New products

Anti-trypanosomal compounds. Part II. Novel amidinium sulfinic compounds and phosphorylated heterocycles as anti-trypanosomal agents

Michèle WILLSON¹, Kamel ZINE¹, Alain KLAEBE¹, Jean Jacques PERIE^{1*} and Théo BALTZ²

¹Groupe de Chimie Organique Biologique, CNRS UA454 and UA470, Université Paul-Sabatier, 118, rte de Narbonne, 31062 Toulouse Cedex; and ²Laboratoire d'Immunologie et Biologie Parasitaire, Université de Bordeaux, 148, rue Léo-Saignant, 33076 Bordeaux Cedex, France

(Received March 16, 1988, accepted March 6, 1989)

anti-trypanosomal compounds / sulfinic-amidinium derivatives / phosphohydantoins

Introduction

In the course of our work on the design of active molecules against African trypanosomiasis, we are developing two different approaches: one based on glycolytic enzyme inhibition owing to the essential character of this metabolism [1, 2] and a second based on more systematic investigations of new structures, designed by varying and combining functionalities for which a biological activity has been recognized. Along these lines, we looked for possible new drugs in the field of cyclic amidines, hydantoins and derivatives, such as sulfinic amidinium compounds, phosphohydantoins and phosphoureas. These compounds were tested *in vitro* against *Trypanosoma equiperdum* and some of them on infected mice.

^{*}Author to whom correspondence should be addressed.

Chemistry

A first set of compounds was obtained by using the reactivity of chloroamidinium ions, prepared by chlorination in water of thioureas. This route allows easy access to the cyclic amidine structure [3], the amidinyl group being a part of certain trypanocides [4]. The reaction is indicated in Scheme 1.

Such compounds can undergo nucleophilic attack at the C_2 carbon atom; this process allows the attachment at C_2 of different moieties. Two chloroamidinium 2a and 2b and the corresponding derivatives 3a, 3b, 3c and 3d were thus synthesized.

The second group of amidinium type compounds were obtained by oxidation of the same thioureas using hydrogen peroxide; this reaction, described in the literature for acyclic thioureas [5, 6], can be extended to cyclic thioureas and also to thiohydantoins. Three compounds of this class were synthesized **4a**, **4b** and **4c**.

Such formamidinium sulfinic acids exhibit anti-mitotic properties [7] and were therefore considered valuable for testing as trypanocides.

Another group of tested compounds was hydantoins and phosphorylated derivatives owing to the biological activity known for the two types of compounds and particularly the latter, bearing some similarity with active ureido phosphonates [4, 8-11]. These hydantoins were described elsewhere [12]. They correspond to structures **5** and **6** respectively.

Other phosphorylated compounds, corresponding to structures 7, 8 and 9, were also synthesized and tested.

Results and Discussion

Results obtained with these compounds and with two standard drugs, pentamidine and α -(diffuoromethyl)ornithine (DFMO) are summarized in Table I.

Concerning first amidine derivatives 2a-3d, none of them exhibits an activity in the range of concentrations used. The substitutions on an amidine group including a fast metabolized amino acid in 3d, do not provide any improvement.

Compounds of the second group have, on the contrary, an in vitro activity, particularly 4b, which produces total depletion of trypanosomes within 24 h, at 10^{-5} M. Other formamidinium sulfinic compounds have proven antimitotic activity [7, 14]. This feature has also been noted for other compounds, such as ethidium bromide, which behaves as both an anti-cancer agent and a trypanocide [15], or the drug α -(diffuoromethyl)ornithine thought to be a suicidal inhibitor of ornithine decarboxylase in trypanosomes, which also behaves as an anti-tumor agent [16]. This dual activity may be based on common features in trypanosomes and cancer cells and particularly the fact that both are rapidly dividing systems [17]. Therefore, compounds such as the intercalating ethidium bromide may act on replication enzymes of the trypanosome, as formamidium sulfinic acid might be trypanocidal as well as antimitotic agent.

