Date: 30-06-14 11:32:33

Pages: 5

Facile Access to 1*H*-Indazoles through Iodobenzene-Catalyzed C–H Amination under Mild, Transition-Metal-Free Conditions

Mitsuhiro Kashiwa,^[a] Motohiro Sonoda,^[a] and Shinji Tanimori^{*[a]}

Keywords: Hypervalent compounds / C-H activation / Amination / Nitrogen heterocycles / Cyclization

The transition-metal- and halogen-free synthesis of *N*-arylsubstituted 1*H*-indazole and derivatives was accomplished on the basis of the iodobenzene-catalyzed intramolecular C– H amination of hydrazones under mild conditions. Reactions of hydrazones derived from ketones and hydrazines with a

Introduction

1H-Indazole and its derivatives are known to be important structural units for the development of pharmaceutically important molecules.^[1] For instance, they present antiarthritic,^[2] anti-inflammatory,^[3] and antifertility activities.^[4] Traditional syntheses of 1*H*-indazoles often require harsh reaction conditions, toxic reagents, and unstable intermediates, all of which have restricted their substrate scope and their industrial application.^[5] Recently, the transition-metal-catalyzed synthesis of 1H-indazoles was documented on the basis of intramolecular Buchwald-Hartwigtype coupling reactions and/or C-H amination.^[6] Although these methods are effective under milder reaction conditions than those required for the traditional synthesis,^[5] the high cost and toxicity of the transition metals restrict their practical use. Accordingly, the development of a new protocol for the formation of 1H-indazole scaffolds under transition-metal-free conditions is highly desirable.^[7]

Recently, the use of hypervalent iodine reagents in oxidative reactions as metal-free reagents has received much attention owing to their low toxicity and the fact that they can be used under mild reaction conditions.^[8] Many useful carbon–carbon^[9] and carbon–heteroatom^[10] bond-forming reactions have been documented in which a stoichiometric amount of the hypervalent iodine reagent is used. More recently, a catalytic process involving the use of *m*-chloroperoxybenzoic acid (*m*CPBA) as a terminal oxidant to avoid the formation of undesired iodoarenes in an equimolar amountwasreported.^[11]Onthebasisofthisconcept,avarietyof methods have been developed for the transformation of catalytic amount of iodobenzene in the presence of Oxone as an oxidant in trifluoroacetic acid took place to afford 1H-indazoles in moderate to good yields. A plausible reaction mechanism was described on the basis of the control experiments.

organic molecules.^[12] We now report iodobenzene-catalyzed oxidative C–H amination for the construction of 1*H*-indazoles from arylhydrazones by using Oxone (2KHSO₅·KHSO₄·K₂SO₄) as a terminal oxidant under mild reaction conditions (Scheme 1).

Scheme 1. Synthesis of 1H-indazoles from hydrazones.

Results and Discussion

The reaction conditions were optimized by using phenylhydrazone 1a as a model substrate (Table 1). Treatment of 1a with iodobenzene (30 mol-%) and mCPBA (1.5 equiv.) as the oxidant in hexafluoroisopropanol (HFIP, 2 mL) as the solvent for 24 h at room temperature afforded target 1H-indazole 2a in 9% yield (Table 1, Entry 1). Screening of the solvents, including trifluoroethanol (TFE), toluene, dichloromethane, methanol, acetic acid, and DMSO, proved unsuccessful (Table 1, Entries 2-7). Fortunately, target 2a was obtained in 48% yield by using trifluoroacetic acid (TFA) as the solvent (Table 1, Entry 8). Employing other substituted iodoarenes, such as p-iodotoluene and piodoanisole, and also iodine sources, such as iodine and tetrabutylammonium iodide, produced inferior results (Table 1, Entries 9-12). Additionally, reactions performed with oxidants such as *tert*-butyl hydroperoxide (TBHP), hydrogen peroxide, and potassium persulfate were unsuccessful (Table 1, Entries 13-15). To our delight, upon employing Oxone (potassium peroxymonosulfate) as the oxidant, 2a was obtained in 41% yield (Table 1, Entry 16). Lowering the temperature to -10 °C led to isolation of the product in 90% yield (Table 1, Entry 18). Fortunately, low-

 [[]a] Department of Bioscience and Informatics, Graduate School of Life and Environmental Sciences, Osaka Prefecture University I-1 Gakuencho, Nakaku, Sakai, Osaka 599-8531, Japan E-mail: tanimori@bioinfo.osakafu-u.ac.jp http://www.bioinfo.osakafu-u.ac.ip/~tanimori/

http://www.bioinfo.osakafu-u.ac.jp/~tanimori/ Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201402488.

