohol.13 Formylation of the amino group
and hydrogenolytic cleavage of the benzyl ether afforded
the free primary alcohol in 90% yield. Its oxidation to the
corresponding carboxylic acid was achieved using
RuCl3·H2O and NaIO4

14 which was followed by immedi-
ate esterification with ethyl iodide and potassium carbon-
ate. For the cyclisation of 8 we tried several procedures
with limited literature precedence. Thus, in our first at-
tempts we used phosphorylchloride to form the enamine
functionality via an intramolecular condensation,15 but
under varying conditions only decomposition occurred.
The same was found using sodium ethanolate or potassi-
um tert-butanolate.16 We then envisioned a two-step ap-
proach, first preparing an intermediate silyl-protected
aminal using tert-butyldimethylsilyl triflate (TBSOTf)17

and then to eliminate silanol to finally obtain enamine 9.
Surprisingly, after five days reaction time compound 9
was obtained in only one step using an excess of TBSOTf
in dichloromethane.18 This reaction, to our knowledge, is
undescribed in literature and should in general be applica-
ble to the synthesis of cylic enamines containing five, six
or more ring atoms, and which have an electron-with-
drawing group in the 3-position. Alcohol 10 was then
obtained by protection of the amino group and reaction
with tetrabutylammonium fluoride. Another Dess–Martin
oxidation finally afforded 6,6-dimethyl-5-oxo-4,5,6,7-
tetrahydroazepine-1,3-dicarboxylic acid 1-tert-butyl ester
3-ethyl ester (1) in 92% yield.19

In conclusion, we have synthesised the desired azepine 1
in 11 steps and in 11% overall yield, starting from readily
available starting materials. The key step in the synthesis

was the cyclisation of formamide 8 using TBSOTf in
dichloromethane. This protocol promises to be superior to
traditional condensation methods with regard to yield, re-
action conditions and functional group tolerance. Thereby
it offers a new methodology for the synthesis of azepines
having an electron-withdrawing group in the 3-position,
which previously were not easily accessible via known
methods. This protocol should in general be applicable to
the synthesis of cyclic enamines with other ring sizes,
which is going to be the subject of further investigations.
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