Concerning the hydantoins 5a-5d and the phosphorylated compounds tested, results are as follows: hydantoins are totally inactive in the range of concentrations tested as are their phosphorylated derivatives, with esterified groups or as free acid except 5a and 6e which are weakly active. Phosphoderivatives of ureas 9a-9c are also inactive. In contrast, an activity is found for the phosphorylated derivatives of phthalimide 7a-7c and benzimidazole 8 in the 5×10^{-5} M range of concentrations. For these compounds, we verified that the starting material, phthalimide or benzimidazole, was not or only very slightly active.

When compounds **3a**, **3c**, **4a**, **4b**, **7a**, **7b** and **8** were tested *in vivo*, on mice-infected with *T. equiperdum*, no activity was found. But **4a**, **4b** and **4c** exhibit high activity on glycolytic enzymes in trypanosomes (M. Willson, J.J. Périé and F.R. Opperdoes, in preparation), particu-

Table I. Trypanocidal activity against Trypanosoma equiperdum in vitro.

Compound	MW	Activity $(\mu M)^*$
Pentamidine		active at 0.01
DFMO		active at 10
2a	285	inactive at 70
2b	347	inactive at 57
3a	177	inactive at 113
.3b	244	inactive at 82
.3e	263	inactive at 76
3d	165	inactive at 120
4a	134	active at 150
4b	182	active at 10
4c	132	active at 150
5a	176	active at 144
5b	176	inactive at 113
5c	114	inactive at 175
5d	252	active at 80
6a	360	inactive at 150
6b	332	inactive at 160
бе	.345	inactive at 158
6d	284	inactive at 70
6e	385	active at 150
7a	269	active at 74
7b	315	active at 63
7c	241	active at 83
8	328	active at 61
9a	191	inactive at 150
9b	323	inactive at 150
9c	324	inactive at 150

*Minimum concentration for complete depletion of *T. equiperdum* population.

larly glycerol-phosphate dehydrogenase and phosphoglycerol kinase.

We are therefore now considering structural modifications on compounds of series 4 with the aim to make them active in vivo.

Experimental protocols

Chemistry

Melting points were obtained using a Buchi apparatus. The IR spectra were recorded on Perkin–Elmer 284 and 68 instruments, the ³¹P NMR spectra on a Bruker AC 80 spectrometer operating at 32.4 MHz and using 85% H₃PO₄ as an external reference. The ¹³C NMR spectra was recorded on a Bruker WH 90 spectrometer operating at 22.6 MHz using tetramethyl silane (TMS) as an internal reference. Elemental analysis for C, H, N, S and P were performed by the Microanalytical Service of CNRS Vernaison, France.

Sample preparation of amidine derivatives (Scheme 1)

4,5-Dihydro-2-chloroimidazolium hydrogenosulfate 2a. This synthesis was performed according to Trani [3], as was 2-chloro-benzimidazolium hydrogenosulfate 2b, starting from benzimidazole and using a 2:1 mixture of water and acetone instead of pure water as the solvent. Recrystallized in methanol; yield 65%; mp: 163°C. IR (KBr cm⁻¹) $\nu_{\rm NH}$: 3120; $\nu_{\rm C=N}$: 1620. ¹H NMR (DMSO-d₆) δ 3.97 (s, 4H); 12.0 (s, 3H). Anal. $C_7H_6N_2Cl \cdot HSO_4$ (C, H, N, Cl).