Pages: 5

SHORT COMMUNICATION

ering the quantity of iodobenzene from 30 to 10 mol-% led to an acceptable yield of the product (84%; Table 1, Entry 19). Control experiments without the use of iodobenzene and Oxone afforded **2a** in 16 and 0% yield, respectively (Table 1, Entries 20 and 21).

Table 1. Optimization of the reaction conditions for the cyclization of phenylhydrazone $1a.^{\rm [a]}$

	Ph	additive (30 m oxidant (1.5 e	iol-%) quiv.)	_	\bigcirc	Ph
	HN Ph	TFA, temp., t	time	-	2	► _N ́ Ph
Entry	Oxidant	Additive	Solvent	<i>Т</i> [°С]	<i>t</i> [h]	Yield ^[b] [%]
1 2	mCPBA	PhI	HFIP	r.t.	24	9
	mCPBA	PhI	TFE	r.t.	24	trace
3	mCPBA	PhI	toluene	r.t.	24	0
4	mCPBA	PhI	CH ₂ Cl ₂	r.t.	24	0
5	mCPBA	PhI	MeOH	r.t.	12	0
6	mCPBA	PhI	AcOH	r.t.	12	0
7	mCPBA	PhI	DMSO	r.t.	12	0
8	mCPBA	PhI	TFA	r.t.	12	48
9	mCPBA	<i>p</i> -MeC ₆ H ₄ I	TFA	r.t.	6	20
10	mCPBA	<i>p</i> -MeOC ₆ H ₄ I	TFA	r.t.	6	16
11	mCPBA	I ₂	TFA	r.t.	6	trace
12	mCPBA	Bu ₄ NI	TFA	r.t.	6	trace
13	70% aq. TBHP	PhI	TFA	r.t.	6	0
14	30% H ₂ O ₂	PhI	TFA	r.t.	6	0
15	$K_2S_2O_8$	PhI	TFA	r.t.	6	0
16	Oxone	PhI	TFA	r.t.	6	41
17	Oxone	PhI	TFA	0	0.5	81
18	Oxone	PhI	TFA	-10	0.5	90
19 ^[c]	Oxone	PhI	TFA	$-10 \\ -10$	0.5	84
20	Oxone	_	TFA		0.5	16
21	_	PhI	TFA	-10	0.5	0

[a] The reaction was performed with the iodine compound (0.3 equiv.) and oxidant (1.5 equiv.) unless otherwise stated. [b] The yield of **2a** after flash chromatography. [c] The reaction was performed with 10 mol-% of the additive.

With the optimized conditions in hand, we next investigated the scope of the cyclization of a series of substituted hydrazones (Scheme 2). Hydrazones 1b and 1c with methoxy and methyl substituents on both benzene rings reacted to give corresponding substituted 1*H*-indazoles 2b and 2c in 77 and 71% yield, respectively. Substrates 1d and 1e bearing halogen substituents also gave target products 2d and 2e in 73 and 71% yield, respectively. As can be anticipated, the substrate singly substituted with a methyl group provided a mixture of regioisomeric products 2fa and 2fb. Interestingly, if phenylhydrazone 1g with a methoxy group was employed as the substrate, the reaction proceeded with high regioselectivity to afford 2g throughout the cyclization from the electron-rich benzene ring. However, cyclization of bromoand nitro-substituted pyridine-ring-containing substrates 1h, 1i, and 1j preferentially occurred from the electron-rich benzene ring to afford 2h, 2i, and 2j. Substrate 1k with a substituent at the hydrazine-derived benzene ring also underwent cyclization to afford 1H-indazole 2k in moderate yield.

Scheme 2. Scope of the cyclization of hydrazones. Yields of the products obtained after chromatography are given.