2-[4-Hydroxy-anilino]-4-5-dihydro-imidazol **3a.** To 15 mmol (4.27 g) of **2a** dissolved in 50 ml of dimethyl formamide (DMF), were added 15 mmol (1.63 g) of 4-hydroxyaniline and 3 eq. of triethylamine. The solution was refluxed for 3 h; the solid which separated was filtered off, washed with hexane, and recrystallized in ethanol. Yield 57%; mp: 187°C. IR (KBr, cm⁻¹) ν_{OH} : 3400; ν_{NH} : 3300–3180; $\nu_{C=N}$: 1650. ¹H NMR (D₂O; ref. disiloxysilazane (DSS)) δ 3.60 (s, 4H); 7.0 (d, 2H); 7.4 (d, 2H) corresponding to the AA'BB' protons of the aromatic ring (J =8 Hz). Anal. $C_9H_{11}N_3O(C, H, N)$.

2-[4-Aminosulfonyl-aniline]4,5-dihydro imidazol 3b. To 15 mmol (4.27 g) of 2a dissolved in 50 ml of DMF were added 1 eq. of 4-aminosulfonyl-aniline (2.58 g), 3 cq. of potassium carbonate (6.21 g) and 0.5 g of catalyst triethylbenzylammonium chloride. The mixture was refluxed for 3 h, then the remaining solid was filtered off. After partial evaporation of the solvent (30 ml), an oily product was precipitated by addition of methanol, which then crystallized by cooling: recrystallized in ethyl acetate. Yield: 42%; mp: 244°C. IR (KBr, cm⁻¹) $\nu_{\rm NH}$: 3320 and 3280; $\nu_{\rm CN}$: 1610; $\nu_{\rm SO_2}$: 1320 and 1160. ¹H NMR (DMSO-d₆) δ 3.6 (s, 4H); 6.2 (m, 4H, exchanged in D₂O); 7.2-8 (2d, 4H; J = 8 Hz). Anal. C₇H₁₂N₃O₂S (C, H, N, S).

2-[4-Sodium sulfonate anilino]-4,5-dihydro imidazol 3c. To 15 mmol (4.27 g) of 2a dissolved in 20 ml of water were added 1 eq. of sulfanilic acid in dichloromethane (30 ml) and 0.5 g of trimethylbenzyl ammonium chloride as the transfer agent, then 3 eq. of 5% NaOH in water. After 10 min, the precipitate formed was filtered off and washed twice with ether, then dried. Yield 66%; mp: >260°C. IR (KRr, cm⁻¹) ν_{NH} : 3310; $\nu_{\text{C=N}}$: 1625. ¹H NMR (D₂O); (ref DSS); δ 3.6 (s, 4H); 7–7.8 (2d, 4H). Anal. C₉H₁₀N₃O₃SNa 2 H₂O (C, H, N, S).

2-[N-Glycil]4,5-dihydro imidazol 3d. To 15 mmol (4.27 g) of 2a dissolved in 20 ml of water were added 1 eq. of glycine (1.125 g) then 3 eq. of 5% NaOH in water. After 1 h the solution was acidified to pH 4 (3 N HCl); addition of ethanol allowed the formation of a solid, which was filtered off, washed twice with ether and recrystallized in methanol. Yield: 95%; mp: >260°C. IR (KBr, cm⁻¹) ν_{OH} : 3650–3300; ν_{VH} : 3190; $\nu_{C=N}$: 1690; $\nu_{C=O}$: 1710. ¹H NMR (DMSO-d₆): δ 3.8 (s, 4H); 4.1 (d, 2H); 8.5 (m, 3H exchanged in D₂O). Anal. C₅H₉O₂N₃ (C, H, N). Hydantoins 5a-5d were prepared according to classical [18, 19] or slightly modified procedures. Their phosphorylated derivatives 6a-6e as well

as the phosphophthalimides **7a**-**7c** were described elsewhere [12]. Diphenyl(benzimidazolyl)methylphosphine oxide **8** was obtained from a solution of 0.024 mol (3.9 g) of chloro-1-methylbenzimidazol and 0.024 mol (5.2 g) of methoxy diphenylphosphine in anhydrous toluene (sodium dried) refluxed for 2 h. After evaporation of the solvent and trituration of the remaining oil in chloroform and diethyl ether, a powder was filtered off and recrystallized in a 1/1 mixture of ethanol-benzene. Yield = 50%; mp: 97°C. ³¹P NMR δ = + 30 ppm. IR (KBr, cm⁻¹) ν_{NH} : $3200-2700; \nu_{C=N}: 1620-1590; \nu_{P-O}: 1184; \nu_{P-C}: 1432.$

Compounds 9a, 9b and 9c were described in an earlier paper [20].