Disappointingly, transformation of hydrazones with benzyl, benzoyl, and *p*-toluenesulfonyl groups and transformation of a hydrazone without any substituents at the terminal nitrogen atom could not be achieved under the optimized conditions; the starting materials were recovered, and this could partially be attributed to the instability of the nitrenium ion [Scheme 3, Equation (1)].^[12b] Also, reaction of hydrazones **11** and **1m** with methoxycarbonyl and methyl groups instead of the aryl group afforded poor yields of corresponding indazoles **21** and **2m** [Scheme 3, Equation (2)].

 11: R = CO2Me
 21: R = CO2Me, 39 %

 1m: R = Me
 2m: R = Me, 38 %

 (performed at 70 °C)

Scheme 3. Unsuccessful and inefficient transformations.

A one-pot process without the isolation of hydrazone intermediate **1a** was achieved by using benzophenone and phenylhydrazine as the starting materials (Scheme 4). The reaction of both starting materials in the presence of an

(2)

Date: 30-06-14 11:32:33

Pages: 5

Facile Access to 1H-Indazoles

acid catalyst afforded hydrazone 1a, which was treated with iodobenzene and Oxone under the optimal conditions to provide target indazole 2a in 61% yield.

Scheme 4. The one-pot synthesis of 1H-indazole **2a**. TsOH = p-toluenesulfonic acid.

To obtain information about the reaction mechanism, we next investigated the following control experiments. The reaction of **1a** was not suppressed if TEMPO (2,2,6,6-tetramethylpiperidin-1-oxyl), a radical-trapping reagent, was added [Scheme 5, Equation (1)]. As expected, the reaction with PhIO afforded product **2a** in almost the same efficiency [Scheme 5, Equation (2)].

Scheme 5. Control experiments.

A plausible catalytic cycle for this transformation is shown in Scheme 6.^[12b] The oxidation of iodobenzene by Oxone affords hypervalent iodine(III) species **A**, which reacts with hydrazone **1** to form nitrenium ion intermediate

Scheme 6. Plausible catalytic cycle.

B. Intramolecular nucleophilic substitution provides indazole **2** via carbocation **C**. The liberated iodobenzene is reoxidized to **A** by Oxone.

Conclusions

We achieved the facile synthesis of multisubstituted 1Hindazoles with an *N*-aryl substituent from readily available hydrazones on the basis of iodobenzene-catalyzed oxidative C–H aminations by using Oxone as a stable and inexpensive oxidant under mild conditions within a short reaction time. The scope and limitations of this transformation and also valuable information with regard to the reaction mechanism were partially elucidated (Schemes 3–5). This transformation avoids the use of a toxic transition-metal catalyst and leaving groups, which require additional steps for prefunctionalization. A range of functional groups [methoxy, methyl, halogen (Br, Cl, and F), ester, and 4-pyridyl] were accepted for this transformation to provide a series of functionalized 1H-indazoles in moderate to good yields.

Experimental Section

General Procedure: Oxone (0.60 mmol, 1.5 equiv.) was added to a stirred solution of hydrazone **1** (0.40 mmol, 1.0 equiv.) and iodobenzene (10 mol-%) in TFA (2 mL) at -10 °C. The mixture was stirred for 30 min and then quenched with water, diluted with CHCl₃, and washed with water (3 × 10 mL). The combined organic layers were dried (Na₂SO₄), and the solvents were removed under reduced pressure. The residue was purified by column chromatography (hexane/ethyl acetate) to afford pure substituted 1*H*-indazole **2**.

Supporting Information (see footnote on the first page of this article): Experimental procedures, complete characterization data of all the new compounds, and copies of the ¹H NMR and ¹³C NMR spectra.

Acknowledgments

We thank Dr. Toshifumi Dohi, College of Pharmaceutical Sciences, Ritsumeikan University, for a kind discussion.

- N. A. S. Ali, B. A. Dar, V. Pradhan, M. Farooqui, *Mini-Rev. Med. Chem.* 2013, 13, 1792.
- [2] G. A. Bistocchi, G. D. Meo, M. Pedini, A. Ricci, H. Brouilhet, S. Boucherie, M. Rabaud, P. Jacquignon, *Farmaco, Ed. Sci.* 1981, *36*, 315.
- [3] L. Mosti, L. Sansebastiano, P. Fossa, P. Schenone, F. Mattioli, *Farmaco* **1992**, *47*, 357.
- [4] D. A. Buthala, T. J. Lobl, Cytobios 1979, 25, 23.
- [5] For a review, see: A. Schmidt, A. Beutler, B. Snovydovych, Eur. J. Org. Chem. 2008, 4073.
- [6] For palladium catalysis, see: a) J. J. Song, N. K. Yee, Org. Lett. 2000, 2, 519; b) J. J. Song, N. K. Yee, Tetrahedron Lett. 2001, 42, 2937; c) C. S. Cho, D. K. Lim, N. H. Heo, T.-J. Kim, S. C. Shim, Chem. Commun. 2004, 104; d) K. Inamoto, M. Katsuno, T. Yoshino, I. Suzuki, K. Hiroya, T. Sakamoto, Chem. Lett. 2004, 33, 1026; e) K. Inamoto, M. Katsuno, T. Yoshino, Y. Arai, K. Hiroya, T. Sakamoto, T. Sakamoto, K. Hiroya, Org. Lett. 2007, 9, 2931; for copper catalysis, see: g) D. Viña,

SHORT COMMUNICATION

- E. del Olmo, J. L. López-Pérez, A. San Feliciano, Org. Lett.
 2007, 9, 525; h) X. Xiong, Y. Jiang, D. Ma, Org. Lett. 2012, 14, 2552; i) T. Kylmälä, S. Udd, J. Tois, R. Franzén, Tetrahedron Lett. 2010, 51, 3613; j) X. Li, L. He, H. Chen, W. Wu, H. Jiang, J. Org. Chem. 2013, 78, 3636; for iron catalysis, see: k) D. K. O'Dell, K. M. Nicholas, Heterocycles 2004, 63, 373; l) B. J. Stokes, C. V. Vogel, L. K. Urnezis, M. Pan, T. G. Driver, Org. Lett. 2010, 12, 2884; m) T. Zhang, W. Bao, J. Org. Chem. 2013, 78, 1317; for rhodium catalysis, see: n) D.-G. Yu, M. Suri, F. Glorius, J. Am. Chem. Soc. 2013, 135, 8802.
- [7] Recently, the base-catalyzed synthesis of substituted indazoles under mild, transition-metal-free conditions was developed: I. Thomé, C. Besson, T. Kleine, C. Bolm, *Angew. Chem. Int. Ed.* 2013, *52*, 7509; *Angew. Chem.* 2013, *125*, 7657.
- [8] For some recent reviews, see: a) M. Ochiai, K. Miyamoto, Eur. J. Org. Chem. 2008, 4229; b) T. Dohi, Y. Kita, Chem. Commun. 2009, 2073; c) I. Tellitu, E. Domínguez, Trends Heterocycl. Chem. 2011, 15, 23; d) E. A. Merritt, B. Olofsson, Synthesis 2011, 517; e) M. Brown, U. Farid, T. Wirth, Synlett 2013, 24, 424; f) V. V. Zhdankin, Hypervalent Iodine Chemistry, Wiley, Chichester, 2014; g) F. V. Singh, T. Wirth, Chem. Asian J. 2014, 9, 950.
- [9] a) R. Samanta, J. Lategahn, A. P. Antonchick, *Chem. Commun.* **2012**, 48, 3194; b) J. Wang, Y. Yuan, R. Xiong, D. Zhang-Negrerie, Y. Du, K. Zhao, *Org. Lett.* **2012**, 14, 2210; c) Y. Gu, D. Wang, *Tetrahedron Lett.* **2010**, 51, 2004.
- [10] a) J. A. Souto, C. Martínez, I. Velilla, K. Muñiz, Angew. Chem. Int. Ed. 2013, 52, 1324; Angew. Chem. 2013, 125, 1363; b) U. Farid, T. Wirth, Angew. Chem. Int. Ed. 2012, 51, 3462; Angew. Chem. 2012, 124, 3518; c) J. A. Souto, P. Becker, A. Iglesias, K. Muñiz, J. Am. Chem. Soc. 2012, 134, 15505; d) J. A. Souto, D. Zian, K. Muñiz, J. Am. Chem. Soc. 2012, 134, 7242; e) Y. Zheng, X. Li, C. Ren, D. Zhang-Negrerie, Y. Du, K. Zhao, J. Org. Chem. 2012, 77, 10353; f) Y.-B. Kang, L. H. Gade, J. Org. Chem. 2012, 77, 1610; g) Z. Yu, L. Ma, W. Yu, Synlett 2012,