Biological assays

All compounds were tested in a semi-defined medium for the cultivation of Trypanosoma equiperdum, 20 000 for each test [13]. The cultured trypanosomes had all the characteristics of the bloodstream forms including morphology, infectivity, antigenic variation and glucose metabolism. The standard medium consisted of Hepes-buffered minimum essential medium with Earle's salt, supplemented with 0.2 mM of 2-mercaptoethanol, 2 mM pyruvate and 10% heat-inactivated rabbit serum.

The values indicated for the trypanocidal activity correspond to the minimum amount required to obtain complete depletion of a T. equiperdum population. The test is run on different samples and the results are read by counting on the grid of a microscope after 4, 22 and 48 h for each sample. Active concentrations were determined by using different dilutions from 150 to 0.15 μ M.

In addition, several compounds exhibiting in vitro activity, were tested in vivo. T. equiperdum-infected mice were injected subcutaneously with solutions of dimethyl sulfoxide (DMSO), at 3 concentrations 12, 50 and 100 mg/kg. Blood parasitemia was evaluated after 12 and 24 h.

References

- Opperdoes F.R. (1983) in: Parasitology, Global Perspective (Warren K.S. & Bowers J.Z., eds), Springer-Verlag, Heidelberg
 Betbeder D., Klaébé A. & Périé J. (1989) Eur. J. Med. Chem. 24,
- in press
- 3 Trani A. (1974) J. Heterocyclic Chem. 10, 257-262
- 4 Ross W.J. (1979) in: Burger's Medicinal Chemistry (Wolff M.E., ed.), John Wiley & Sons, New York, 4th edn, part II, ch. 20
- Havel J.J. & Kluttz R.Q. (1974) Synth. Commun. 4, 389–393 De Filippo D., Ponticelli G. & Trogu E.F. (1972) J. Chem. Soc. Perkin Trans. II 1500–1502 6
- Rao K.V. (1962) U.S. Patent 3,051,625; Chem. Abstr. 57, 15257 d
- 8 Engel R. (1977) Chem. Rev. 77, 349-367
- 9 Razvodovskaya L.V., Grapov A.F. & Mel'Nikov N.N. (1982) Russ. Chem. Rev. 51, 135-148
 10 Huber J.W. & Gilmore W.F. (1979) Tetrahedron Lett. 33,
- 3049-3052
- 11 Kamiya T., Henni K., Takeno H. & Hashimoto M. (1980) Tetrahe-dron Lett. 21, 95-102
- 12 Willson M., Bouissou T., Mathis R. & Mathis F. (1984) Spectrochim. Acta 9, 835-846
- 13 Baltz T., Baltz D., Giroud C. & Crockett J. (1985) EMBO J. 4, 1273 - 1277
- 14 Maryanoff C.A., Stanzione R.C. & Plampin J.N. (1986) Phosphorus Sulfur 27, 221-227
- 15 Riou G. (1970) Biochem. Pharmacol. 19, 1524–1526 16 Sjoersma A. (1980) Clin. Pharmacol. Ther. 30, 287–300
- Wang C.C. (1984) J. Med. Chem. 27, 1-9 17

- Gabriel S. (1906) Liebigs Ann. 350, 118–134
 Popoff I.C. (1963) Org. Chem. 28, 2898–2900
 Blonski C., Belgith H., Klaébé A. & Périé J.J (1987) J. Chem. Soc. Perkin Trans. II 1369-1374