23, 1534; h) R. Samanta, J. O. Bauer, C. Strohmann, A. P. Antonchick, Org. Lett. 2012, 14, 5518; i) W. Zhong, S. Liu, J. Yang, X. Meng, Z. Li, Org. Lett. 2012, 14, 3336; j) H. J. Kim, S. H. Cho, S. Chang, Org. Lett. 2012, 14, 1424; k) X. Ban, Y. Pan, Y. Lin, S. Wang, Y. Du, K. Zhao, Org. Biomol. Chem. 2012, 10, 3606; 1) A. Lishchynskyi, K. Muñiz, Chem. Eur. J. 2012, 18, 2212; m) J.A. Souto, Y. González, A. Iglesias, D. Zian, A. Lishchynskyi, K. Muñiz, Chem. Asian J. 2012, 7, 1103; n) H. Liu, X. Wang, Y. Gu, Org. Biomol. Chem. 2011, 9, 1614; o) Y.-B. Kang, L. H. Gade, J. Am. Chem. Soc. 2011, 133, 3658; p) W. Zhong, J. Yang, X. Meng, Z. Li, J. Org. Chem. 2011, 76, 9997; q) M. Fujita, M. Wakita, T. Sugimura, Chem. Commun. 2011, 47, 3983; r) A. A. Kantak, S. Potavathri, R. A. Barham, K. M. Romano, B. Deboef, J. Am. Chem. Soc. 2011, 133, 19960; s) C. Röben, J. A. Souto, Y. González, A. Lishchynskyi, K. Muñiz, Angew. Chem. Int. Ed. 2011, 50, 9478; Angew. Chem. 2011, 123, 9650; t) A. Yoshimura, V. N. Nemykin, V. V. Zhdankin, Chem. Eur. J. 2011, 17, 10538.

- [11] a) M. Ochiai, Y. Takeuchi, T. Katayama, T. Sueda, K. Miyamoto, J. Am. Chem. Soc. 2005, 127, 12244; b) T. Dohi, A. Maruyama, M. Yoshimura, K. Morimoto, H. Tohma, Y. Kita, Angew. Chem. Int. Ed. 2005, 44, 6193; Angew. Chem. 2005, 117, 6349.
- [12] a) M. Ito, H. Kubo, I. Itani, K. Morimoto, T. Dohi, Y. Kita, J. Am. Chem. Soc. 2013, 135, 14078; b) S. K. Alla, R. K. Kumar, P. Sadhu, T. Punniyamurthy, Org. Lett. 2013, 15, 1334; c) M. Ngatimin, R. Frey, C. Andrews, D. W. Lupton, O. E. Hutt, Chem. Commun. 2011, 47, 11778; d) V. V. Zhdankin, J. Org. Chem. 2011, 76, 1185; e) T. Dohi, T. Nakae, Y. Ishikado, D. Kato, Y. Kita, Org. Biomol. Chem. 2011, 9, 6899; f) A. P. Antonchick, R. Samanta, K. Kulikov, J. Lategahn, Angew. Chem. Int. Ed. 2011, 50, 8605; Angew. Chem. 2011, 123, 8764; g) T. Dohi, N. Takenaga, K.-I. Fukushima, T. Uchiyama, D. Kato, M. Shiro, H. Fujioka, Y. Kita, Chem. Commun. 2010, 46, 7697. Received: April 25, 2014

Published Online:

4

/KAP1

Date: 30-06-14 11:32:33

Pages: 5

Facile Access to 1H-Indazoles

Transition-metal- and halogen-free synthesis of *N*-aryl-substituted 1*H*-indazole and derivatives is accomplished on the basis of the iodobenzene-catalyzed intramolecular C–H amination of hydrazones in the presence of Oxone in trifluoroacetic acid at -10 °C. The 1*H*-indazole derivatives are obtained in moderate to good yields (up to 90%).

M. Kashiwa,	M.	Sonoda,	
S. Tanimori*	••••		1–5

C–H Amination

ᆗ

Facile Access to 1*H*-Indazoles through Iodobenzene-Catalyzed C–H Amination under Mild, Transition-Metal-Free Conditions

Keywords: Hypervalent compounds / C–H activation / Amination / Nitrogen heterocycles / Cyclization